

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Framework for Network Topology Generation
and Traffic Prediction Analytics for Cyber
Exercises

DONG-WOOK KIM1, GUN-YOON SHIN1, YOUNG-HOAN JANG1 SEUNGJAE CHO2,
KWANGSOO KIM2, JAESIK KANG2 and MYUNG-MOOK HAN1
1Department of AI Software, Gachon University, Sungnam-si 13120, South Korea
2Cyber Electronic Warfare R&D, LIG Nex1, Sungnam-si 13488, South Korea

Corresponding author: Myung-Mook Han (mmhan@gachon.ac.kr)

This work was supported by the Korea Research Institute for Defense Technology Planning and Advancement (KRIT) grant funded by the Korea

government's Defense Acquisition Program Administration (DAPA) (No. KRIT-CT-21-037, Artificial-Intelligent Cyber Training System, 2021), and the

Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (RS-2023-00211871).

ABSTRACT Today's cyber-attacks have become increasingly sophisticated and diverse, targeting systems

that hold sensitive information, creating the need for continuous cyber exercise and skill development for

cyber professionals. Because cyber exercises require training activities and environments that can support a

variety of situations, significant technological efforts have been made to build training environments. In

line with technological trends, current cyber exercise simulations are being studied to create various cyber

scenarios that can help build an intelligent cyber battlefield using big data and artificial intelligence (AI).

This requires a large amount and different types of data for learning, as well as a technical system that can

manage and update them periodically. The objective of this study is to develop network topology

generation and traffic prediction technologies based on intelligent network traffic analysis and AI models

for cyber exercise technology systems. To automate training network scenarios, a path generation

technology based on graph theory was developed, and the network environment was analyzed based on the

amount of transmission by building a software-defined network capable of analyzing and predicting

network traffic. A comparison of AI models such as long short-term memory (LSTM), bidirectional LSTM

(BiLSTM), and gated recurrent units (GRU) to predict the amount of transmission showed good

performance, with BiLSTM showing a better prediction error. The proposed methodology provides insights

that can be used to adjust training scenarios during the network design and operation phases, which is

expected to help manage the network, increase efficiency, and address security issues.

INDEX TERMS Cyber exercises, network topology, SDN networking, traffic matrix.

I. INTRODUCTION

With the rise of today's cyber threats, there is a growing

demand for specialized cybersecurity professionals in

universities, corporations, and the military. Cyber exercises

serve to enhance the capabilities of the cybersecurity

workforce by applying environments and technologies to

educate and train them [1]. Globally, the development of

cyber exercise environments is a major focus, most notably

the National Cyber Range (NCR), first developed by the

Defense Advanced Research Projects Agency (DARPA) [2].

A cyber range is a tool that simulates cyber-attacks to

train cybersecurity professionals to respond to them. Most

cyber ranges are limited in scope to meet specific

requirements, and their command-and-control systems are

designed to simulate cyber-attacks and defenses based on

training scenarios. These cyber exercises provide a realistic

network environment that enables highly realistic

simulations. However, maintaining such a high-

performance environment requires multiple resources and

significant costs, including computing hardware,

management software, and administrative time. There are

several factors to consider when building a cyber exercise

environment. To simulate virtual cyber threats in real time

and communicate information among different users, the

network topology and configuration must be modeled to

reflect the actual network environment, which requires high

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3344170

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:mmhan@gachon.ac.kr

VOLUME XX, 2017 9

communication capacity. In addition, providing an

independent lab environment for each user requires

significant high-performance computing resources and

capabilities [3].

Building a cyber exercise environment requires

specialized technical staff to design the training

environment and manage network and computing resources.

With the growing importance of realistic cyber exercises,

network emulators based on software-defined networking

(SDN) are increasingly being used [4]. These emulators

effectively create a variety of network training

environments and enable users to improve their ability to

manage and respond to cyber-attacks, especially in complex

areas such as smart grids [5].

Scenario creation is a key task in cyber training that

requires significant experience, time, and cost because it

considers the configuration of the network topology and the

resources required to operate the system. Most training

systems organize scenarios based on static and consistent

patterns, but this approach cannot effectively respond to

unexpected cyberattack patterns or complex network

environments. To provide participants with new

experiences and different patterns in cyber exercises,

managing unpredictable traffic segments such as traffic

delays and rates of change is key. Therefore, we have

developed a system for regulating and predicting different

traffic patterns based on SDN. We create new patterns

using a graph-based approach to extract hosts with large

traffic concentrations and use deep learning modeling to

provide insights into how these new patterns can be

incorporated into the training network to create an

enhanced training environment. We design and build

network topology scenarios using a graph-based approach

to coordinate network packet routing and collect traffic

from SDN-based network environments to build a traffic

matrix and provide a predictable data set. The traffic matrix

represents the amount of traffic transferred between each

node in the network, allowing you to understand and

analyze the network traffic distribution process in detail.

Leveraging this information, deep learning models can

predict the volume of network traffic and provide insights

for refining training scenarios. Therefore, we propose an

effective method for controlling the flow of network traffic

and adapting to changes in the network environment. The

main contributions of this study are as follows:

(1) Uses a graph-based approach to extract hosts with

large traffic concentrations and generate new patterns.

(2) Presents a methodology to compute the traffic matrix

resulting from the network topology of an SDN

environment and introduces a methodology to analyze the

transmission volume by timestamp.

(3) Predicts the transmission volume of network traffic

through regression models of LSTM, BiLSTM, and GRU

based on deep learning models in the training network, and

provides insights reflected in the network.

Using the proposed methods, based on a known network

dataset, we can form a new network topology by combining

frequently used overlapping network paths. By designing a

traffic matrix to understand and analyze the amount of

traffic transmitted by each node in the network, the amount

of network traffic can be predicted using an artificial

intelligence (AI) model. This information provides insight

into adjusting the training scenarios, suggesting ways to

effectively control the flow of network traffic and flexibly

respond to the environment.

II. RELATED WORK

In this section, we analyze previous studies related to expert

knowledge for cyber exercises. We focus on studies that

have proposed techniques for creating training traffic

scenarios that reflect the flow and patterns of network

traffic, as well as SDN used to simulate training

environments.

A. BACKGROUND AND TECHNOLOGY OF CYBER
EXERCISES

Cybersecurity exercises are traditionally organized in

groups of equal experts to assess participants and compare

their performance to mitigate situations and train

professionals. The best-known cyber defense exercises

(CDX) propose common security requirements for building

a secure environment in cyberspace and a training cycle to

implement them [6]. To conduct cyber exercises, it is

necessary to provide a variety of threat scenarios. In this

process, the concept of the NCR was first developed by

DARPA as a case study for joint military-civilian

cybersecurity exercises [2]. Cyber range emulates complex

network settings in an isolated environment and organizes

the environment and procedures to safely perform

cybersecurity tasks on assigned hosts or network

infrastructure [7]. Running cyber range requires a network

scenario based on the training objectives. This scenario

provides the network vectors needed to simulate traffic and

supports [8].

Currently, two types of traffic regeneration and traffic

generation methods are being explored for the next

generation of cyber range to provide network traffic in the

background [9]. Traffic replay technology adjusts the

collected traffic data and replays the traffic data again,

while traffic generation entails building a mathematical

model to generate new traffic. Du et al. [10] found that

traffic replay can provide statistical data on the network

based on a variety of usage patterns and trends, but the

efficiency may be reduced due to the large number of IP

mappings; and the traffic generation method generates new

traffic by learning the characteristic distribution of traffic in

the actual network, but it contains a lot of redundant data,

or the traffic method should be considered. From this

perspective, for efficient scenario operation for cyber

exercises, we focused our research on the following

detailed technical studies to pattern specific scenarios of

training traffic.

B. CYBER EXERCISE SCENARIO BUILDING AND
GRAPH-BASED TECHNIQUES

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3344170

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

Depending on the network infrastructure environment,

cyber exercise scenarios are typically generated by users

adjusting traffic flows and patterns or by deep learning by

optimizing routing policies. In general, researchers have

proposed generalizations of automatic modeling to combine

abnormal events with normal traffic. Park et al. [11]

presented the problem that although dedicated cyber ranges

resembling real-world environments have been built, real-

world cyber warfare is an integrated and organic

environment, which leads to poor interoperability, unlike

constructed cyber ranges. To address this problem, a

configuration plan and operational functions for building a

multifaceted cyber range reflecting the characteristics of

each attack group were proposed and tested for their impact

on distributed denial of service (DDoS) attacks. The study

presented a practical cyber range structure and scenario

construction plan, and with each battlefield management

system as a distributed center, the servers were

synchronized during the simulation to coordinate the

battlefield situation through synchronization among centers.

For scenario construction, a configurable network topology

was designed, and normal and abnormal traffic distribution

plans were generated based on learning and testing

information. A separate scenario database was created to

improve resource sharing, connectivity, and reusability.

Protogerou et al. [12] reported that the number of

interconnected edge devices has significantly increased due

to the proliferation of the Internet of Things, and graph-

based anomaly detection solutions are gaining attention as

methods to prevent network anomalies, such as assuming

cohesion between related entities and modeling

interrelationships. In response to the characteristics of

cyber-attacks such as DDoS, a distributed detection method

that efficiently monitors the entire network infrastructure to

detect abnormal events has been proposed. To improve the

notification process, the study proposed a method to

represent a node's vector as an aggregated and transformed

feature vector of its neighboring nodes using a graph neural

network (GNN). By analyzing existing studies, the working

principle of the proposed method was explained by utilizing

the function of the GNN to isolate individual inputs and

pass messages between graph nodes, proving that it is an

ideal method.

Chen et al. [13] noted that the rapid development of user

applications has led to a continuous increase in network

traffic, raising the issue of routing optimization. They

presented the problem that deep reinforcement learning

(DRL), a traditional routing optimization solution, could

not handle graph-like information in the network topology

due to difficulties in generalization when the topology

changes. Therefore, an autoGNN, which combines GNN

and DRL, was proposed to automatically generate routing

policies, and the proposed system was validated by testing.

In the study, Markov modeling was used to construct the

interaction process, and function approximation was used to

construct a scenario to represent the deep neural network

(DNN) of the DRL agent.

Rebecchi et al. [14] suggested the need for cyber

exercises because cyber-attacks are becoming more

widespread and sophisticated, and from a security

perspective, the widespread use of virtualization could lead

to infrastructure manipulation and extensive damage by

drastically increasing the number of exposed attack vectors.

The study defined a methodology for monitoring technical

key performance indicators for system performance and

efficiency, effectiveness of training and learning modules,

and perceived quality of experience metrics using the

SPIDER cyber range for incident response exercises and

reverse engineering.

Barsellotti et al. [15] argued that the DDoS detection

system based on conventional machine learning and deep

learning techniques is not flexible enough to respond to

different networks and traffic. In this study, the traffic data

was transformed into the flow-to-traffic graph (FTG)

structure, and the flow-level graph was processed in GNN

to generate representation vectors to output the final

prediction results for each flow. The CIC-IDS2017 dataset

was used, and the performance of the approach was

evaluated to illustrate the improvement caused by using the

proposed approach compared to existing methods.

C. SDN AND TRAFFIC PREDICTION TECHNIQUES

SDN is an important research topic for organizing network

environments for cyber exercises. In the area of cyber

exercises, research is actively conducted on attack scenarios,

exercise methods, and measurement of exercise

effectiveness. Research is being conducted to make various

deep learning and machine learning methods easily

accessible for traffic prediction using SDN simulators.

Software-defined networking (SDN) is an approach to

networking that uses software-based controllers or

application programming interfaces (APIs) to generate

traffic on the network and communicate with the hardware

infrastructure [16]. Simulators that support SDN include

Network Simulator 3 (ns-3) [17], Mininet [18], and the

Objective Modular Network Testbed in C++ (OMNeT++)

[19]. NS-3 is a popular free and open-source simulator for

network research, with advantages in analyzing and

visualizing results for different network protocols; Mininet

allows system development, sharing, and experimentation,

especially advantageous for real hardware deployment, and

can create realistic virtual networks running real kernels,

switches, and application code on a single machine (VM,

cloud, or native) in seconds with a single command.

OMNeT++ is a modeling framework developed as an

independent project to support sensor networks, wireless

ad-hoc networks, Internet protocols, performance modeling,

and more. Each simulator has its own strengths and

weaknesses, and it is important to choose the right tool to

support simulation testing of cyber exercises.

Researchers are working on individual simulator studies

to develop cyber exercise capabilities and combine them

with learning models to analyze network traffic predictions.

Leon et al. [20] proposed a practical cyber exercise

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3344170

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

framework known as ADLES. It is designed to simplify and

streamline exercise sharing and collaboration by providing

tools for specifying outcomes for scenarios, networks, and

computing resources in hands-on cyber exercises. Ullah et

al. [21] proposed an SDN-enabled framework for efficient

detection of cyber-attacks, including multi-class attacks,

based on network flows. In the process, the study

introduced approaches for deep learning models and

focused on evaluation. Azzouni et al. [22] presented

NeuTM, a framework for network traffic matrix prediction

based on long short-term memory recurrent neural networks

(LSTM RNNs). An input methodology for the traffic matrix

was presented, focusing on the suitability of the LSTM

model for traffic prediction. Torres et al. [23] proposed an

SDN framework to test the quality of service (QoS) of the

mechanisms and introduced a scheme for replaying and

modifying packet capture (PCAP) files.

While these studies have introduced SDN technology and

methodologies for network design in cyber exercises, a

more sophisticated approach to learning and predicting

patterns in network traffic is needed by consolidating these

studies and technologies. In this context, my contribution

focuses on the generation of concentrated traffic patterns

and the prediction of SDN simulation traffic using LSTM,

BiLSTM, and GRU models. This innovative approach not

only fills the existing gaps, but also provides deeper

insights into traffic behavior in SDN environments.

III. PROPOSED METHOD

In this section, we propose a training network topology

generation and traffic analysis framework for generating

cyber exercise traffic distribution scenarios. The framework

consists of four main steps: available data, its combination

with network topology generation, network traffic

generation, and network performance evaluation.

A. GENERAL FRAMEWORK

FIGURE 1. Network topology creation and simulation framework.

We implement a network topology for new traffic

generation patterns in the training network and propose a

predictive network simulation. We extract traffic-intensive

hosts from existing network datasets and use graph

algorithms to combine them. To illustrate the stages of the

framework shown in Fig. 1, a traffic dataset was first

collected from a real network environment. Two types of

data, actual raw packet files from the CIC-IDS2017 dataset

and processed network data for machine learning, were

used. In the second step, we proposed a network topology

generation model that generates host paths based on

Dijkstra's algorithm for traffic distribution scenarios. In the

third step, an SDN environment configuration method was

proposed to combine the generated network topologies to

model a virtual network environment. SDN provides the

flexibility to control the network topology and traffic flow

to create a training network environment. In this

environment, traffic is generated according to the network

topology to create the traffic matrix. The traffic matrix

captures all traffic flows within the network and provides

data to analyze the performance of the network. In the final

step, the network performance is evaluated by three models:

RNN-based LSTM(Long Short-Term Memory),

BiLSTM(Bidirectional Long Short-Term Memory), and

GRU(Gated Recurrent Unit) to predict the network traffic

transmission amount for the traffic matrix. Predictive

evaluation allows us to optimize performance and prevent

potential network problems.

B. INTRODUCTION TO DATASETS

For data collection, this study used CIC-IDS2017 [24], an

intrusion detection system dataset provided by the Canadian

Cyber Security Institute at the University of New

Brunswick, Canada. This dataset contains PCAP data

collected from an emulated environment over a five-day

period and a comma-separated value (CSV) dataset file

generated by CICFlowMeter [25]. These two types of

datasets serve different purposes. The CSV file provides the

information needed to construct the network topology,

while the original PCAP data is used to generate traffic in

an SDN environment. The following types of datasets we

used are presented in Table 1.

TABLE I

AVAILABLE DATASETS

Types CIC-IDS2017

CIC-DIS2017

dataset (CSV)

 Monday, normal activity, 11.0 G

 Tuesday, attacks + normal activity, 11 G

 Wednesday, attacks + normal activity, 13 G

 Thursday, attacks + normal activity, 7.8 G

 Friday, attacks + normal activity, 8.3 G

CIC-DIS2017

dataset (CSV)

PCAP's matching host pairs were reconstructed for 14

high-frequency host pairs, based on the network
topology configuration, for distribution.

C. DATASET PREPROCESSING

Before constructing the network topology, we pre-

processed the data in CSV file format to obtain statistics

between source and destination IPs for the dataset. Several

key factors were considered to keep the data consistent and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3344170

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

accurate. First, data with duplicate attributes or row values

were removed. As these duplicates led to overfitting of the

data and reduced the generalization ability of the model,

they were removed, as were data samples with missing

values. Missing values compromise the completeness of the

data and can bias the results of the analysis. Finally, any

negative values in the data set were also removed. Negative

values are generally not allowed as they may indicate errors

in the data.

Preprocessing converted the original dataset of 85

attributes into a data set with only 66 attributes,

representing each data sample with more concise and

unambiguous attribute values while preserving the original

label values.

D. NETWORK TOPOLOGY CREATION

Network topology is created after data preprocessing. To

create a network topology, the network flow is analyzed

based on the 4-tuple (source IP, destination IP, source port,

and destination port) attribute information of the network.

Because the transfer of network packets occurs between a

client and a server, it is represented by embedding a port

pair in a graph that represents the connection between the

source and destination ports. The graph is represented in the

form G = (V, E), where V and E represent the vertices and

edges, respectively. The vertex consists of a unique pair of

source and destination ports in a network traffic dataset,

represented as V = {(SPort1, Dport1), (SPort2, Dport2),

(SPort3, Dport3), and (SPortn, Dportn)}. The edge represents

the transmission of a packet from a given source port to a

destination port, which is defined in the form E = {(SPortn,

Dportn, Packetn)}, where each Packetn represents a

connection between the given source and destination ports,

that is, a connection between a pair of vertices (SPortn,

Dportn). Each edge contains various attributes that

characterize the packet. These attributes can include packet

size, transmission time, and protocol type and can be used

to effectively graph the patterns and structure of network

traffic.

In the defined graph, the directional flow along the

vertices is organized in terms of source and destination

ports, which requires the definition of the start and end

nodes of the vertices. To determine them by the in-out

degree, this study satisfies the following conditions:

• The start and end vertices are denoted by s and t,

 respectively.

• V and E denote the set of vertices and edges in t

he graph.

• In-degree(v) is the number of vertices entering v

ertex v, and out-degree(v) is the number of verti

ces leaving vertex v, as defined by the following

 equations:

s ∈ V and In-degree(s) = 0 (1)

t ∈ V and Out-degree(t) = 0 (2)

A path-finding algorithm is used to generate a topology

from a graph consisting of vertex pairs of start and end

vertices. The shortest path algorithm Dijkstra [26] is used,

which is very effective in finding a minimum weight path

between two vertices in a directed graph. The Dijkstra

algorithm explores all paths between the end nodes relative

to the start node in the entire network. The steps of the

algorithm are as follows:

The resulting network topology is very useful for visually

understanding the structure and flow of the network,

enabling analysis of how data flows through the network,

which nodes handle the most traffic, which paths are most

efficient, and so on. This topology can also be used as a

basis for optimizing network performance and responding

quickly to failures.

E. NETWORK EMULATORS AND TRAFFIC REPLAY

For network topology configuration, PCAP data

modification, and traffic replay for traffic data distribution,

we combined the Mininet emulator, Tcpreplay, and

Bittwiste to implement an efficient cyber exercise traffic

distribution simulation. Mininet [18] is an SDN that enables

the creation of components such as virtual routers, switches,

and hosts on a single system, simulation of their

management, and testing of network protocols and

applications without physical hardware. Network behavior

is monitored by a POX controller [27], which provides

centralized network management capabilities to manage

and control network flow.

A network traffic replay tool known as Tcpreplay [28]

was used along with the Mininet emulator to randomly

generate network topologies and traffic from the hosts.

Using the actual network traffic data contained in the PCAP

file, the tool can recreate traffic scenarios, reproduce

network traffic conditions, and evaluate the performance of

the system. To reproduce the traffic, the Bittwiste [29] tool

was used to modify the data in the PCAP file to match the

host environment of the generated topology. The tool can

be used to implement and test different situations

depending on the training scenario, as it can modify

information such as the IP address and timestamp of each

traffic unit.

Algorithm 1: Shortest path search using Dijkstra's method

DIJKSTRA(G,w,s)

Select the start node, s∈V and in-degree(s)=0

1.INIT-SINGLE-SOURCE(G,s)

Initialize the list to store visited nodes, t∈V and out-degree(t)=0

2.S <- NULL

3. Q <- V[G] # Initialize the queue to store unvisited nodes

4. while Q != NULL # Repeat until all nodes are visited

5. do u <- EXTRACT-MIN(Q) # Select the node with the least weight in

the queue

6. S <- S + U # Add the selected node to the list of visited nodes

7. for each vertex v <- Adj[u] # Tour all nodes associated with the

selected node

8. do RELAX(u,v,w) # Update the weights of nodes associated with the

selected node

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3344170

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

In a simulation environment implemented in this way,

the Tcpreplay and Bittwiste tools are used to manipulate

and replay the original PCAP data in the network topology

created by Mininet to establish the network topology

configuration environment. The rest of the detailed

topology configuration environment consists of the

configuration environment shown in Fig. 2.

FIGURE 2. Mininet network topology configuration scenario.

Each host and router has a maximum transmission

bandwidth of 20 MB, and the router-to-router transmission

bandwidth is 30 MB, which provides sufficient bandwidth

for communication between the various elements of the

network while maintaining a balance to ensure effective

information flow between the various elements of the

network. These bandwidth settings also help to simulate the

various traffic situations that may occur in a real-world

network environment, which is an important configuration

factor when building different scenarios for cyber exercises.

By integrating these three tools, an effective simulation

system was designed and implemented to reproduce and

analyze cyber exercise traffic distribution in a realistic

network environment.

F. NETWORK EMULATORS AND TRAFFIC REPLAY

The network traffic captured by the monitoring is stored in

the form of a traffic matrix, which contains comprehensive

information about the overall traffic flow within the

network [30]. The traffic matrix is computed by the POX

controller of the Mininet emulator to distribute packets in

the set network topology and to observe the amount of

traffic. A traffic matrix generally represents the amount of

traffic exchanged between each pair of nodes in a network

during a given time period, and the varying traffic can be

used to analyze the performance of the network or predict

patterns.

To calculate the variation in traffic, the difference between

the two-time measurements is determined and used to

calculate the difference between the current and previous

traffic conditions. This difference represents the variation in

traffic, which is divided by the elapsed time to obtain the

change in traffic per hour (ΔT). That is, ΔT can be calculated

by subtracting the current traffic conditions from the previous

traffic conditions and dividing the difference by the elapsed

time (duration):

∆𝑇 =
𝐿𝑎𝑡𝑒𝑠𝑡 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 (3)

In (3), the most recent and previous traffic are matrices

representing the states of the traffic, and each component of

these matrices represents the amount of traffic at a given

time. Therefore, the change in traffic for each component

can be obtained by calculating the difference between these

two matrices. This method makes it possible to identify and

reflect changes in network status in real time, which is

advantageous for analyzing the performance of a

dynamically changing network environment.

G. NETWORK TRAFFIC PREDICTION AND
PERFORMANCE EVALUATION

Predicting network traffic plays an important role in

managing networks, increasing efficiency, and addressing

security concerns. Understanding traffic patterns and

predicting future traffic changes can help optimize network

resources, avoid traffic bottlenecks, and proactively detect

anomalies. Therefore, artificial intelligence models are used

to evaluate such analytical models. Predictive models are

divided into linear and nonlinear models. Linear models

assume that the relationship between input and output is

linear, meaning that a small change in the input will be

reflected in a small change in the output, indicating a

constant rate of change. Although the advantages of such

linear models lie in their interpretative power and

computational efficiency, they are limited by their inability

to capture complex or nonlinear data patterns. In contrast,

nonlinear models assume that the relationship between

input and output is nonlinear, meaning that a small change

in the input can cause a large change in the output, and the

rate of change may not be constant. Nonlinear models

better capture complicated data patterns and can better

reflect complex real-world scenarios. However, they are

more computationally intensive, prone to overfitting, and

difficult to interpret.

In this study, we used nonlinear machine learning models

based on recurrent neural networks (RNNs). RNNs are

neural networks that can effectively model sequential data

and are particularly useful for problems where order is

essential, such as natural language processing, speech

recognition, and time series prediction [31]. RNNs have a

recursive structure in which the current output depends on

previous computations, but they suffer from long-term

dependency. The problem with this is that as the sequence

gets longer, the ability to retain and learn the initial

information deteriorates. Modified RNNs such as long

short-term memories (LSTMs) [32] and gated recurrent

units (GRUs) have been proposed to address these

problems.

LSTMs are a class of RNNs designed to address the

problem of long-term dependency by introducing the

concept of gates to decide whether to retain or discard

information. This allows the LSTM to learn better about

long sequences and identify the significant parts of each

sequence. BiLSTM [33] processes sequence data in both

directions. It uses not only past information but also future

information, which is useful when future information is

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3344170

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

needed to make accurate predictions. GRU [34] is a

simplified version of LSTM that performs as well as LSTM

but with better computational efficiency. GRU simplifies

the model by combining the two gates of LSTM (hide and

discard) into one and combining the cell state with the

hidden state.

To effectively train a time series prediction model, the

original time series data set is converted to generate input-

target pairs at each time point. For given time series data,

{𝑥𝑡}𝑡=1
𝑁 , where 𝑁 represents the total length of the time

series. The method for constructing the input feature matrix

𝑋 and the corresponding target vector 𝑌 is as follows.

Each 𝑖-input vector 𝑋𝑖 consists of consecutive data points

during the look-back period L, starting at time 𝑖.

𝑋𝑖 = [𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+(𝐿−1)] (4)

Where 𝑖 = 1, 2, … , 𝑁 − 𝐿 . The corresponding target

value 𝑌𝑖 is defined as the data point at the next time to be

predicted by the input vector 𝑋𝑖:

𝑌𝑖 = 𝑥𝑖+𝐿 (5)

By preparing the data set in this way, the model can use

sufficient past information to predict 𝑌𝑖 from each 𝑋𝑖 and

learn the temporal patterns and structures of the time series

data.

These three models are evaluated based on Root Mean

Square Error (RMSE), Mean Absolute Error (MAE), Mean

Absolute Percentage Error (MAPE), and R-squared, which

are the differences between the predicted and actual values of

network traffic time series data. The RMSE value is a

measure of the model's prediction error, with values closer to

zero indicating better prediction performance. Since the

RMSE is rooted in the mean of the squares of these

prediction errors, it is a measure of the average error over all

prediction errors. The RMSE is calculated as follows:

𝑅𝑀𝑆𝐸 = √(
1

𝑛
) ∑ (𝑦𝑖 − 𝑥𝑖)

2𝑛
𝑖=1 (6)

where n is the number of samples, yi is the ith observation,

xi is the ith prediction, and Σ is the sum over all samples. One

of the main characteristics of the RMSE is that it gives more

weight to large errors. This is due to the squaring process,

which can cause the model to avoid large errors. For this

reason, the RMSE is sensitive to outliers and is compared to

the mean absolute error (MAE), which is less sensitive to

outliers.

MAE (Mean Absolute Error) is the average absolute error,

which converts the difference between the predicted and

actual values to an absolute value and then calculates the

average. All errors are weighted equally. The MAE is

calculated as follows:

MAE=
1

n
∑ |yi-yî|

n
i=1 (7)

MAPE (Mean Absolute Percentage Error) is the mean

absolute percentage error, which calculates the percentage

of prediction error compared to the actual value and then

averages it. Because it is a relative error measure, it can be

difficult to use when the actual value is close to 0. The

MAPE is calculated as follows:

MAPE=
100

n
∑ |

yi-yî

yi
|n

i=1 (8)

R-squared is an indicator of how well a regression model

explains the variation in the data. A value closer to 1

indicates that the model does a better job of explaining the

variation in the data. R-squared is calculated follows:

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

 (9)

RMSE, MAE, MAPE, and R-squared are widely used

metrics to evaluate the performance of regression analysis.

Because they can be applied to any time series data, such as

traffic change rate, they evaluate the overall performance of

the model.

IV. EXPERIMENTAL RESULTS

In this section, we present an analysis of the experimental

results of generating training traffic topologies using the

proposed methodology. The experiment was performed in

two steps. First, the Dijkstra algorithm was used to generate

graph paths for the network topology. Second, the

generated topologies were combined to build a network

scenario, send traffic, and calculate the expected throughput

of the entire network.

A. EXPERIMENTAL ENVIRONMENT

For the experiment, the environment was set up as shown in

Table 2 below.
TABLE II

EXPERIMENTAL ENVIRONMENTS

Component Specification

CPU Intel Xeon E5-2620 v4

memory 48 GB

OS Windows 10, WSL2 (Ubuntu 20.04)

language Python 3.8

library networkx, tensorflow, sklearn

The Python language was used on a personal computer to

generate the network topology on the running computer. A

CSV file of the known CIC-IDS2017 dataset was used to

generate a network graph using the NetworkX library. The

Mininet emulator was installed in the Ubuntu 20.04

Windows Subsystem for Linux 2 (WSL2) environment to

simulate network traffic. The network configuration

environment was set up using the PCAP data provided by

CIC-IDS2017, followed by the calculation and collection of

the traffic matrix.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3344170

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

B. EXPERIMENTAL RESULTS OF NETWORK
TOPOLOGY CREATION

In the first experiment, the network topology was generated

based on the CIC-IDS2017 dataset using the methodology

introduced earlier. The path generation results for the

Dijkstra algorithm were checked in the dataset in terms of

source and destination ports. The results of verifying the

graph configuration information for the CIC-IDS2017

dataset were as follows: it consisted of 14,385 start nodes

and 124 end nodes, for a total of 1,783,740 graph paths.

The results of the path configuration using the Dijkstra

algorithm are shown in Table 3.
TABLE III

RESULTS OF NETWORK TOPOLOGY CREATION

These results provide the basis for explaining the number

of paths and their redundancy as a function of the length of

the graph, which facilitates the understanding of the process

of path analysis and removal of redundant topologies.

FIGURE 3. Path Graphs of Network Topologies. (a) Path length of 7 (b)
Path length of 6.

In Table 3, "graph path length" refers to the total number

of communication paths. For example, in Fig 3, if the path

length is 7, the graph in (a) indicates that the path consists

of seven communication structures. “Number of scenarios”

refers to the total number of network topology scenarios for

a given graph path length. For a path length of 7, there are

192 different network topology scenarios. “Number of

Redundant Paths” refers to the number of scenarios that

indicate the presence of redundant paths in the network

topology at the same graph path length. For a path length of

7, there are eight redundant network paths. This indicates

that, for a given path length, there may be multiple

scenarios that follow the same path or have similar traffic

patterns.

The number of network traffic scenarios that can be

generated for the graph path length, as well as the number

of redundant paths, can be determined. This information is

important for network simulation and optimization. The

number of generated scenarios and redundant paths for the

graph path length are summarized as follows: For a graph

length of 7, a total of 192 topology scenarios were

generated, of which 8 were redundant. For a graph length of

6, as shown in Fig. 3(b), 30 scenarios representing

communication paths were generated, of which 21 were

redundant. The graph with the largest number of scenarios

was the one with a path length of 4, in which a total of

1,141 scenarios were generated with 25 redundant paths.

The graph with the smallest path length of 2 generated only

one scenario with no redundant paths. This suggests that as

the graph path length decreases, the number of possible

scenarios decreases, and the probability of overlap tends to

decrease.

In general, the results showed that the number of

redundant paths (77) was relatively small compared to the

total number of scenarios (2,531). This represented

approximately 3.04% of all scenarios. These percentages

change with path length, with the highest redundancy rate

(70%) for a graph path length of 6. This suggests that the

scenarios generated at this graph path length followed

similar paths or had the same traffic patterns. In contrast,

the overlap rate (4.17%) was relatively lower for the graph

path length of 7, indicating that a variety of scenarios can

be generated from paths of this length.

C. EXPERIMENTAL RESULTS FOR NETWORK TRAFFIC
PREDICTION

In this part of the study, we placed 14 hosts by combining

graphs based on ports with high communication frequencies

in the generated network topology scenario. Simulations

were performed to predict the amount of transmission from

each host for the entire network. The experimental data

were collected by calculating the traffic matrix for

approximately 5 d by reconstructing and sending PCAP

files provided by the CIC-IDS2017 dataset using a Mininet

emulator and POX controller.

To predict traffic patterns for the collected network

traffic volume, the dataset was processed using a sliding

Graph path
length

 Number of scenarios
 Number of redundant

paths

7 192 8

6 30 21

5 657 20

4 1,141 25

3 510 3

2 1 0

Total 2,531 77

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3344170

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

window method. The following Table 4 shows the

environment settings of the LSTM, BiLSTM, and GRU

models. Based on the LSTM model, BiLSTM has the most

parameters and the longest computation time among the

three models, and GRU has the fewest parameters and the

shortest computation time.
TABLE IV

MODEL PROPERTIES

Model Number of parameters Operation time(sec)

LSTM 138,596 540.50

BiLSTM 276,996 969.24

GRU 109,196 650.24

Each model is trained over 200 epochs, and the best

parameter set is retained for evaluation. In addition, 80% of

the dataset is used as training data, the remaining 20% is

used as test data, and the final set of parameters is

considered the trained model and is used for prediction. The

more parameters a model has, the more computation time

and resources it requires. Therefore, the number of

parameters represents the complexity of a model and is

used to evaluate its efficiency.

FIGURE 4. LSTM, BiLSTM and GRU loss and validation curves.

The following Fig. 4 shows the loss and validation loss

of the LSTM, BiLSTM, and GRU learning models. All

three models show that the training loss decreases with

increasing epochs. This is the expected behavior during the

learning process. The training loss of LSTM and BiLSTM

tends to be more stable than the validation loss of GRU,

especially in later epochs. However, the BiLSTM model

stands out in that its validation loss differs the most from its

training loss, with overfitting occurring in later epochs.

Although the GRU model appears to have the most stable

and consistent behavior in terms of training loss and

validation loss, it may not be as stable against overfitting as

training continues. Since the GRU model shows a stable

trend in validation loss for patterns through training, its

learning performance may be the strongest of the three

models when compared to learning time.

FIGURE 5. Learning model predictions versus ground truth.

In general, Fig. 5 shows that the difference between the

predictions and the ground truth was not significant.

However, the difference in prediction error was significant

when traffic suddenly spiked or crashed, or just before a

spike. In the interval between 100 and 150, the differences

in predictions made by the LSTM and BiLSTM models

were similar, but the GRU model has a more relaxed

interval. Between 150 and 200, the LSTM was more

accurate in predicting the amount of traffic. Between 200

and 300, there was no significant difference between the

three models, and the GRU model made the most accurate

predictions before the major turning point between 300 and

350. However, after the major turning point, the LSTM

model made a more accurate prediction. Even after that,

before the traffic spike between 500 and 550, the GRU

model made a more accurate prediction and the BiLSTM

model showed a large error. In general, there were errors

before and after the traffic peaks. The GRU model made

more accurate predictions before the peaks, while the

LSTM and BiLSTM models made more accurate

predictions after the peaks.
TABLE V

COMPARE RESIDUALS FROM LEARNED MODELS

Section Actual Predicted Residual

LSTM(Avg: 0.5297)

245 0.918919 0.551719 0.3672

297 0.940383 0.486429 0.453954

318 0.812893 0.106689 0.706204

344 0.896931 0.034377 0.862554

354 0.909941 0.435028 0.474912

378 0.737254 0.370804 0.366449

383 0.687782 0.281635 0.406147

387 0.826255 0.172432 0.653823

390 0.833749 0.247548 0.5862

539 0.550507 0.131363 0.419144

BiLSTM(Avg: 0.5234)

54 0.927358 0.468326 0.459032

245 0.918919 0.406534 0.512385

297 0.940383 0.405834 0.534549

318 0.812893 0.117376 0.695517

344 0.896931 0.037494 0.859436

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3344170

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

378 0.737254 0.303323 0.433931

387 0.826255 0.415905 0.41035

390 0.833749 0.403092 0.430657

491 0.918747 0.450751 0.467996

539 0.550507 0.120123 0.430384

GRU(Avg: 0.5317)

25 0.933746 0.49272 0.441026

155 0.92502 0.412397 0.512623

163 0.880508 0.420772 0.459736

318 0.812893 0.178517 0.634376

344 0.896931 0.11178 0.785151

378 0.737254 0.18661 0.550644

381 0.632307 0.188646 0.443661

387 0.826255 0.322454 0.503801

390 0.833749 0.261904 0.571845

539 0.550507 0.136676 0.413831

Table 5 compares the residuals between the actual and

predicted values for the peak area to help understand Fig. 5.

The residuals represent the difference between the actual

and predicted values; large differences between these

values may indicate that the model predictions are

inaccurate.

In the case of the LSTM model, the minimum residual is

observed to be approximately 0.3664 and the maximum

residual is observed to be approximately 0.8626. This

shows a large difference between the actual and predicted

value at index 344. For BiLSTM, the average is slightly

lower at 0.5234. The highest residual is again observed at

exponent 344 with a value of 0.859436, which is very close

to the highest residual of the LSTM model. For the GRU

case, the average is 0.5317, which is slightly higher than for

the LSTM and BiLSTM models. The highest residual is at

index 344 with a value of 0.785151. This is slightly lower

than the residuals for the same instance of the LSTM and

BiLSTM models, indicating that the GRU model may

perform slightly better in this case. All three models show

similar performance in terms of residuals for the top 10 data

points. Although there are some differences in the exact

residuals for individual cases, the overall pattern is

consistent across the models.
TABLE VI

REGRESSION MODEL PERFORMANCE METRICS

Model RMSE MAE MAPE(%) R-squared

LSTM 0.1701 0.1252 29.47% 0.6829

BiLSTM 0.1640 0.1169 28.84% 0.7334

GRU 0.1884 0.1220 30.66% 0.7215

Next, we evaluate the RMSE of the three models. Fig. 6

and Table 6 show the error size using RMSE, MAE, MAPE,

and R-squared metrics for the LSTM, BILSTM, and GRU

models. The average RMSE values of the LSTM, BILSTM,

and GRU models according to Table 6 were 0.1701, 0.1640,

and 0.1884, respectively. The BISTM model showed the

best RMSE value, with a difference of about 0.01-0.02.

FIGURE 6. Evaluation of RMSE for the machine learning models.

In Fig. 6, the red lines represent each error bar as a

measure of its true value. The GRU model has the highest

number of error bars, while the BILSTM model has the

highest number of errors, as indicated by its RMSE value.

The GRU model shows the least amount of error variation

during peak traffic periods. This seems to reflect the

performance of the learning model for small changes.

Overall, the LSTM and BILSTM models outperformed the

GRU model with more points close to zero.

In Table 6, the Mean Absolute Error (MAE) is the

average of the absolute value of the difference between the

predicted value and the actual value. The BiLSTM model

had the lowest MAE value of 0.1169, indicating that the

BiLSTM model was the best in terms of the size of the

average error.

In addition, the Mean Absolute Percentage Error (MAPE)

is the absolute value of the prediction error divided by the

actual value, averaged, and expressed as a percentage. This

metric allows you to express as a percentage how large the

prediction error is compared to the actual value. When

calculating the MAPE, time steps with an actual value of 0

were excluded to fairly evaluate the predictive power of the

model. The results showed that all three models had similar

prediction error rates, but the BiLSTM model had the

lowest MAPE value of 28.84%.

Finally, the R-squared is an indicator of how well the

model explains the variability in the data. The closer the

value is to 1, the better the predictive ability of the model.

The BiLSTM model had the highest R^2 value of 0.7334.

This indicates that the BiLSTM model best explains the

variability of the data. Overall, the BiLSTM model showed

the most consistent high performance of the three models.

However, since the most appropriate model may differ

depending on each metric, learning performance and traffic

latency must be considered together.

The BiLSTM model appears to be the best performing

model in terms of the mean of the top 10 residuals and the

RMSE, MAE, MAPE and R-squared. LSTM comes in a

close second for both metrics, indicating similar but slightly

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3344170

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

inferior performance. The GRU model, while not

drastically off, has a slightly higher prediction error,

making it the least optimal of the three based on the metrics

provided. These metrics provide insight into model

performance, but computational efficiency, training time,

etc. must be considered when selecting a model to deploy.

V. DISCUSSION

Our methodology emphasizes the importance of simulating

real-world scenarios in cyber exercises. While many

traditional cyber exercises focus on static patterns, the

dynamic nature of today's cyber threats requires a shift

toward adaptability and rapid response mechanisms. It

helps to effectively respond to unpredictable network

operations by deriving new patterns based on traffic

concentration and exposing students to different scenarios

using deep learning models. With the combination of SDN

and deep learning, users and administrators can efficiently

improve cyber training scenarios in a data-driven manner

based on the network traffic distribution process. However,

our method has its limitations. For example, the differences

in the residuals of each deep learning model, as shown in

Table 5, make it difficult for network administrators to

obtain consistent information. To solve this problem, an

analysis related to the QoS evaluation items of the

distributed packets is required. In addition, hyperparameters

such as learning rate, number of neurons, and dropout can

be adjusted to maximize the performance of the learning

model. Optimizing these hyperparameters is especially

important given the highly volatile nature of traffic data. As

the nature of cyber threats becomes more complex,

compatibility and scalability issues between new traffic and

existing systems must also be addressed. Finally, managing

dynamic threat vectors that reflect real-world threat

scenarios and improving system adaptability and

responsiveness in controlled cyber training infrastructures

will be key research areas. Finally, managing dynamic

threat vectors that reflect real-world threat scenarios and

improving system adaptability and responsiveness in a

controlled cyber training infrastructure will be key research

areas.

VI. CONCLUSION

In this study, we created a graph-based network topology

scenario to generate various traffic patterns for cyber

training and proposed an SDN-based simulation

methodology to reproduce the traffic. The simulation was

evaluated by monitoring traffic metrics in the network and

measuring the traffic volume. To predict the transmission

volume according to the measured traffic volume, we

evaluated the network using three models: LSTM, BiLSTM,

and GRU.

With more network topology configurations, you can use

the Monte Carlo methodology to perform a presumptive

evaluation of the behavior of a complex problem or system

by randomly selecting a representative sample of all

situations. It is particularly useful for analyzing or

predicting the characteristics of systems in which stochastic

elements are strongly operative. However, we continue to

focus on the accurate control and monitoring of network

topology and traffic flows using SDN simulations in line

with cyber training frameworks. The focus is on recreating

specific scenarios from cyber exercises and analyzing the

network's response to detect or resolve security issues.

REFERENCES
[1] M. Karjalainen and T. Kokkonen, "Comprehensive cyber arena; The

next generation cyber range," 2020 IEEE European Symposium on

Security and Privacy Workshops (EuroS&PW), Genoa, Italy, 2020,

pp. 11-16
[2] B. Ferguson, A. Tall and D. Olsen, " National cyber range

overview," 2014 IEEE Military Communications Conference,
Baltimore, MD, USA, 2014, pp. 123-128.

[3] S. K. Sharma and J. Sefchek, “Teaching information systems

security courses: A hands-on approach,” Computers & Security, vol.
26, no. 4, pp. 290–299, 2007.

[4] O O. Romanov, M. Nesterenko, A. Marinov, S. Skolets and H.

Burlaka, "SDN network modeling using the GUI MiniEdit," 2022
IEEE 16th International Conference on Advanced Trends in

Radioelectronics, Telecommunications and Computer Engineering

(TCSET), Lviv-Slavske, Ukraine, 2022, pp. 01-06.
[5] A. Bretas, N. Bretas, J. B. London and B. Carvalho, Cyber-Physical

Power Systems State Estimation. San Diego, CA, USA:Elsevier,

2021.
[6] E. Seker and H. H. Ozbenli, "The concept of cyber defence

exercises (CDX): Planning, execution, evaluation," 2018

International Conference on Cyber Security and Protection of
Digital Services (Cyber Security), Glasgow, UK, 2018, pp. 1-9.

[7] J. Vykopal, M. Vizvary, R. Oslejsek, P. Celeda and D. Tovarnak,

"Lessons learned from complex hands-on defence exercises in a
cyber range," 2017 IEEE Frontiers in Education Conference (FIE),

Indianapolis, IN, USA, 2017, pp. 1-8.

[8] M. Karjalainen and T. Kokkonen, "Comprehensive cyber arena; The
next generation cyber Range," 2020 IEEE European Symposium on

Security and Privacy Workshops (EuroS&PW), Genoa, Italy, 2020,

pp. 11-16.
[9] O. A. Adeleke, N. Bastin, and D. Gurkan, “Network traffic

generation: A survey and methodology,” ACM Computing Surveys,

vol. 55, no. 2. Association for Computing Machinery (ACM), pp. 1–
23.

[10] L. Du, J. He, T. Li, Y. Wang, X. Lan, and Y. Huang, “DBWE-

Corbat: Background network traffic generation using dynamic word
embedding and contrastive learning for cyber range,” Computers

& Security, vol. 129. Elsevier BV, p. 103202, Jun-2023.

[11] M. Park, H. Lee, Y. Kim, K. Kim, and D. Shin, “Design and
implementation of multi-cyber range for cyber training and testing,”

Applied Sciences, vol. 12, no. 24, p. 12546.

[12] A. Protogerou, S. Papadopoulos, A. Drosou, D. Tzovaras, and I.
Refanidis, “A graph neural network method for distributed anomaly

detection in IoT,” Evolving Systems, vol. 12, no. 1, pp. 19-36, Jun.

2020.
[13] B. Chen, D. Zhu, Y. Wang, and P. Zhang, “An approach to combine

the power of deep reinforcement learning with a graph neural

network for routing optimization,” Electronics, vol. 11, no. 3, p. 368,
Jan. 2022

[14] F. Rebecchi et al., "A digital twin for the 5G era: the SPIDER cyber

range," 2022 IEEE 23rd International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM), Belfast,

United Kingdom, 2022, pp. 567-572.

[15] L. Barsellotti, L. De Marinis, F. Cugini and F. Paolucci, "FTG-Net:
Hierarchical flow-to-traffic graph neural network for DDoS attack

detection," 2023 IEEE 24th International Conference on High
Performance Switching and Routing (HPSR), Albuquerque, NM,

USA, 2023, pp. 173-178.

[16] H. Abdelgader Eissa, K. A. Bozed and H. Younis, "Software
defined networking," 2019 19th International Conference on

Sciences and Techniques of Automatic Control and Computer

Engineering (STA), Sousse, Tunisia, 2019, pp. 620-625.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3344170

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

[17] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,”

Modeling and Tools for Network Simulation. Springer Berlin

Heidelberg, 2010, pp. 15–34.
[18] R. L. S. de Oliveira, C. M. Schweitzer, A. A. Shinoda, and Ligia

Rodrigues Prete, “Using Mininet for emulation and prototyping

software-defined networks,” 2014 IEEE Colombian Conference on
Communications and Computing (COLCOM). IEEE, Jun-2014.

[19] OMNeT++, [Online]. Available: https://omnetpp.org/intro/.

Accessed on: Sep 12, 2023.
[20] D. Conte de Leon, C. E. Goes, M. A. Haney, and A. W. Krings,

“ADLES: Specifying, deploying, and sharing hands-on cyber-

exercises,” Computers & Security, vol. 74, pp. 12–40, 2018.
[21] I. Ullah, B. Raza, S. Ali, I. A. Abbasi, S. Baseer, and A. Irshad,

“Software defined network enabled fog-to-things hybrid deep

learning driven cyber threat detection system,” Secur. Commun.
Networks, vol. 2021, 2021

[22] A. Azzouni and G. Pujolle, "NeuTM: A neural network-based

framework for traffic matrix prediction in SDN," NOMS 2018 -

2018 IEEE/IFIP Network Operations and Management Symposium,

Taipei, Taiwan, 2018, pp. 1-5

[23] J. B. Torres, J. E. Regencia, and W. E. S. Yu, “Real network traffic
data with PCAP in a software-defined networking test framework

for quality of service mechanisms,” IT Convergence and Security.

Lecture Notes in Electrical Engineering, Singapore, 2021, pp. 153-
161.

[24] I. Sharafaldin, A. H. Lashkari and A. A. Ghorbani, "Toward
generating a new intrusion detection dataset and intrusion traffic

characterization", Proc. ICISSP, pp. 108-116, 2018.

[25] A. H. Lashkari, G. D. Gil, M. S. I. Mamun and A. A. Ghorbani,
"Characterization of tor traffic using time based features", Proc. 3rd

Int. Conf. Inf. Syst. Security Privacy, pp. 253-262, 2017, [online]

Available:http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=
10.5220/0006105602530262.

[26] S. Kadry, A. Abdallah and C. Joumaa, "On the optimization of

dijkstras algorithm" in Informatics in Control Automation and
Robotics, Springer, pp. 393-397, 2011.

[27] S. Kaur, J. Singh and N. S. Ghumman, "Network programmability

using pox controller", Proc. Int. Conf. Commun. Comput. Syst.
(ICCCS), vol. 138, pp. 134-138, 2014.

[28] Tcpreplay. AppNeta. [Online]. Available:

https://tcpreplay.appneta.com/. Accessed on: July 31, 2023.
[29] Bit-Twist. Addy Yeow. [Online]. Available:

http://bittwist.sourceforge.net/. Accessed on July 31, 2023.

[30] Y. Tian, W. Chen and C. -T. Lea, "An SDN-Based traffic matrix
estimation framework," in IEEE Transactions on Network and

Service Management, vol. 15, no. 4, pp. 1435-1445, Dec. 2018.

[31] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas and J. Lloret,
"Network traffic classifier with convolutional and recurrent neural

networks for internet of things," in IEEE Access, vol. 5, pp. 18042-

18050, 2017.
[32] A. Sherstinsky, "Fundamentals of recurrent neural network (RNN)

and long short-term memory (LSTM) network", Physica D

Nonlinear Phenom., vol. 404, Mar. 2020.

[33] Z. Lv, J. Guo, A. K. Singh and H. Lv, "Digital twins Based VR

simulation for accident prevention of intelligent vehicle," in IEEE

Transactions on Vehicular Technology, vol. 71, no. 4, pp. 3414-
3428, April 2022.

[34] K. Cho et al., Learning phrase representations using RNN encoder-

decoder for statistical machine translation, 2014, [online] Available:
https://www.arXiv:1406.1078.

DONG-WOOK KIM received the bachelor’s

degree in computer software and the master’s
degree in computer engineering from Gachon

University, South Korea, in 2015 and 2017,

respectively, where he is currently pursuing the
Ph.D. degree with the Department of Computer

Engineering. His research interests include insider

threats, information security, data mining, and
machine learning.

GUN-YOON SHIN received the M.S. and Ph.D.

degrees in computer engineering from Gachon

University, Republic of Korea, in 2018 and 2023,
respectively. Currently, he is a Postdoctoral

Researcher at Gachon University, Korea. His

research interests include authorship attribution,
unknown attack detection, network anomaly

detection, information security, machine learning,

and artificial intelligence.

YOUNG-HOAN JANG earned his Master's
degree in Computer Science from Gachon

University in 2017, and obtained his Ph.D. in

Computer Science from the same university in
2021. His research interests include network

traffic, anomaly detection, IoT, and EMS.

SEUNGJAE CHO received the Master's

degree in Modeling and Simulation Engineering
from Hannam University, Republic of Korea, in

2011. Since May 2001, he is currently affiliated

with LIG Nex1, a leading defense industry in
Korea, as a researcher for cyber security. His

research interests include network security and

system engineering.

KWANGSOO KIM received a B.S. degree in

Information and Computer Engineering from

Ajou University, Republic of Korea, in 2009,
and a Ph.D. degree in Computer Engineering

from Ajou University, Republic of Korea in

2017. Since January 2017, he is currently
affiliated with LIG Nex1, a leading defense

industry in Korea, as a researcher for cyber

security. His research interests include network
security and cyber warfare, especially cyber

training system.

JAESIK KANG received the bachelor’s degree

in computer engineering and the master’s degree

in computer engineering from ChungNam
National University, Korea, in 2015 and 2020.

Since July 2022, he is currently affiliated with

LIG Nex1, a leading defense industry in Korea,
as a researcher for cyber security. His research

interests include AI, Cyber Security, and

Software Engineering.

MYUNG-MOOK HAN received the M.S.

degree in computer science from the New York
Institute of Technology, in 1987, and the Ph.D.

degree in information engineering from Osaka

City University, in 1997. From 2004 to 2005, he
was a Visiting Professor at the Georgia Tech

Information Security Center (GTISC), Georgia

Institute of Technology. He is currently a
Professor with the Department of Software,

Gachon University, South Korea. His research

interests include information security, intelligent

systems, data mining, and big data.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3344170

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006105602530262
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006105602530262

