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ABSTRACT Today's cyber-attacks have become increasingly sophisticated and diverse, targeting systems 

that hold sensitive information, creating the need for continuous cyber exercise and skill development for 

cyber professionals. Because cyber exercises require training activities and environments that can support a 

variety of situations, significant technological efforts have been made to build training environments. In 

line with technological trends, current cyber exercise simulations are being studied to create various cyber 

scenarios that can help build an intelligent cyber battlefield using big data and artificial intelligence (AI). 

This requires a large amount and different types of data for learning, as well as a technical system that can 

manage and update them periodically. The objective of this study is to develop network topology 

generation and traffic prediction technologies based on intelligent network traffic analysis and AI models 

for cyber exercise technology systems. To automate training network scenarios, a path generation 

technology based on graph theory was developed, and the network environment was analyzed based on the 

amount of transmission by building a software-defined network capable of analyzing and predicting 

network traffic. A comparison of AI models such as long short-term memory (LSTM), bidirectional LSTM 

(BiLSTM), and gated recurrent units (GRU) to predict the amount of transmission showed good 

performance, with BiLSTM showing a better prediction error. The proposed methodology provides insights 

that can be used to adjust training scenarios during the network design and operation phases, which is 

expected to help manage the network, increase efficiency, and address security issues. 

INDEX TERMS Cyber exercises, network topology, SDN networking, traffic matrix. 

I. INTRODUCTION 

With the rise of today's cyber threats, there is a growing 

demand for specialized cybersecurity professionals in 

universities, corporations, and the military. Cyber exercises 

serve to enhance the capabilities of the cybersecurity 

workforce by applying environments and technologies to 

educate and train them [1]. Globally, the development of 

cyber exercise environments is a major focus, most notably 

the National Cyber Range (NCR), first developed by the 

Defense Advanced Research Projects Agency (DARPA) [2]. 

A cyber range is a tool that simulates cyber-attacks to 

train cybersecurity professionals to respond to them. Most 

cyber ranges are limited in scope to meet specific 

requirements, and their command-and-control systems are 

designed to simulate cyber-attacks and defenses based on 

training scenarios. These cyber exercises provide a realistic 

network environment that enables highly realistic 

simulations. However, maintaining such a high-

performance environment requires multiple resources and 

significant costs, including computing hardware, 

management software, and administrative time. There are 

several factors to consider when building a cyber exercise 

environment. To simulate virtual cyber threats in real time 

and communicate information among different users, the 

network topology and configuration must be modeled to 

reflect the actual network environment, which requires high 
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communication capacity. In addition, providing an 

independent lab environment for each user requires 

significant high-performance computing resources and 

capabilities [3]. 

Building a cyber exercise environment requires 

specialized technical staff to design the training 

environment and manage network and computing resources. 

With the growing importance of realistic cyber exercises, 

network emulators based on software-defined networking 

(SDN) are increasingly being used [4]. These emulators 

effectively create a variety of network training 

environments and enable users to improve their ability to 

manage and respond to cyber-attacks, especially in complex 

areas such as smart grids [5]. 

Scenario creation is a key task in cyber training that 

requires significant experience, time, and cost because it 

considers the configuration of the network topology and the 

resources required to operate the system. Most training 

systems organize scenarios based on static and consistent 

patterns, but this approach cannot effectively respond to 

unexpected cyberattack patterns or complex network 

environments. To provide participants with new 

experiences and different patterns in cyber exercises, 

managing unpredictable traffic segments such as traffic 

delays and rates of change is key. Therefore, we have 

developed a system for regulating and predicting different 

traffic patterns based on SDN. We create new patterns 

using a graph-based approach to extract hosts with large 

traffic concentrations and use deep learning modeling to 

provide insights into how these new patterns can be 

incorporated into the training network to create an 

enhanced training environment. We design and build 

network topology scenarios using a graph-based approach 

to coordinate network packet routing and collect traffic 

from SDN-based network environments to build a traffic 

matrix and provide a predictable data set. The traffic matrix 

represents the amount of traffic transferred between each 

node in the network, allowing you to understand and 

analyze the network traffic distribution process in detail. 

Leveraging this information, deep learning models can 

predict the volume of network traffic and provide insights 

for refining training scenarios. Therefore, we propose an 

effective method for controlling the flow of network traffic 

and adapting to changes in the network environment. The 

main contributions of this study are as follows: 

(1) Uses a graph-based approach to extract hosts with 

large traffic concentrations and generate new patterns.  

(2) Presents a methodology to compute the traffic matrix 

resulting from the network topology of an SDN 

environment and introduces a methodology to analyze the 

transmission volume by timestamp. 

(3) Predicts the transmission volume of network traffic 

through regression models of LSTM, BiLSTM, and GRU 

based on deep learning models in the training network, and 

provides insights reflected in the network. 

Using the proposed methods, based on a known network 

dataset, we can form a new network topology by combining 

frequently used overlapping network paths. By designing a 

traffic matrix to understand and analyze the amount of 

traffic transmitted by each node in the network, the amount 

of network traffic can be predicted using an artificial 

intelligence (AI) model. This information provides insight 

into adjusting the training scenarios, suggesting ways to 

effectively control the flow of network traffic and flexibly 

respond to the environment. 

 
II. RELATED WORK 

In this section, we analyze previous studies related to expert 

knowledge for cyber exercises. We focus on studies that 

have proposed techniques for creating training traffic 

scenarios that reflect the flow and patterns of network 

traffic, as well as SDN used to simulate training 

environments. 

A. BACKGROUND AND TECHNOLOGY OF CYBER 
EXERCISES 

Cybersecurity exercises are traditionally organized in 

groups of equal experts to assess participants and compare 

their performance to mitigate situations and train 

professionals.  The best-known cyber defense exercises 

(CDX) propose common security requirements for building 

a secure environment in cyberspace and a training cycle to 

implement them [6]. To conduct cyber exercises, it is 

necessary to provide a variety of threat scenarios. In this 

process, the concept of the NCR was first developed by 

DARPA as a case study for joint military-civilian 

cybersecurity exercises [2]. Cyber range emulates complex 

network settings in an isolated environment and organizes 

the environment and procedures to safely perform 

cybersecurity tasks on assigned hosts or network 

infrastructure [7]. Running cyber range requires a network 

scenario based on the training objectives. This scenario 

provides the network vectors needed to simulate traffic and 

supports [8]. 

Currently, two types of traffic regeneration and traffic 

generation methods are being explored for the next 

generation of cyber range to provide network traffic in the 

background [9]. Traffic replay technology adjusts the 

collected traffic data and replays the traffic data again, 

while traffic generation entails building a mathematical 

model to generate new traffic. Du et al. [10] found that 

traffic replay can provide statistical data on the network 

based on a variety of usage patterns and trends, but the 

efficiency may be reduced due to the large number of IP 

mappings; and the traffic generation method generates new 

traffic by learning the characteristic distribution of traffic in 

the actual network, but it contains a lot of redundant data, 

or the traffic method should be considered. From this 

perspective, for efficient scenario operation for cyber 

exercises, we focused our research on the following 

detailed technical studies to pattern specific scenarios of 

training traffic. 

B. CYBER EXERCISE SCENARIO BUILDING AND 
GRAPH-BASED TECHNIQUES 
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Depending on the network infrastructure environment, 

cyber exercise scenarios are typically generated by users 

adjusting traffic flows and patterns or by deep learning by 

optimizing routing policies. In general, researchers have 

proposed generalizations of automatic modeling to combine 

abnormal events with normal traffic. Park et al. [11] 

presented the problem that although dedicated cyber ranges 

resembling real-world environments have been built, real-

world cyber warfare is an integrated and organic 

environment, which leads to poor interoperability, unlike 

constructed cyber ranges. To address this problem, a 

configuration plan and operational functions for building a 

multifaceted cyber range reflecting the characteristics of 

each attack group were proposed and tested for their impact 

on distributed denial of service (DDoS) attacks. The study 

presented a practical cyber range structure and scenario 

construction plan, and with each battlefield management 

system as a distributed center, the servers were 

synchronized during the simulation to coordinate the 

battlefield situation through synchronization among centers. 

For scenario construction, a configurable network topology 

was designed, and normal and abnormal traffic distribution 

plans were generated based on learning and testing 

information. A separate scenario database was created to 

improve resource sharing, connectivity, and reusability. 

Protogerou et al. [12] reported that the number of 

interconnected edge devices has significantly increased due 

to the proliferation of the Internet of Things, and graph-

based anomaly detection solutions are gaining attention as 

methods to prevent network anomalies, such as assuming 

cohesion between related entities and modeling 

interrelationships. In response to the characteristics of 

cyber-attacks such as DDoS, a distributed detection method 

that efficiently monitors the entire network infrastructure to 

detect abnormal events has been proposed. To improve the 

notification process, the study proposed a method to 

represent a node's vector as an aggregated and transformed 

feature vector of its neighboring nodes using a graph neural 

network (GNN). By analyzing existing studies, the working 

principle of the proposed method was explained by utilizing 

the function of the GNN to isolate individual inputs and 

pass messages between graph nodes, proving that it is an 

ideal method. 

Chen et al. [13] noted that the rapid development of user 

applications has led to a continuous increase in network 

traffic, raising the issue of routing optimization. They 

presented the problem that deep reinforcement learning 

(DRL), a traditional routing optimization solution, could 

not handle graph-like information in the network topology 

due to difficulties in generalization when the topology 

changes. Therefore, an autoGNN, which combines GNN 

and DRL, was proposed to automatically generate routing 

policies, and the proposed system was validated by testing. 

In the study, Markov modeling was used to construct the 

interaction process, and function approximation was used to 

construct a scenario to represent the deep neural network 

(DNN) of the DRL agent. 

Rebecchi et al. [14] suggested the need for cyber 

exercises because cyber-attacks are becoming more 

widespread and sophisticated, and from a security 

perspective, the widespread use of virtualization could lead 

to infrastructure manipulation and extensive damage by 

drastically increasing the number of exposed attack vectors. 

The study defined a methodology for monitoring technical 

key performance indicators for system performance and 

efficiency, effectiveness of training and learning modules, 

and perceived quality of experience metrics using the 

SPIDER cyber range for incident response exercises and 

reverse engineering. 

Barsellotti et al. [15] argued that the DDoS detection 

system based on conventional machine learning and deep 

learning techniques is not flexible enough to respond to 

different networks and traffic. In this study, the traffic data 

was transformed into the flow-to-traffic graph (FTG) 

structure, and the flow-level graph was processed in GNN 

to generate representation vectors to output the final 

prediction results for each flow. The CIC-IDS2017 dataset 

was used, and the performance of the approach was 

evaluated to illustrate the improvement caused by using the 

proposed approach compared to existing methods. 

C. SDN AND TRAFFIC PREDICTION TECHNIQUES 

SDN is an important research topic for organizing network 

environments for cyber exercises. In the area of cyber 

exercises, research is actively conducted on attack scenarios, 

exercise methods, and measurement of exercise 

effectiveness. Research is being conducted to make various 

deep learning and machine learning methods easily 

accessible for traffic prediction using SDN simulators. 

Software-defined networking (SDN) is an approach to 

networking that uses software-based controllers or 

application programming interfaces (APIs) to generate 

traffic on the network and communicate with the hardware 

infrastructure [16]. Simulators that support SDN include 

Network Simulator 3 (ns-3) [17], Mininet [18], and the 

Objective Modular Network Testbed in C++ (OMNeT++) 

[19]. NS-3 is a popular free and open-source simulator for 

network research, with advantages in analyzing and 

visualizing results for different network protocols; Mininet 

allows system development, sharing, and experimentation, 

especially advantageous for real hardware deployment, and 

can create realistic virtual networks running real kernels, 

switches, and application code on a single machine (VM, 

cloud, or native) in seconds with a single command. 

OMNeT++ is a modeling framework developed as an 

independent project to support sensor networks, wireless 

ad-hoc networks, Internet protocols, performance modeling, 

and more. Each simulator has its own strengths and 

weaknesses, and it is important to choose the right tool to 

support simulation testing of cyber exercises. 

Researchers are working on individual simulator studies 

to develop cyber exercise capabilities and combine them 

with learning models to analyze network traffic predictions. 

Leon et al. [20] proposed a practical cyber exercise 
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framework known as ADLES. It is designed to simplify and 

streamline exercise sharing and collaboration by providing 

tools for specifying outcomes for scenarios, networks, and 

computing resources in hands-on cyber exercises. Ullah et 

al. [21] proposed an SDN-enabled framework for efficient 

detection of cyber-attacks, including multi-class attacks, 

based on network flows. In the process, the study 

introduced approaches for deep learning models and 

focused on evaluation. Azzouni et al. [22] presented 

NeuTM, a framework for network traffic matrix prediction 

based on long short-term memory recurrent neural networks 

(LSTM RNNs). An input methodology for the traffic matrix 

was presented, focusing on the suitability of the LSTM 

model for traffic prediction. Torres et al. [23] proposed an 

SDN framework to test the quality of service (QoS) of the 

mechanisms and introduced a scheme for replaying and 

modifying packet capture (PCAP) files. 

While these studies have introduced SDN technology and 

methodologies for network design in cyber exercises, a 

more sophisticated approach to learning and predicting 

patterns in network traffic is needed by consolidating these 

studies and technologies. In this context, my contribution 

focuses on the generation of concentrated traffic patterns 

and the prediction of SDN simulation traffic using LSTM, 

BiLSTM, and GRU models. This innovative approach not 

only fills the existing gaps, but also provides deeper 

insights into traffic behavior in SDN environments. 

III. PROPOSED METHOD 

In this section, we propose a training network topology 

generation and traffic analysis framework for generating 

cyber exercise traffic distribution scenarios. The framework 

consists of four main steps: available data, its combination 

with network topology generation, network traffic 

generation, and network performance evaluation. 

A. GENERAL FRAMEWORK 

FIGURE 1. Network topology creation and simulation framework. 

 

We implement a network topology for new traffic 

generation patterns in the training network and propose a 

predictive network simulation. We extract traffic-intensive 

hosts from existing network datasets and use graph 

algorithms to combine them. To illustrate the stages of the 

framework shown in Fig. 1, a traffic dataset was first 

collected from a real network environment. Two types of 

data, actual raw packet files from the CIC-IDS2017 dataset 

and processed network data for machine learning, were 

used. In the second step, we proposed a network topology 

generation model that generates host paths based on 

Dijkstra's algorithm for traffic distribution scenarios. In the 

third step, an SDN environment configuration method was 

proposed to combine the generated network topologies to 

model a virtual network environment. SDN provides the 

flexibility to control the network topology and traffic flow 

to create a training network environment. In this 

environment, traffic is generated according to the network 

topology to create the traffic matrix. The traffic matrix 

captures all traffic flows within the network and provides 

data to analyze the performance of the network. In the final 

step, the network performance is evaluated by three models: 

RNN-based LSTM(Long Short-Term Memory), 

BiLSTM(Bidirectional Long Short-Term Memory), and 

GRU(Gated Recurrent Unit) to predict the network traffic 

transmission amount for the traffic matrix. Predictive 

evaluation allows us to optimize performance and prevent 

potential network problems. 

B. INTRODUCTION TO DATASETS 

For data collection, this study used CIC-IDS2017 [24], an 

intrusion detection system dataset provided by the Canadian 

Cyber Security Institute at the University of New 

Brunswick, Canada. This dataset contains PCAP data 

collected from an emulated environment over a five-day 

period and a comma-separated value (CSV) dataset file 

generated by CICFlowMeter [25]. These two types of 

datasets serve different purposes. The CSV file provides the 

information needed to construct the network topology, 

while the original PCAP data is used to generate traffic in 

an SDN environment. The following types of datasets we 

used are presented in Table 1. 

 
TABLE I  

AVAILABLE DATASETS 

Types CIC-IDS2017 

CIC-DIS2017 

dataset (CSV) 

 Monday, normal activity, 11.0 G 

 Tuesday, attacks + normal activity, 11 G 

 Wednesday, attacks + normal activity, 13 G 

 Thursday, attacks + normal activity, 7.8 G 

 Friday, attacks + normal activity, 8.3 G 

CIC-DIS2017 

dataset (CSV) 

PCAP's matching host pairs were reconstructed for 14 

high-frequency host pairs, based on the network 
topology configuration, for distribution. 

C. DATASET PREPROCESSING 

Before constructing the network topology, we pre-

processed the data in CSV file format to obtain statistics 

between source and destination IPs for the dataset. Several 

key factors were considered to keep the data consistent and 
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accurate. First, data with duplicate attributes or row values 

were removed. As these duplicates led to overfitting of the 

data and reduced the generalization ability of the model, 

they were removed, as were data samples with missing 

values. Missing values compromise the completeness of the 

data and can bias the results of the analysis. Finally, any 

negative values in the data set were also removed. Negative 

values are generally not allowed as they may indicate errors 

in the data. 

Preprocessing converted the original dataset of 85 

attributes into a data set with only 66 attributes, 

representing each data sample with more concise and 

unambiguous attribute values while preserving the original 

label values. 

D. NETWORK TOPOLOGY CREATION 

Network topology is created after data preprocessing. To 

create a network topology, the network flow is analyzed 

based on the 4-tuple (source IP, destination IP, source port, 

and destination port) attribute information of the network. 

Because the transfer of network packets occurs between a 

client and a server, it is represented by embedding a port 

pair in a graph that represents the connection between the 

source and destination ports. The graph is represented in the 

form G = (V, E), where V and E represent the vertices and 

edges, respectively. The vertex consists of a unique pair of 

source and destination ports in a network traffic dataset, 

represented as V = {(SPort1, Dport1), (SPort2, Dport2), 

(SPort3, Dport3), and (SPortn, Dportn)}. The edge represents 

the transmission of a packet from a given source port to a 

destination port, which is defined in the form E = {(SPortn, 

Dportn, Packetn)}, where each Packetn represents a 

connection between the given source and destination ports, 

that is, a connection between a pair of vertices (SPortn, 

Dportn). Each edge contains various attributes that 

characterize the packet. These attributes can include packet 

size, transmission time, and protocol type and can be used 

to effectively graph the patterns and structure of network 

traffic. 

In the defined graph, the directional flow along the 

vertices is organized in terms of source and destination 

ports, which requires the definition of the start and end 

nodes of the vertices. To determine them by the in-out 

degree, this study satisfies the following conditions: 

• The start and end vertices are denoted by s and t,

 respectively. 

• V and E denote the set of vertices and edges in t

he graph. 

• In-degree(v) is the number of vertices entering v

ertex v, and out-degree(v) is the number of verti

ces leaving vertex v, as defined by the following

 equations: 

s ∈ V and In-degree(s) = 0  (1) 

t ∈ V and Out-degree(t) = 0  (2) 

A path-finding algorithm is used to generate a topology 

from a graph consisting of vertex pairs of start and end 

vertices. The shortest path algorithm Dijkstra [26] is used, 

which is very effective in finding a minimum weight path 

between two vertices in a directed graph. The Dijkstra 

algorithm explores all paths between the end nodes relative 

to the start node in the entire network. The steps of the 

algorithm are as follows: 

The resulting network topology is very useful for visually 

understanding the structure and flow of the network, 

enabling analysis of how data flows through the network, 

which nodes handle the most traffic, which paths are most 

efficient, and so on. This topology can also be used as a 

basis for optimizing network performance and responding 

quickly to failures. 

E. NETWORK EMULATORS AND TRAFFIC REPLAY 

For network topology configuration, PCAP data 

modification, and traffic replay for traffic data distribution, 

we combined the Mininet emulator, Tcpreplay, and 

Bittwiste to implement an efficient cyber exercise traffic 

distribution simulation. Mininet [18] is an SDN that enables 

the creation of components such as virtual routers, switches, 

and hosts on a single system, simulation of their 

management, and testing of network protocols and 

applications without physical hardware. Network behavior 

is monitored by a POX controller [27], which provides 

centralized network management capabilities to manage 

and control network flow. 

A network traffic replay tool known as Tcpreplay [28] 

was used along with the Mininet emulator to randomly 

generate network topologies and traffic from the hosts. 

Using the actual network traffic data contained in the PCAP 

file, the tool can recreate traffic scenarios, reproduce 

network traffic conditions, and evaluate the performance of 

the system. To reproduce the traffic, the Bittwiste [29] tool 

was used to modify the data in the PCAP file to match the 

host environment of the generated topology. The tool can 

be used to implement and test different situations 

depending on the training scenario, as it can modify 

information such as the IP address and timestamp of each 

traffic unit. 

Algorithm 1: Shortest path search using Dijkstra's method 

DIJKSTRA(G,w,s) 

# Select the start node, s∈V and in-degree(s)=0 

1.INIT-SINGLE-SOURCE(G,s) 

# Initialize the list to store visited nodes, t∈V and out-degree(t)=0 

2.S <- NULL  

3. Q <- V[G] # Initialize the queue to store unvisited nodes 

4. while Q != NULL # Repeat until all nodes are visited 

5. do u <- EXTRACT-MIN(Q) # Select the node with the least weight in 

the queue 

6. S <- S + U # Add the selected node to the list of visited nodes 

7. for each vertex v <- Adj[u] # Tour all nodes associated with the 

selected node 

8. do RELAX(u,v,w) # Update the weights of nodes associated with the 

selected node 
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In a simulation environment implemented in this way, 

the Tcpreplay and Bittwiste tools are used to manipulate 

and replay the original PCAP data in the network topology 

created by Mininet to establish the network topology 

configuration environment. The rest of the detailed 

topology configuration environment consists of the 

configuration environment shown in Fig. 2. 

 

FIGURE 2. Mininet network topology configuration scenario. 

 

Each host and router has a maximum transmission 

bandwidth of 20 MB, and the router-to-router transmission 

bandwidth is 30 MB, which provides sufficient bandwidth 

for communication between the various elements of the 

network while maintaining a balance to ensure effective 

information flow between the various elements of the 

network. These bandwidth settings also help to simulate the 

various traffic situations that may occur in a real-world 

network environment, which is an important configuration 

factor when building different scenarios for cyber exercises. 

By integrating these three tools, an effective simulation 

system was designed and implemented to reproduce and 

analyze cyber exercise traffic distribution in a realistic 

network environment. 

F. NETWORK EMULATORS AND TRAFFIC REPLAY 

The network traffic captured by the monitoring is stored in 

the form of a traffic matrix, which contains comprehensive 

information about the overall traffic flow within the 

network [30]. The traffic matrix is computed by the POX 

controller of the Mininet emulator to distribute packets in 

the set network topology and to observe the amount of 

traffic. A traffic matrix generally represents the amount of 

traffic exchanged between each pair of nodes in a network 

during a given time period, and the varying traffic can be 

used to analyze the performance of the network or predict 

patterns. 

To calculate the variation in traffic, the difference between 

the two-time measurements is determined and used to 

calculate the difference between the current and previous 

traffic conditions. This difference represents the variation in 

traffic, which is divided by the elapsed time to obtain the 

change in traffic per hour (ΔT). That is, ΔT can be calculated 

by subtracting the current traffic conditions from the previous 

traffic conditions and dividing the difference by the elapsed 

time (duration): 

∆𝑇 =  
𝐿𝑎𝑡𝑒𝑠𝑡 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
  (3) 

In (3), the most recent and previous traffic are matrices 

representing the states of the traffic, and each component of 

these matrices represents the amount of traffic at a given 

time. Therefore, the change in traffic for each component 

can be obtained by calculating the difference between these 

two matrices. This method makes it possible to identify and 

reflect changes in network status in real time, which is 

advantageous for analyzing the performance of a 

dynamically changing network environment. 

G. NETWORK TRAFFIC PREDICTION AND 
PERFORMANCE EVALUATION 

Predicting network traffic plays an important role in 

managing networks, increasing efficiency, and addressing 

security concerns. Understanding traffic patterns and 

predicting future traffic changes can help optimize network 

resources, avoid traffic bottlenecks, and proactively detect 

anomalies. Therefore, artificial intelligence models are used 

to evaluate such analytical models. Predictive models are 

divided into linear and nonlinear models. Linear models 

assume that the relationship between input and output is 

linear, meaning that a small change in the input will be 

reflected in a small change in the output, indicating a 

constant rate of change. Although the advantages of such 

linear models lie in their interpretative power and 

computational efficiency, they are limited by their inability 

to capture complex or nonlinear data patterns. In contrast, 

nonlinear models assume that the relationship between 

input and output is nonlinear, meaning that a small change 

in the input can cause a large change in the output, and the 

rate of change may not be constant. Nonlinear models 

better capture complicated data patterns and can better 

reflect complex real-world scenarios. However, they are 

more computationally intensive, prone to overfitting, and 

difficult to interpret. 

In this study, we used nonlinear machine learning models 

based on recurrent neural networks (RNNs). RNNs are 

neural networks that can effectively model sequential data 

and are particularly useful for problems where order is 

essential, such as natural language processing, speech 

recognition, and time series prediction [31]. RNNs have a 

recursive structure in which the current output depends on 

previous computations, but they suffer from long-term 

dependency. The problem with this is that as the sequence 

gets longer, the ability to retain and learn the initial 

information deteriorates. Modified RNNs such as long 

short-term memories (LSTMs) [32] and gated recurrent 

units (GRUs) have been proposed to address these 

problems. 

LSTMs are a class of RNNs designed to address the 

problem of long-term dependency by introducing the 

concept of gates to decide whether to retain or discard 

information. This allows the LSTM to learn better about 

long sequences and identify the significant parts of each 

sequence. BiLSTM [33] processes sequence data in both 

directions. It uses not only past information but also future 

information, which is useful when future information is 
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needed to make accurate predictions. GRU [34] is a 

simplified version of LSTM that performs as well as LSTM 

but with better computational efficiency. GRU simplifies 

the model by combining the two gates of LSTM (hide and 

discard) into one and combining the cell state with the 

hidden state. 

To effectively train a time series prediction model, the 

original time series data set is converted to generate input-

target pairs at each time point. For given time series data, 

{𝑥𝑡}𝑡=1
𝑁 , where 𝑁  represents the total length of the time 

series. The method for constructing the input feature matrix 

𝑋 and the corresponding target vector 𝑌 is as follows. 

Each 𝑖-input vector 𝑋𝑖 consists of consecutive data points 

during the look-back period L, starting at time 𝑖. 

𝑋𝑖 = [𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+(𝐿−1)] (4) 

Where 𝑖 =  1, 2, … , 𝑁 − 𝐿 . The corresponding target 

value 𝑌𝑖  is defined as the data point at the next time to be 

predicted by the input vector 𝑋𝑖: 

𝑌𝑖 = 𝑥𝑖+𝐿 (5) 

By preparing the data set in this way, the model can use 

sufficient past information to predict 𝑌𝑖  from each 𝑋𝑖  and 

learn the temporal patterns and structures of the time series 

data. 

These three models are evaluated based on Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and R-squared, which 

are the differences between the predicted and actual values of 

network traffic time series data. The RMSE value is a 

measure of the model's prediction error, with values closer to 

zero indicating better prediction performance. Since the 

RMSE is rooted in the mean of the squares of these 

prediction errors, it is a measure of the average error over all 

prediction errors. The RMSE is calculated as follows: 

𝑅𝑀𝑆𝐸 = √(
1

𝑛
) ∑ (𝑦𝑖 − 𝑥𝑖)

2𝑛
𝑖=1  (6) 

where n is the number of samples, yi is the ith observation, 

xi is the ith prediction, and Σ is the sum over all samples. One 

of the main characteristics of the RMSE is that it gives more 

weight to large errors. This is due to the squaring process, 

which can cause the model to avoid large errors. For this 

reason, the RMSE is sensitive to outliers and is compared to 

the mean absolute error (MAE), which is less sensitive to 

outliers. 

MAE (Mean Absolute Error) is the average absolute error, 

which converts the difference between the predicted and 

actual values to an absolute value and then calculates the 

average. All errors are weighted equally. The MAE is 

calculated as follows: 

MAE=
1

n
∑ |yi-yî|

n
i=1  (7) 

MAPE (Mean Absolute Percentage Error) is the mean 

absolute percentage error, which calculates the percentage 

of prediction error compared to the actual value and then 

averages it. Because it is a relative error measure, it can be 

difficult to use when the actual value is close to 0. The 

MAPE is calculated as follows: 

MAPE=
100

n
∑ |

yi-yî

yi
|n

i=1  (8) 

R-squared is an indicator of how well a regression model 

explains the variation in the data. A value closer to 1 

indicates that the model does a better job of explaining the 

variation in the data. R-squared is calculated follows: 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

 (9) 

RMSE, MAE, MAPE, and R-squared are widely used 

metrics to evaluate the performance of regression analysis. 

Because they can be applied to any time series data, such as 

traffic change rate, they evaluate the overall performance of 

the model. 

IV. EXPERIMENTAL RESULTS 

In this section, we present an analysis of the experimental 

results of generating training traffic topologies using the 

proposed methodology. The experiment was performed in 

two steps. First, the Dijkstra algorithm was used to generate 

graph paths for the network topology. Second, the 

generated topologies were combined to build a network 

scenario, send traffic, and calculate the expected throughput 

of the entire network. 

A. EXPERIMENTAL ENVIRONMENT 

For the experiment, the environment was set up as shown in 

Table 2 below. 
TABLE II  

EXPERIMENTAL ENVIRONMENTS 

Component Specification 

CPU Intel Xeon E5-2620 v4 

memory 48 GB 

OS Windows 10, WSL2 (Ubuntu 20.04) 

language Python 3.8 

library networkx, tensorflow, sklearn 

The Python language was used on a personal computer to 

generate the network topology on the running computer. A 

CSV file of the known CIC-IDS2017 dataset was used to 

generate a network graph using the NetworkX library. The 

Mininet emulator was installed in the Ubuntu 20.04 

Windows Subsystem for Linux 2 (WSL2) environment to 

simulate network traffic. The network configuration 

environment was set up using the PCAP data provided by 

CIC-IDS2017, followed by the calculation and collection of 

the traffic matrix. 
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B. EXPERIMENTAL RESULTS OF NETWORK 
TOPOLOGY CREATION 

In the first experiment, the network topology was generated 

based on the CIC-IDS2017 dataset using the methodology 

introduced earlier. The path generation results for the 

Dijkstra algorithm were checked in the dataset in terms of 

source and destination ports. The results of verifying the 

graph configuration information for the CIC-IDS2017 

dataset were as follows: it consisted of 14,385 start nodes 

and 124 end nodes, for a total of 1,783,740 graph paths. 

The results of the path configuration using the Dijkstra 

algorithm are shown in Table 3.  
TABLE III 

RESULTS OF NETWORK TOPOLOGY CREATION 

These results provide the basis for explaining the number 

of paths and their redundancy as a function of the length of 

the graph, which facilitates the understanding of the process 

of path analysis and removal of redundant topologies. 

 

FIGURE 3. Path Graphs of Network Topologies. (a) Path length of 7 (b) 
Path length of 6. 

 

In Table 3, "graph path length" refers to the total number 

of communication paths. For example, in Fig 3, if the path 

length is 7, the graph in (a) indicates that the path consists 

of seven communication structures. “Number of scenarios” 

refers to the total number of network topology scenarios for 

a given graph path length. For a path length of 7, there are 

192 different network topology scenarios. “Number of 

Redundant Paths” refers to the number of scenarios that 

indicate the presence of redundant paths in the network 

topology at the same graph path length. For a path length of 

7, there are eight redundant network paths. This indicates 

that, for a given path length, there may be multiple 

scenarios that follow the same path or have similar traffic 

patterns. 

The number of network traffic scenarios that can be 

generated for the graph path length, as well as the number 

of redundant paths, can be determined. This information is 

important for network simulation and optimization. The 

number of generated scenarios and redundant paths for the 

graph path length are summarized as follows: For a graph 

length of 7, a total of 192 topology scenarios were 

generated, of which 8 were redundant. For a graph length of 

6, as shown in Fig. 3(b), 30 scenarios representing 

communication paths were generated, of which 21 were 

redundant. The graph with the largest number of scenarios 

was the one with a path length of 4, in which a total of 

1,141 scenarios were generated with 25 redundant paths. 

The graph with the smallest path length of 2 generated only 

one scenario with no redundant paths. This suggests that as 

the graph path length decreases, the number of possible 

scenarios decreases, and the probability of overlap tends to 

decrease. 

In general, the results showed that the number of 

redundant paths (77) was relatively small compared to the 

total number of scenarios (2,531). This represented 

approximately 3.04% of all scenarios. These percentages 

change with path length, with the highest redundancy rate 

(70%) for a graph path length of 6. This suggests that the 

scenarios generated at this graph path length followed 

similar paths or had the same traffic patterns. In contrast, 

the overlap rate (4.17%) was relatively lower for the graph 

path length of 7, indicating that a variety of scenarios can 

be generated from paths of this length. 

C. EXPERIMENTAL RESULTS FOR NETWORK TRAFFIC 
PREDICTION 

In this part of the study, we placed 14 hosts by combining 

graphs based on ports with high communication frequencies 

in the generated network topology scenario. Simulations 

were performed to predict the amount of transmission from 

each host for the entire network. The experimental data 

were collected by calculating the traffic matrix for 

approximately 5 d by reconstructing and sending PCAP 

files provided by the CIC-IDS2017 dataset using a Mininet 

emulator and POX controller. 

To predict traffic patterns for the collected network 

traffic volume, the dataset was processed using a sliding 

Graph path 
length  

 Number of scenarios  
 Number of redundant 

paths 

7 192 8 

6 30 21 

5 657 20 

4 1,141 25 

3 510 3 

2 1 0 

Total        2,531 77 
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window method. The following Table 4 shows the 

environment settings of the LSTM, BiLSTM, and GRU 

models. Based on the LSTM model, BiLSTM has the most 

parameters and the longest computation time among the 

three models, and GRU has the fewest parameters and the 

shortest computation time. 
TABLE IV 

MODEL PROPERTIES 

Model Number of parameters Operation time(sec) 

LSTM 138,596 540.50 

BiLSTM 276,996 969.24 

GRU 109,196 650.24 

Each model is trained over 200 epochs, and the best 

parameter set is retained for evaluation. In addition, 80% of 

the dataset is used as training data, the remaining 20% is 

used as test data, and the final set of parameters is 

considered the trained model and is used for prediction. The 

more parameters a model has, the more computation time 

and resources it requires. Therefore, the number of 

parameters represents the complexity of a model and is 

used to evaluate its efficiency. 

 

FIGURE 4. LSTM, BiLSTM and GRU loss and validation curves. 

 

The following Fig. 4 shows the loss and validation loss 

of the LSTM, BiLSTM, and GRU learning models. All 

three models show that the training loss decreases with 

increasing epochs. This is the expected behavior during the 

learning process. The training loss of LSTM and BiLSTM 

tends to be more stable than the validation loss of GRU, 

especially in later epochs. However, the BiLSTM model 

stands out in that its validation loss differs the most from its 

training loss, with overfitting occurring in later epochs. 

Although the GRU model appears to have the most stable 

and consistent behavior in terms of training loss and 

validation loss, it may not be as stable against overfitting as 

training continues. Since the GRU model shows a stable 

trend in validation loss for patterns through training, its 

learning performance may be the strongest of the three 

models when compared to learning time. 

FIGURE 5. Learning model predictions versus ground truth. 

 

In general, Fig. 5 shows that the difference between the 

predictions and the ground truth was not significant. 

However, the difference in prediction error was significant 

when traffic suddenly spiked or crashed, or just before a 

spike. In the interval between 100 and 150, the differences 

in predictions made by the LSTM and BiLSTM models 

were similar, but the GRU model has a more relaxed 

interval. Between 150 and 200, the LSTM was more 

accurate in predicting the amount of traffic. Between 200 

and 300, there was no significant difference between the 

three models, and the GRU model made the most accurate 

predictions before the major turning point between 300 and 

350. However, after the major turning point, the LSTM 

model made a more accurate prediction. Even after that, 

before the traffic spike between 500 and 550, the GRU 

model made a more accurate prediction and the BiLSTM 

model showed a large error. In general, there were errors 

before and after the traffic peaks. The GRU model made 

more accurate predictions before the peaks, while the 

LSTM and BiLSTM models made more accurate 

predictions after the peaks. 
TABLE V 

COMPARE RESIDUALS FROM LEARNED MODELS 

Section Actual Predicted Residual 

LSTM(Avg: 0.5297) 

245 0.918919 0.551719 0.3672 

297 0.940383 0.486429 0.453954 

318 0.812893 0.106689 0.706204 

344 0.896931 0.034377 0.862554 

354 0.909941 0.435028 0.474912 

378 0.737254 0.370804 0.366449 

383 0.687782 0.281635 0.406147 

387 0.826255 0.172432 0.653823 

390 0.833749 0.247548 0.5862 

539 0.550507 0.131363 0.419144 

BiLSTM(Avg: 0.5234) 

54 0.927358 0.468326 0.459032 

245 0.918919 0.406534 0.512385 

297 0.940383 0.405834 0.534549 

318 0.812893 0.117376 0.695517 

344 0.896931 0.037494 0.859436 
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378 0.737254 0.303323 0.433931 

387 0.826255 0.415905 0.41035 

390 0.833749 0.403092 0.430657 

491 0.918747 0.450751 0.467996 

539 0.550507 0.120123 0.430384 

GRU(Avg: 0.5317) 

25 0.933746 0.49272 0.441026 

155 0.92502 0.412397 0.512623 

163 0.880508 0.420772 0.459736 

318 0.812893 0.178517 0.634376 

344 0.896931 0.11178 0.785151 

378 0.737254 0.18661 0.550644 

381 0.632307 0.188646 0.443661 

387 0.826255 0.322454 0.503801 

390 0.833749 0.261904 0.571845 

539 0.550507 0.136676 0.413831 

Table 5 compares the residuals between the actual and 

predicted values for the peak area to help understand Fig. 5. 

The residuals represent the difference between the actual 

and predicted values; large differences between these 

values may indicate that the model predictions are 

inaccurate. 

In the case of the LSTM model, the minimum residual is 

observed to be approximately 0.3664 and the maximum 

residual is observed to be approximately 0.8626. This 

shows a large difference between the actual and predicted 

value at index 344. For BiLSTM, the average is slightly 

lower at 0.5234. The highest residual is again observed at 

exponent 344 with a value of 0.859436, which is very close 

to the highest residual of the LSTM model. For the GRU 

case, the average is 0.5317, which is slightly higher than for 

the LSTM and BiLSTM models. The highest residual is at 

index 344 with a value of 0.785151. This is slightly lower 

than the residuals for the same instance of the LSTM and 

BiLSTM models, indicating that the GRU model may 

perform slightly better in this case. All three models show 

similar performance in terms of residuals for the top 10 data 

points. Although there are some differences in the exact 

residuals for individual cases, the overall pattern is 

consistent across the models. 
TABLE VI 

REGRESSION MODEL PERFORMANCE METRICS 

Model RMSE MAE MAPE(%) R-squared 

LSTM 0.1701 0.1252 29.47% 0.6829 

BiLSTM 0.1640 0.1169 28.84% 0.7334 

GRU 0.1884 0.1220 30.66% 0.7215 

Next, we evaluate the RMSE of the three models. Fig. 6 

and Table 6 show the error size using RMSE, MAE, MAPE, 

and R-squared metrics for the LSTM, BILSTM, and GRU 

models. The average RMSE values of the LSTM, BILSTM, 

and GRU models according to Table 6 were 0.1701, 0.1640, 

and 0.1884, respectively. The BISTM model showed the 

best RMSE value, with a difference of about 0.01-0.02. 

 

FIGURE 6. Evaluation of RMSE for the machine learning models. 

 

In Fig. 6, the red lines represent each error bar as a 

measure of its true value. The GRU model has the highest 

number of error bars, while the BILSTM model has the 

highest number of errors, as indicated by its RMSE value. 

The GRU model shows the least amount of error variation 

during peak traffic periods. This seems to reflect the 

performance of the learning model for small changes. 

Overall, the LSTM and BILSTM models outperformed the 

GRU model with more points close to zero. 

In Table 6, the Mean Absolute Error (MAE) is the 

average of the absolute value of the difference between the 

predicted value and the actual value. The BiLSTM model 

had the lowest MAE value of 0.1169, indicating that the 

BiLSTM model was the best in terms of the size of the 

average error. 

In addition, the Mean Absolute Percentage Error (MAPE) 

is the absolute value of the prediction error divided by the 

actual value, averaged, and expressed as a percentage. This 

metric allows you to express as a percentage how large the 

prediction error is compared to the actual value. When 

calculating the MAPE, time steps with an actual value of 0 

were excluded to fairly evaluate the predictive power of the 

model. The results showed that all three models had similar 

prediction error rates, but the BiLSTM model had the 

lowest MAPE value of 28.84%. 

Finally, the R-squared is an indicator of how well the 

model explains the variability in the data. The closer the 

value is to 1, the better the predictive ability of the model. 

The BiLSTM model had the highest R^2 value of 0.7334. 

This indicates that the BiLSTM model best explains the 

variability of the data. Overall, the BiLSTM model showed 

the most consistent high performance of the three models. 

However, since the most appropriate model may differ 

depending on each metric, learning performance and traffic 

latency must be considered together. 

The BiLSTM model appears to be the best performing 

model in terms of the mean of the top 10 residuals and the 

RMSE, MAE, MAPE and R-squared. LSTM comes in a 

close second for both metrics, indicating similar but slightly 
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inferior performance. The GRU model, while not 

drastically off, has a slightly higher prediction error, 

making it the least optimal of the three based on the metrics 

provided. These metrics provide insight into model 

performance, but computational efficiency, training time, 

etc. must be considered when selecting a model to deploy. 

V. DISCUSSION 

Our methodology emphasizes the importance of simulating 

real-world scenarios in cyber exercises. While many 

traditional cyber exercises focus on static patterns, the 

dynamic nature of today's cyber threats requires a shift 

toward adaptability and rapid response mechanisms. It 

helps to effectively respond to unpredictable network 

operations by deriving new patterns based on traffic 

concentration and exposing students to different scenarios 

using deep learning models. With the combination of SDN 

and deep learning, users and administrators can efficiently 

improve cyber training scenarios in a data-driven manner 

based on the network traffic distribution process. However, 

our method has its limitations. For example, the differences 

in the residuals of each deep learning model, as shown in 

Table 5, make it difficult for network administrators to 

obtain consistent information. To solve this problem, an 

analysis related to the QoS evaluation items of the 

distributed packets is required. In addition, hyperparameters 

such as learning rate, number of neurons, and dropout can 

be adjusted to maximize the performance of the learning 

model. Optimizing these hyperparameters is especially 

important given the highly volatile nature of traffic data. As 

the nature of cyber threats becomes more complex, 

compatibility and scalability issues between new traffic and 

existing systems must also be addressed. Finally, managing 

dynamic threat vectors that reflect real-world threat 

scenarios and improving system adaptability and 

responsiveness in controlled cyber training infrastructures 

will be key research areas. Finally, managing dynamic 

threat vectors that reflect real-world threat scenarios and 

improving system adaptability and responsiveness in a 

controlled cyber training infrastructure will be key research 

areas. 

VI. CONCLUSION 

In this study, we created a graph-based network topology 

scenario to generate various traffic patterns for cyber 

training and proposed an SDN-based simulation 

methodology to reproduce the traffic. The simulation was 

evaluated by monitoring traffic metrics in the network and 

measuring the traffic volume. To predict the transmission 

volume according to the measured traffic volume, we 

evaluated the network using three models: LSTM, BiLSTM, 

and GRU. 

With more network topology configurations, you can use 

the Monte Carlo methodology to perform a presumptive 

evaluation of the behavior of a complex problem or system 

by randomly selecting a representative sample of all 

situations. It is particularly useful for analyzing or 

predicting the characteristics of systems in which stochastic 

elements are strongly operative. However, we continue to 

focus on the accurate control and monitoring of network 

topology and traffic flows using SDN simulations in line 

with cyber training frameworks. The focus is on recreating 

specific scenarios from cyber exercises and analyzing the 

network's response to detect or resolve security issues. 
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