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ABSTRACT This work introduces a wideband metamaterial (MM) absorber designed to operate effectively 
across a wide reception angle and be polarization-insensitive within ISM band (2.4 GHz) applications. The 
proposed absorber unit cell comprises four copper sectors loaded with lumped resistors and a full copper 
ground plane hosted onto two FR4 substrates. Furthermore, an air layer suspended between the ground plane 
and a FR4 substrate is applied to achieve wideband absorption. In addition, the simulation results show that 
particular design factors, such as lumped resistors and unit cell geometry, can be optimized to improve the 
efficiency of the absorber. The simulations demonstrate that the proposed absorber achieves a wideband 
absorption, exceeding 90%, over a broad frequency range from 1.94 GHz to 2.98 GHz. The designed absorber 
was fabricated and tested, and the simulation and measurement results were agreed well.  

INDEX TERMS Electromagnetic absorber, metamaterial (MM), polarization independent, wideband. 

I. INTRODUCTION 
Electromagnetic (EM) wave absorbers, known as 

blackbodies, have garnered significant attention due to their 
ability to prevent the reflection and transmission coefficients 
of EM radiation, making them highly used in real-world 
applications, including Electromagnetic compatibility 
(EMC) and stealth techniques, etc. Recently, MM comprised 
of artificially engineered subwavelength structures has been 
shown to have great ability in designing microwave 
absorbers due to their unique properties, such as negative 
permittivity, negative permeability, and refractive index [1]. 
Due to these extraordinary properties,  MMs are used in 
various applications, including invisibility cloaking [2], 
imaging [3], super lens [4], sensors [5],[6], absorbers [7]–
[11], energy harvesting [12]–[14]. Therefore, MM absorbers 
attracted much attention from researchers worldwide due to 
their various applications for several on-demand needs. In 
particular, microwave absorbers can be used to reduce the 
radar cross-section (RCS) and EM interference (EMI) [15], 
[16]. Unlike conventional absorbing materials such as ferrite 
[17], near-unity absorption can be achieved by fabricating 

MMs in a thin configuration and using low-cost printed 
circuit boards (PCBs). The progress in MM absorber design 
has successfully overcome the drawbacks associated with 
conventional material absorbers, which often suffer from 
issues like bulkiness, large size, and higher thickness. Landy 
et al.2008 [18] produced the concept of the perfect MM 
absorber with a compact and ultrathin structure, achieving a 
near-unity absorption by effectively effective impedance 
matching between the absorber and free space. MM 
absorbers have been developed in a variety of frequency 
ranges, including single band[19], [20], dual band[21], [22], 
and multiband [23]–[25]. 

However, the operational concept of MM absorbers 
depends on resonator arrays; therefore, their absorption is 
frequency-dependent, and they have a narrow absorption 
bandwidth [26]. For most applications, the absorbers with a 
wide bandwidth absorption are preferred. Thus, various 
techniques are used to increase the bandwidth of the MM 
absorbers, including the use of multilayers [27]–[30], multi-
resonant [31], [32] techniques. However, these methods have 
produced some drawbacks, such as increased total thickness, 
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assembly difficulties, and a possibility for discrete absorption 
bands. Another method to design a broadband metamaterial 
absorber is using silicon and graphene-based materials. 
However, the cost can be quite high, and the fabrication 
process is complex [33], [34]. An alternative method to 
achieve a wide absorption bandwidth is to use the MM 
absorbers with lumped resistors mounted between the splits of 
the top metallic layer. This is due to the resistors providing 
extra ohmic losses in the metallic surface [35]–[37]. However, 
the losses introduced by the lumped resistors might not suffice 
to achieve a sufficiently wide absorption bandwidth. 
Fortunately, this challenge can be addressed by designing the 
absorber with a layer of flexible foam (air gap) or rubber 
placed between the substrate and ground plane [38]–[47]. In 
[38], an MM absorber loaded with four lumped resistors and 
an air layer is designed over a frequency range from 860 to 
960 GHz, achieving a relative bandwidth of 14%.  In addition, 
an MM absorber with angular stability is designed to operate 
over a wideband frequency range from 3 GHz to 10 GHz. To 
achieve an effective broadband absorption, eight resistor loads 
and an air layer are applied in the absorber design [43]. In [46], 
a wideband MM absorber is designed to operate within a 
frequency range of 1.44 GHz to 6.32 GHz. In the absorber 
design, eight resistors, and an air layer are applied to realize 
broadband absorption.  

The main contributions in this paper can be concisely 
summarized as follows: 
1.  Design  and analysis of a wideband metamaterial 

absorber for ISM application (2.4 GHz). 
2.  A near-unity absorption of about 99.99% is achieved at 

the operating frequency of 2.4 GHz. 
3.  A wider 90% absorption bandwidth over 1 GHz is 

achieved within the frequency band of 1.94 GHz to 2.99 
GHz. 

This paper introduces a conformal MM absorber with 
integrated resistors, offering angular stability and polarization 
insensitivity over a wideband frequency range. The proposed 
MM absorber comprises a lumped resistor loaded-cross-
shaped resonator on the top side and a copper plate separated 
by an air layer on the back side of the substrate. Numerical 
results demonstrate that the proposed absorber achieves a 
higher absorptivity of about 90% within the frequency range 
of 1.94 GHz to 2.98 GHz. Moreover, it exhibits an increased 
absorption ratio at various incident angles for both TE and TM 
polarizations. CST Microwave Studio is used to analyze the 
surface current density electric and magnetic field 
distributions within the unit cell to gain a deeper insight into 
the absorption mechanism. Finally, the designed MM absorber 
was fabricated and examined to confirm its capability to meet 
the absorption requirements within the designed frequency 
band. 

 
 

FIGURE 1. MM absorber (a): 3D view, (b) top view, (c) side view, and (d) schematic diagram of the absorber. 
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II. METAMATERIAL ABSORBER DESIGN 
A unit cell of the proposed MM energy absorber is shown in 
Fig. 1. The proposed MM unit cell comprises interconnected 
double metallic elliptical resonators that incorporate lumped 
resistor loads. The dielectric substrate comprises of FR4 with 
a thickness of 1.6 mm, a dielectric constant of 4.3, and a 
tangent loss of 0.025. The 2-D structure of the unit cell is 
depicted in Fig. 1(b), and the dimension parameters were 
optimized as follows: , , 

. The incident EM power is captured and 
concentrated within the resonator’s splits (g), where 

. Four lumped resistor loads are placed across the 
resonator's splits to examine the MM unit cell's capability of 
capturing and consuming collected EM power. The optimized 
resistance of the lumped resistors is 550 Ω. A ground plane is 
positioned with an ideal standoff distance of d = 15 mm from 
the substrate's bottom side, as shown in Fig. 1(c). The metallic 
material used herein is copper with conductivity of 

and thickness of . Fig. 1(d) shows 
specific details regarding the incident wave.  CST Microwave 
Studio is used with periodic boundary (unit cell boundary) 
conditions to simulate the cell as a large structure with 
transverse electromagnetic (TEM) excitation. The unit cell 
boundary conditions for TE and TM modes are implemented 
to the x- and y-axes, while open boundaries are applied to the 

z-axis. Floquet ports with TE and TM modes are used for 
excitation along with the z-axis. 

III. RESULTS AND DISCUSSION 
First, in the simulation configuration, the air space distance 
(d) between the resonator patch and ground plane was 
adjusted from 5 mm to 20 mm with 5 mm increments. 
Subsequently, the lumped resistors were swept from R= 400 
Ω to R= 600 Ω across all four-spacer distances. The 
reflection coefficient of the proposed MM absorber was then 
calculated. The simulated reflection coefficient of the MM 
absorber is presented in Fig. 2(a)-(d), corresponding to 
different lumped resistors spanning from R = 400 Ω to R = 
600 Ω, and with spacer distances of d = 5 mm, d = 10 mm, d 
= 15 mm, and d = 20 mm, respectively. It is observed that as 
the separation distance (d) increases, the resonance 
frequency shifts to lower frequencies. This phenomenon can 
be explained using equation (1), which indicates that the 
resonance frequency changes as the capacitance and 
inductance values change.  

 (1) 

Based on this investigation, the lowest reflection of < 40 dB 
at 2.4 GHz is achieved when the proposed MM structure is 
terminated by resistor loads of R= 550 Ω at the separation 
distance of d= 15 mm, as shown in Fig. 2(c). 

  

 
(a) 

 
(b) 

  
(c) 

 
(d) 

FIGURE 2. Simulation results illustrate the reflection coefficient of the proposed MM absorber under different resistor loads spanning from 400 Ω to 600 
Ω, and with air spacer distances of (a) d= 5 mm, (b) d= 10 mm, (c) d= 15 mm and (d) d= 20 mm. 
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Mathematically, the absorptivity can be described by equation 
(2).  

 (2) 
where are the reflected power and transmitted power, 
respectively. To optimize absorptivity, it is essential for both 
reflected and transmitted power to be minimized. The 
transmitted power  is almost zero due to the full 
ground plane. Fig. 3 depicts the proposed MM absorber's 
simulated absorption, reflection, and transmission curves. 
Fig. 3 shows the proposed MM absorber's simulated 
absorption, reflection, and transmission curves. It is evident 
that a near-unity absorption of about 99.99% is achieved at 
2.4 GHz. Furthermore, a 90% wideband absorptivity is 
obtained over the frequency band of 1.94 GHz to 2.99 GHz. 

 
FIGURE 3. Simulated absorption, reflection, and transmission 
coefficients. 
 

Case 1 
(no resistor, no Air spacer) 

 

Case 2 
(Resistor, no Air spacer) 

  

Case 3 
(Resistors & Air spacer) 

 
(a) 

 
(b) 

FIGURE 4. (a) Diagram of the stages of the absorber's design and (b) Simulated absorption responses of each stage 

 
A. EVALUATION OF THE DESIGN CONCEPT 
To study the impact of lumped resistors and air spacer on 
absorptivity, three cases of proposed MM absorbers have been 
numerically investigated, as shown in Fig. 4.  
Case 1: the initial design proposed by double elliptical 
resonators hosted on the top side surface of a thicker FR4 
substrate with a metal backing. A low absorptivity of about  

 
20%, less than 10%, is observed at 1.07 GHz, 2.3 GHz, and 
3.3 GHZ, respectively. In this configuration, only dielectric 
losses enable the resonance of three narrow frequency bands 
without significant absorption. Nevertheless, the purpose of 
this structure is to adjust the original operating frequency and 
subsequently enhance the bandwidth in the following steps. 

( ) 1 ( ) ( )A R Tw w w= - -
( )T w

( ) 0=T w
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Case 2: Four lumped resistors are inserted between the splits 
of the resonator (R= 590 Ω), as shown in Fig. 4a (case 2). At 
the resonance frequency of 2.4 GHz, the absorption of the EM 
wave increased due to additional energy loss caused by ohmic 
losses in the resistors.  
Finally, to achieve a higher absorptivity with a wider 
bandwidth, an air space between the ground plane and the 
dielectric substrate is placed, as shown in Fig. 4(a) (case 3). It 
is realized that a near unity absorption with wider bandwidth 
is observed, as depicted in Fig. 4(b). The result can be stated 
as follows: adding the air spacer caused a decrease in effective 
permittivity, consequently increasing the bandwidth of 
absorption. The resistance value was adjusted to achieve a 
higher absorption value with a wider bandwidth. Fig. 4(c) 
demonstrates that, in contrast to cases 1 and 2, this absorber 
achieves a near-unity absorption level of about 99.99% at 2.4 
GHz. Furthermore, a 90% wider absorption bandwidth is 
achieved within the frequency band of 1.94 GHz to 2.99 GHz.  

The equivalent circuit of the proposed absorber is shown 
in Fig. 5. It comprises three sections. Section A is the patch 
(metallic elliptical resonator), which consists of the parallel 
capacitor (C), inductor (L), and resistor (R). Section B 
represents the top substrate layer (FR4), and Section C 
represents the air spacer with thickness . The coupling 
between the top metallic elliptical resonator and the ground 
plane is not considered because a large spacer separates 
them. According to the transmission line model, the input 
impedance of the proposed MM structure can be calculated 
as  

  (3) 
 

 (4) 

  (5) 
where and is the impedance of the FR4 substrate and 
air layer, respectively. and  are the propagation constant 
and phase constant of the air layer. The effective capacitor 

, inductor , and resistor , extracted from the 
Keysight Advanced Designs System (ADS) simulator, are 
determined in Table I. 
 

TABLE I 
ADS VALUE OF R, L, C 

 
Parameter Value 

 0.65 pF 

 0.2 pF 

 22.7 nH 

 4.45 nH 

 105 Ω 

 77 Ω 

 

 
FIGURE 5. Equivalent Circuit 
 
The results obtained from ADS were compared with those 
simulated in CST, demonstrating a reasonable agreement 
that validates the structure's equivalent circuit model, as 
depicted in Fig. 6.  

 
FIGURE 6. Comparison of the simulated absorptivity of CST and ADS 
results. 
 

The absorptivity of the proposed MM absorber under 
various conditions is investigated and plotted in Fig. 7.  Fig. 
7(a) illustrates the absorption of the absorber with TE and 
TM polarization under normal incidence. The proposed 
absorber achieved a near unity absorption with a wider 
bandwidth regardless of the polarization mode. Fig. 7(b) 
shows the absorption curves under free loss and low loss 
conditions of the substrate material (FR4), where a near unity 
absorption is observed. Furthermore, Fig. 7(c) illustrates the 
absorption curves of the MM absorber both with loaded and 
unloaded lumped resistors. The MM absorber with 
unloading lumped resistors showed fourth absorption peaks 
of 70%, 97%, 58%, and 97% at 1.15 GHz, 3.35 GHz, 3.77 
GHz, and 4.43 GHz, respectively. The simulated results 
show that the lumped resistor is critical in achieving a near 
unity absorption and wider bandwidth.  
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(a) 

 
(b) 

 
(c) 

FIGURE 7. Absorption spectrum under various conditions: (a) Absorption for TE and TM polarization, (b) Absorptivity in two different loss situations, 
and (c) Absorptivity for loading and unloading resistor loads.  
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FIGURE 8. (a, b) E-field for TE and TM modes, (c, d) H-field for TE and TM modes, and (E, F) surface current for TE and TM modes, respectively, for the 
proposed MM absorber at 2.4 GHz. 
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The design principle of the proposed MM resonator relies 
on the generation of electric and magnetic fields induced by 
the interaction with EM waves. Magnetic fields (H-field) are 
produced when opposite currents are introduced into the 
upper and lower metal layers. The electric field (E-field) can 
be enhanced by focusing on the absorber's upper surface. The 
maximum absorption is achieved when electric and magnetic 
excitation occur simultaneously. The surface current, E-
field, and H-field distributions for the MM absorber at 2.4 
GHz for TE and TM polarizations are investigated to 
emphasize the absorption performance, as shown in Fig. 8. 
Fig. 8(a) and (b) show the E-field of the proposed MM 
absorber for TE and TM polarizations, respectively. The E-
field is intense at the edges of the four resistor’s splits and 
more concentrated at the resistor loads of (R2 and R4) across 
the x-axis for TE polarization and (R1 and R4) across the y-
axis for TM polarization, a contributor to the permittivity. 
The H-field distribution is shown in Fig. 8(c) and (d). It is 
distributed along the resonator contributing to the 
permeability, and concentrated across the (R2 and R4) across 
the x-axis for TE polarization and (R1 and R4) across the y-
axis for TM polarization. The surface current distribution is 
antiparallel for both TE and TM modes and concentrated 
around the resistor loads, as shown in Fig. 8(e) and (f). 
 
B. Absorptivity at Various Incident and Polarization 

Angles 
In practical situations, the orientation of the incident EM 
wave remains uncertain. Therefore, an MM absorber's  
Angular stability is an essential aspect of its efficiency.  
Therefore, good absorption efficiency at different 
polarization and incident angles is desirable. To evaluate the 
polarization efficiency of the MM absorber, the E-field and 
H-field directions are rotated at various polarization angles 

in the step of , while maintaining the direction of 
the EM wave. Fig. 9 depicts the absorption curves of the MM 
absorber at different polarization angles ranging from to 

. According to Fig. 9, due to the symmetrical design of 
the MM absorber, absorptivity remains consistent across a 
range of polarization angles for both TE and TM 
polarizations. 

As shown in Fig. 9, the absorptivity response for the 
absorber remains almost the same at different polarization 
angles , indicating that it is polarization insensitive. To 
further investigate whether the proposed MM structure 
functions as an absorber or converter, the polarization 
conversion ratio (PCR) is examined. The PCR can be 
calculated using equation (6) [48] 

 
 (6) 

where, and   are the cross and co-
polarized reflection coefficients for x-polarization incidence, 
whereas the cross and co-polarized reflection coefficients for 

y-polarization angle are , and , 
respectively, where  the indices ‘i’ and ‘r’ represent incident 
and reflected waves, respectively. Fig. 10 shows the 
simulated co- and cross-polarized reflection and PCR for the 
MM structure. It is observed that the PCR is nearly zero, 
affirming that the structure functions as an absorber rather 
than a converter. 

 
(a) 

 
(b) 

FIGURE 9. Absorptivity at different polarization angles (a) TE and (b) TM 
mode 
 

 
FIGURE 10. Co- and cross-polarized reflection and PCR under x 
polarized angle. 
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(a) 

 
(b) 

FIGURE 11. Absorption for various incident angles (a) TE polarization 
and (b) TM polarization 
 

At oblique incidence, the reflection coefficient for 
TE and TM polarization can be described as follows. 

 
(7) 

 
(8) 

where  and  are the incident and transmitted angles, 
respectively. The absorptivity of the proposed MM absorber 
is examined at different incident angles for both TE and TM 
polarizations and presented in Fig. 9. Both TE and TM 
polarization are considered. Based on equations (7) and (8), 

the reflection changes as the incident angle varies. Fig. 11 
illustrates the absorptivity of the MM absorber for various 
incident angles for TE and TM polarizations. In TE 
polarization, the electric field remains constant in direction, 
but the focus of EM and magnetic field rotates as the incident 
angle changes, as depicted in Fig. 11(a). The absorptivity 
decreases as the incident angle increases, but the absorptivity 
exceeds 65% up to the incident angle . In TM 
polarization, the direction of the H-field remains constant. In 
contrast, the E-field's focus and the EM wave's propagation 
direction rotate at different incident angles, as shown in Fig. 
11(b). It is noted that the resonance frequency shifts as the 
incident angle increases and the bandwidth decreases. 
Furthermore, parasitic resonances generate extra absorption 
peaks that rise significantly as the incident angle increases. 
However, the absorptivity is still over 75 % at 2.4 GHz up to 
the incident angle of .  

C. Parametric study 
Several critical parameters that influence the efficiency of the 
MM absorber were investigated and analyzed to assess the 
stability of the proposed MM absorber. Fig. 12 shows the 
absorptivity at different design parameters, including air layer 
height (d), inner radius (r2), the resistance value of the lumped 
resistor (R), and the split gap length (g). Fig. 12(a) shows the 
absorption ratio as the air layer height (h) varies from 0 to 15 
mm in the step of 5 mm. As the parameter h increases, the 
resonant frequency shifts to the left while the reflection 
coefficient remains below 10 dB. The parameter h is chosen at 
15 mm as the MM structure has achieved a reflection 
efficiency of less than 10 dB across the frequency range 1.94 
GHz to 2.99 GHz. The reflection curves in Fig. 12(b) illustrate 
changes as the inner resonator's radius (r2) varies from 16 mm 
to 22 mm in 2 mm increments—obviously, the relative 
bandwidth increases as the parameter r2 increases. The 
minimum reflection and wider relative bandwidth are 
observed when the parameter r2 equals 20 mm. Fig. 12(c) 
shows the reflection coefficient when the lumped resistor 
value changes from 400 Ω to 600 Ω. The minimum reflection 
is achieved when the resistor load value equals 560 Ω, leading 
to a near unity absorption of more than 99.99% at 2.4 GHz. In 
addition, the impact of the split length parameter (g) on the 
reflection is investigated and plotted in Fig. 12(d). It is clear 
that as the split length (g) increases, the resonance frequency 
shifts to the right side due to the change values of the capacitor 
and inductor, as explained in Eq. (1). The split length is chosen 
at g= 6.65 mm. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

FIGURE 12. The absorption spectrum of the MM absorber with different geometrical parameters (a) air layer height (h), (b) inner resonator radius (r2), 
(c) lumped resistor (R), and (d) splits of the resonators (g).

D. Measurement Procedures 
As a further step, the proposed MM absorber is 
experimentally verified by measuring the absorption of the 
large array. First, the proposed MM absorber is fabricated 
using conventional printed circuit board technology (PCB) 
using the same MM unit cell dimensions as in the 

 
simulation. Then, the lumped resistors were loaded onto the 
electric resonator structure using welding technology.  

As proof of concept, an array MM absorber with 
dimensions of 278.5 mm ×278.5 mm, containing 25 identical 
unit cell structures, was produced as shown in Fig. 13(a).

 

 
(a) 

 
(b) 

FIGURE 13. (a) Fabricated MM absorber and (b) measurement experimental setup
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Fig. 13(b) depicts the measurement setup. The 
measurement of the reflection coefficient for the fabricated 
MM array was conducted using a vector network analyzer 
(VNA) connected to two horn antennas (HF906 type) 
serving as the transmitter and receiver. The fabricated MM 
array is placed away from the horn antennas to 
fulfill the far-field condition. Initially, the reflection from the 
metal plate is measured, followed by the placement and 
measurement of the fabricated sample. The difference 
between these measurements represents the true reflection of 
the fabricated MM absorber.  

Fig. 14 shows the MM absorber's simulated and measured 
absorption characteristics under normal incidence. It is 
evident that the measured absorptivity closely matches the 
simulation results, confirming the accuracy and reliability of 
the theoretical model. The minor difference observed can be 
attributed primarily to fabrication tolerances, precisely the 
air layer's height and the measurement setup's environment. 
The measured absorptivity exceeding 90% is achieved across 
the frequency band of 1.87 GHz to 2.51 GHz. This 
significant absorption performance indicates that the 
absorber has Potential for use in applications requiring high-
efficiency EM wave absorption in this frequency range. The 
achievement of such significant absorption levels 
emphasizes this MM absorber's potential applications in 
various technological fields, including electromagnetic 
interference mitigation, radar technologies, and 
communication systems. However, it is essential to 

recognize the presence of additional absorption attributed to 
parasitic resonances arising from the measurement 
environment and fabrication tolerances. 

 

 
FIGURE 14. Simulated and measured Absorptivity response under 
normal incidence 
 

The comparison between the proposed MM absorber and 
earlier wideband MM absorber structures is presented in 
Table II. The proposed MM absorber's unit cell achieves a 
significant 90% relative bandwidth. Furthermore, it performs 
well at various polarizations and incident angles. 

 
TABLE II. 

 PROPOSED WORK COMPARED WITH PREVIOUS WIDEBAND MM ABSORBERS 
 

Ref. Years Relative Absorption 
bandwidth < 90%  
Frequency range 

Dielectric material Oblique 
angle 

stability 

Polarization 
insensitive 

[38] 2017 16 %  
840-990 MHz 

FR4, air 30 
 

NA 

[49] 2015 Very narrow  
2.4 GHz 

FR4, air NA No 

[50] 2022 44.5%  
(8.9 -14 GHz) 

PVC+ OCA+PET+ 
ITO resistive film 

60 yes 

[51] 2015 11.3%  
(12.5 - 14 GHz) 

FR4 60 Yes 

[52] 2023 22%  
24 – 26 GHz 

FR4 30 Yes 

[53] 2021 40%  
20 – 30 GHz 

FR4 40 No 

[54] 2023 28%  
21.2 – 28.2 GHz 

FR4 60 Yes 

This 
work 

- 42.6%  
(1.94- 2.99 GHz) 

FR4, air 75 Yes 

 

IV. CONCLUSION 
This paper describes and evaluates a wide-angle, 
polarization-insensitive MM absorber in the ISM band (2.4 
GHz). The proposed MM absorber comprises four metallic 
sectors printed on a low-cost FR-4 substrate. The numerical 
results demonstrate that the proposed absorber exhibits a 
wideband absorption bandwidth exceeding 90% within the 
frequency band of 1.94 GHz to 2.99 GHz. The distributions 

of the E-field, H-field, and surface currents are discussed to 
understand the wide absorption mechanism better. The 
numerical analyses of the proposed absorber confirm its 
insensitivity to EM waves in both TE and TM polarizations. 
Furthermore, it maintains a strong absorption rate exceeding 
90% even at TE polarization incidence angles of . The 
proposed absorber has been fabricated to validate the 
simulation results, and experimental measurements of the 

22> D l
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reflection coefficient S11 confirm a correspondence between 
the simulated and actual absorption characteristics.  
Based on the above outcomes, the proposed absorber is a 
promising choice for microwave applications, including EM 
protection and satellite stealth.   
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