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ABSTRACT Determining initial variables and key parameters, such as case fatality ratio (CFR), dynamic
case fatality ratio (DCFR), reproduction number (R0), and so on, helps shed more light on the transmission
and control of emerging and re-emerging infectious diseases. Here, we established a SAIUHR model,
which describes the dynamic changes of susceptible, asymptomatic infectious, under-reported symptomatic
infectious, hospitalized and recovered individuals. And we proposed a novel approach based on our model to
calculate the report rate, starting time, basic reproduction number, the initial conditions for the compartments,
CFR and DCFR. Finally, we apply our method to epidemiological datasets from China, Italy, Germany, and
France. The results show that the goodness of fit for the cumulative confirmed cases is greater than 97.45%
in each of the countries, DCFR is more effective than CFR in predicting the future tend of infectious disease,
and improving the report rate, raising the control strength and shortening the wait time are the effective
strategies against infectious diseases. This study highlights the implications of taking proper restrictions and
strong policies to deal with emerging and re-emerging infectious diseases from their spread in the early stage.

INDEX TERMS Basic reproduction number, data-driven, epidemic model, parameter estimation.

I. INTRODUCTION

Emerging and re-emerging infectious diseases not only have
led to severe public health crisis in most of countries in
the world, but also brought negative influence on economic
growth [1].For example, more than 600 million individuals
worldwide have been diagnosed and over 6.5 million have
died due to the ongoing global COVID-19 by late-October
2022 [2]. The most urgent question to be solved for the global
is to take scientific and effective strategies to prevent and con-
trol various contagious diseases. Mathematical model helps
explore the propagation mechanism and provide theoretical
support for the public authorities to make prevention and
control measures. Lots of differential equation models have
been formulated to character the dynamics of different dis-
eases such as Ebola, COVID-19 and Plague, and to evaluate
the availability of the prevention measures, see [3] – [12]
for examples. And many scholars had modified the early
compartment epidemic models, such as SIR and SEIR et al.
to simulate the evolution process of diseases and to analyze
their epidemiological characteristics, see [13] – [21]. For
examples, Cooper et al. developed a SIRmodel that provides a
theoretical framework to investigate the spread of coronavirus

virus within communities and found that the disease can be
under control in all communities considered by comparing the
recorded data with the data from their modelling approaches
if proper restrictions and strong policies are implemented to
control the infection rates early [13]; Osemwinyen et al. pro-
posed two modified SIR models to simulate the transmission
dynamics of Ebola, and the results revealed that although
there are no particular drugs to treat it currently, effective
segregating measures can help manage and control its spread
[14]; Ngeleja et al. modified the conventional SEIR model
to study the dynamics of Plague, the results showed that the
infected flea population plays a decisive role in the spread of
the epidemic to humans and rodents [19].

As well known, suitable models and reliable data are neces-
sary to ascertain the spread mechanism of infectious diseases.
Though a large number of works, such as [13] – [21] and the
references therein, have made it possible to research on the
development of diseases with the previous models quantita-
tively or qualitatively, there still remains some uncertainties
in the theoretical framework, especially for how to estimate
the number of the undocumented infected individuals in the
population, or what kind of prevention and control measure
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should be extensively adopted by the government to deal with
the disease.

To explore the potential influence of under-reported symp-
tomatic on disease transmission, the corresponding compart-
ments were soon included in mathematical models in [22]
– [26] and the references therein. Nevertheless, it is con-
comitantly an additional source of uncertainty in the initial
conditions. Bayesian statistical inference methods are devel-
oped to estimate the percentage of undocumented infections
based on epidemic models in [22] – [25]. However, the
predictions deeply rely on prior and posterior probabilities.
Additionally, due to a lack of complete data, estimating the
parameters and initial conditions of the models to assess the
effectiveness of each prevention and control measure remains
a major challenge. A study presented a mechanistic approach
using a compartmental model including asymptomatic and
pre-symptomatic infectious that allows to estimate the level
of undocumented infections and the effective reproduction
number from the reported cases, deaths, and epidemiological
parameters [26]. Mechanistic approaches provide a new way
of drawing conclusions from the exiting data, without refer-
ring to prior and posterior probabilities, as well as they are
considerably more robust as predictive tools than are purely
empirical method.

CFR, defined as the ratio between the numbers of di-
agnosed deaths and cases, provides useful information on
clinical types and presentations of the disease, see [26] –
[31]. However, its definition ignores the role of the cases
cured by medical treatment in forecasting transmission tend
of disease. Here, we present another variable named DCFR
which is the ratio between the cumulative deaths and sum
of the cumulative deaths and the cumulative cured. It differs
substantially from CFR and has advantage in predicting the
future tend of epidemic.

Referring to [32], we assume the transmission rate is a
piecewise function of time, and formulate a SAIUHR model
including the reported, the under-reported symptomatic infec-
tious and hospital-treated compartments. A method similar
to [26] is used to estimate the parameters and initial con-
ditions of the model on the basis of the epidemic surveil-
lance data for the confirmed cases. We report the starting
time, report rate, under-report rate, and basic reproduction
number across different geographical areas. Additionally, the
impact of the control measures with different intensities is
analyzed by using the basic reproduction number and the
time-varying transmission rate. The method can be rapidly
altered or universally applied to work with different types of
data, pandemic compartments, and population stratification.

The remainder of this paper is organized as follows: the
formulation process by which an epidemic compartmental
model is presented in subsection II-A, the approach to esti-
mate initial conditions and parameters is described in subsec-
tion II-B, while the method to calculate DCFR is presented
in subsection II-C, and the quantitative analysis of prevention
and control measures is detailed in subsection II-D. Section
III is the application to epidemiological time-series datasets.

FIGURE 1. Schematic diagram of the SAIUHR model.

And main conclusions of the study are made in section IV.

II. MATERIALS AND METHODS

A. EPIDEMIC MODEL

We divide the population into six compartments: sus-
ceptible individuals (S), asymptomatic infectious individ-
uals (A), reported symptomatic infectious individuals (I),
under-reported symptomatic infectious individuals (U), hos-
pitalized individuals (H) and recovered individuals (R).
S(t),A(t), I(t),U(t),H(t),R(t) denote at time t the number
of the six population categories S, A, I, U, H, and R, respec-
tively, all of them are continuous variables. The following
reasonable assumptions are made to simplify the problem.

Hypothesis 1. The population is generally susceptible to
infection at the start of the epidemic, and the change in S(t)
is negligible. A and U are infectious, thus S may be infected
by them. Assuming the transmission rate is τt , as well as the
increment content of A at time t equals τtS(t)[A(t) + U(t)].

Hypothesis 2. Assuming that symptomatic could only be
converted through asymptomatic infectious individuals, the
average incubation period of asymptomatic infections is de-
termined by the nature of the virus itself and not affected by
elements like geographic location. Let f1 and η be report rate
of symptomatic infectious individuals and the removal rate
of asymptomatic infectious individuals, so that the increment
content of I and U at time t are f1ηA(t) and (1 − f1)ηA(t),
respectively.

Hypothesis 3. Infected individuals who have reported as
well as hospitalized patients no longer have the ability to
infect others. Due to local medical resource constraints, a
proportion of mildly ill patients cannot enter hospitals for
treatment. Let f2 and γ be hospitalization rate and the removal
rate of reported symptomatic infectious individuals, so that
the increment content of H is f2γI(t) at time t .

Hypothesis 4.Assuming that υ is the direct removal rate of
symptomatic infections andµ is the removal rate of inpatients,
so that the increment content of R at time t is (1− f2)γI(t)+
υU(t) + µH(t).

Under the above hypotheses, the compartment diagram is
shown in Fig. 1.

Our model is governed by following nonautonomous ordi-
nary differential equations
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

S
′
(t) = −τtS(t)[A(t) + U(t)],

A
′
(t) = τtS(t)[A(t) + U(t)]− ηA(t),

I
′
(t) = f1ηA(t)− γI(t),

U
′
(t) = (1− f1)ηA(t)− υU(t),

H
′
(t) = f2γI(t)− µH(t),

R
′
(t) = (1− f2)γI(t) + υU(t) + µH(t).

(1)

Because the state variable R is decupled from the rest of
(1), we will not focus on its dynamic in the following. Then,
(1) is reduced to

S
′
(t) = −τtS(t)[A(t) + U(t)],

A
′
(t) = τtS(t)[A(t) + U(t)]− ηA(t),

I
′
(t) = f1ηA(t)− γI(t),

U
′
(t) = (1− f1)ηA(t)− υU(t),

H
′
(t) = f2γI(t)− µH(t).

(2)

For convenience, set the initial conditions

S(t0) = S0 > 0,A(t0) = A0 > 0,

I(t0) = I0 =0,U(t0) = U0 ≥ 0,H(t0) = H0 ≥ 0.
(3)

B. METHOD TO ESTIMATE INITIAL CONDITIONS AND
PARAMETERS
The parameters and initial conditions are typically unknown.
Our goal is to determine the remaining parameters as well
as the initial conditions for (2) from time-series data of the
cumulative reported cases. By using the method from the
literature [33], we suppose that the number of the cumulative
reported cases is approximately exponential growth with time
evolving. The cumulative reported confirmed data at time t ,
denoted by CI(t), is formatted as follows

CI(t) = aexp(bt)− c, t ≥ t0. (4)

We estimate parameters a, b, and c by using the least squares
estimation method. It can be seen that the cumulative reported
symptomatic confirmed data is zero at t0. Then, by using (4),
we obtain

t0 =
1

b
ln
c
a
. (5)

Using a method of Constant Variation to solve the last three
equations of system (2), we obtain the formula for cumulative
individuals of the reported symptomatic

CI(t) = f1η
∫ t

t0

A(θ)dθ, t ≥ t0, (6)

the under-reported symptomatic

CU(t) = (1− f1)η
∫ t

t0

A(θ)dθ, t ≥ t0, (7)

and the hospitalized

CH(t) = f2γ
∫ t

t0

I(θ)dθ, t ≥ t0. (8)

Differentiating (4) and (6) with respect to t yields{
CI

′
(t) = abexp(bt),

CI
′
(t) = f1ηA(t).

(9)

Solving (9) leads to

A(t) = A0exp[b(t − t0)]. (10)

The derivative of A(t) is

A
′
(t) = bA0exp[b(t − t0)]. (11)

From the second equation of system (2), we obtain

U(t) =
1

τtS0
[A

′
(t) + ηA(t)]− A(t). (12)

By using of (10), (11), (12) we obtain

U(t) = (
bA0

τtS0
+

ηA0

τtS0
− A0)exp[b(t − t0)]. (13)

Let t = t0. Then, we obtain

U0 =
bA0

τtS0
+

ηA0

τtS0
− A0. (14)

Substituting (14) into (13), we get

U(t) = U0exp[b(t − t0)], (15)

and
U

′
(t) = bU0exp[b(t − t0)]. (16)

It can be seen that the infection state system for (2) is{
A

′
(t) = τtS(t)[A(t) + U(t)]− ηA(t),

U
′
(t) = (1− f1)ηA(t)− υU(t).

(17)

By using of (11), (16) and (17), and set t = t0, we obtain{
bA0 = τtS0[A0 + U0]− ηA0,
bU0 = (1− f1)ηA0 − υU0.

(18)

Solving (14) and (18), we obtain{
U0

A0
= b+η

τtS0
− 1,

U0

A0
= (1−f1)η

υ+b .
(19)

From (19), it can be derived that the report rate of symp-
tomatic infectious individuals

f1 = 1− (υ + b)(b+ η − τtS0)
τtS0η

. (20)

And from (5), (9) and (20), we obtain the initial values
of asymptomatic and under-reported symptomatic infectious
individuals as follows

A0 =
bcτtS0

τtS0η − (υ + b)(b+ η − τtS0)
, (21)

U0 =
bc(b+ η − τtS0)

τtS0η − (υ + b)(b+ η − τtS0)
. (22)

Using (4), (8) and (20), it follows that

H0 =
f2υab
1− f2

. (23)

Gathering up above discussions, the expressions for un-
known parameters are given in (5), (20) and the initial con-
ditions are governed by (21), (22), (23), respectively.

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3342920

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

C. METHOD TO CALCULATE DCFR
Here, we introduce a function named the dynamic case fa-
tality ratio (DCFR) to help us predict the evolving trend of
disease, and it is defined as

x(t)
x(t) + y(t)

, (24)

where x(t), y(t) are the numbers of cumulative death cases
and the cumulative cured cases, respectively.

Obviously, the dynamic case fatality ratio differs substan-
tially from the case fatality ratio [28], and it provides a simple
way to give us information for the spreading tend of the
disease.

D. QUANTITATIVE ANALYSIS OF PREVENTION AND
CONTROL STRATEGIES
Basic reproduction number is an important parameter in virus
research from an epidemiological standpoint, as it allows us to
understand how many individuals infected with a disease will
transmit it to the rest of the population on average, without
external intervention and in the absence of immunity in the
population. Usually, the basic reproduction number is denoted
as R0, and it is calculated by NGN [34].

Obviously, the disease-free equilibrium of (2) is

E0 = (S0, 0, 0, 0, 0),

and the infection state is

{A,U}.

The transmission matrix and transition matrix are respec-
tively as

F =

[
τtS0 τtS0

(1− f1)η 0

]
,

and

V =

[
η 0
0 υ

]
.

Therefore, the next generation matrix is governed by

K = FV− =

[ τtS0
η

τtS0
υ

1− f1 0

]
.

It can be calculated that the basic reproduction number is as
follows

R0 = ρ(FV−) =
τtS0
2η

(1 +

√
1 +

4(1− f1)η2

υτtS0
). (25)

Suppose that the number of cumulative cases exponentially
increases with a constant transmission rate at the early stage
of the pandemic. With the development of the disease, the
transmission rate τt will be weakened once a prevention and
control measure takes effect. Denoting the days from the dis-
ease outcoming to a kind of measure taking effect as T (here
we called it as wait time), we employ an exponential function
to express this decline, and the piecewise transmission rate is
governed by

τt =

{
τ0, 0 ≤ t ≥ T ,
τ0exp[−δ(t − T )],T < t,

(26)

TABLE 1. The cumulative data of confirmed cases in China,
Italy,Germany and France.

Date Cases in
China

Date Cases in
Italy

Date Cases in
Germany

Date Cases in
France

01/19 198 02/23 155 02/28 48 02/27 38
01/20 291 02/24 229 02/29 79 02/28 57
01/21 440 02/25 322 03/01 130 02/29 100
01/22 571 02/26 453 03/02 159 03/01 130
01/23 830 02/27 655 03/03 196 03/02 191
01/24 1287 02/28 888 03/04 262 03/03 212
01/25 1975 02/29 1128 03/05 482 03/04 288
01/26 2744 03/01 1694 03/06 670 03/05 426
01/27 4515 03/02 2036 03/07 799 03/06 616
01/28 5974 03/03 2502 03/08 1040 03/07 948
01/29 7711 03/04 3089 03/09 1176 03/08 1125
01/30 9692
01/31 11791

where δ denotes the strength of a prevention and control
measure.

III. APPLICATION
A. DATA PREPARATION
Our analysis focuses on four typical countries (China, Italy,
Germany, and France) to estimate the values of key parame-
ters and initial variables of our model. Epidemiological time-
series datasets include the confirmed cases, the deaths, and
the cured. The data in China is collected and compiled by
the National Health Commission of the People’s Republic of
China [35], and in other countries is obtained from the Center
for Systems Science and Engineering at Johns Hopkins Uni-
versity [36].

B. INITIAL CONDITIONS AND PARAMETERS
Time windows for the four countries are respectively chosen
as: (1) from January 19 to January 31, 2020, for China, (2)
from February 23 to March 4, 2020, for Italy, (3) from Febru-
ary 28 toMarch 9, 2020, for Germany, (4) fromFebruary 27 to
March 8, 2020, for France. The actual epidemic data in each
country during the time window is shown in Table 1.
Firstly, using the cumulative confirmed cases as showed in

Table 1, we fix the value of parameter c as 1 for the selected
countries, and then estimate the values of parameters a and b
by the least squaremethod. The values of η, υ and τt , referring
to literatures [32], [37], [38] are η = 1

5 , υ = 1
7 , and τt equals

to: (1) 4.44 × 10−8 in China; (2) 6.15 × 10−9 in Italy; (3)
5.18 × 10−9 in Germany; (4) 6.18 × 10−9 in France. Next,
we take the initial values of susceptible individuals (S0) as
the total population who lived in the outbreak region at the
early stage of the disease, i.e. (1) 1.1212 × 107 in China;
(2) 5.9066 × 107 in Italy; (3) 8.32 × 107 in Germany; (4)
6.74 × 107 in France. We assume that the hospitalization
rate of reported symptomatic infectious individuals in the
early stages is 85% (f2 = 85%). At last, the values of
t0, f1,A0,U0,H0 are calculated from (5), (20), (21), (22), (23)
and they are exhibited in Table 2.

Obviously, if further epidemiological data becomes avail-
able, these parameters may take new values. Based on the
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TABLE 2. Parameters values of (2).

Country a b c t0 f1
China 0.32 0.36 1 3.17 68.59%
Italy 0.7 0.26 1 1.37 46.35%
Germany 0.01 0.32 1 14.39 52.2%
France 0.01 0.33 1 13.96 62.22%

TABLE 3. The effect evaluation of cumulative confirmed cases
prediction in China.

Date Truth
Value

Predictive
Value

Absolute
Error

Relative
Error

Goodness
of Fit

01/27 4515 4261 254 5.63%
01/28 5974 5619 355 5.63%
01/29 7711 7327 384 4.98% 98.63%
01/30 9692 9477 215 2.22%
01/31 11791 12182 391 3.32%

values in Table 2, it can be inferred that the starting time of
the epidemic for the four countries are respectively January
4, 2020, February 2, 2020, February 15, 2020, and February
14, 2020. How the cumulative confirmed cases curve CI(t)
in (4) fits the cumulative confirmed data in Table 2 is shown
in Fig. 2. It can be observed that the data for four countries
has a good fit for CI(t).
In what follows, the predictive value, absolute error, rel-

ative error and goodness of fitting for each country are pre-
sented in Table 3, Table 4, Table 5, Table 6 respectively. It can
be seened that the predictive values do not differ significantly
from the actual values, and all of the goodness’s of fit are
greater than 97.44%. The results indicate that the data for each
country fit the curve of (4) well.

Next, we will predict the cumulative cases of the asymp-
tomatic infectious, the under-reported symptomatic infec-
tious and the hospitalized individuals, during the time win-
dow, by the ODEmodel (2) with initial values (obtained from
(21)), (22) and (23)): (1)A0 = 2.62,U0 = 0.33,H0 = 0.0933
for China, (2) A0 = 2.80,U0 = 0.75,H0 = 0.1474 for

TABLE 4. The effect evaluation of cumulative confirmed cases
prediction in Italy.

Date Truth
Value

Predictive
Value

Absolute
Error

Relative
Error

Goodness
of Fit

02/29 1128 1213 85 7.54%
03/01 1694 1562 132 7.79%
03/02 2036 1986 50 2.46% 98.96%
03/03 2502 2502 0 0%
03/04 3089 3129 40 1.29%

TABLE 5. The effect evaluation of cumulative confirmed cases
prediction in Germany.

Date Truth
Value

Predictive
Value

Absolute
Error

Relative
Error

Goodness
of Fit

03/05 482 467 15 3.11%
03/06 670 607 63 10.37%
03/07 799 777 22 2.75% 97.45%
03/08 1040 983 57 5.48%
03/09 1176 1233 57 4.85%

(a) China

(b) Italy

(c) Germany

(d) France

FIGURE 2. In the left side, the dots (blue) correspond to t → ln(CI(t) + c),
and the straight line (red) corresponds to t → ln(a) + bt . In the right side,
the dots (blue) correspond to t → CI(t), and the fitting curve (red)
corresponds to t → aexp(bt) − c , where CI(t) is taken from the
cumulative confirmed cases in Table 1.

Italy, (3) A0 = 3.07,U0 = 0.63,H0 = 0.0026 for Germany,
(4) A0 = 2.65,U0 = 0.42,H0 = 0.0027 for France. The
numerical results are showed in Fig. 3.
In Fig. 3, the cases A(t),U(t), and H(t) in all counties

increase with time evolving, and the raising speeds become
more quickly at the late stage of time windows.
Using the value of f1 in Table 2, it can be calculated that

the under-report rates in the selected countries are 31.41%,
53.65%, 47.80%, 37.78%, respectively. For the sake of com-
paration, the report rate and the under-report rate are shown
as a stacked histogram in Fig. 4. Clearly, the under-report rate
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TABLE 6. The effect evaluation of cumulative confirmed cases
prediction in France.

Date Truth
Value

Predictive
Value

Absolute
Error

Relative
Error

Goodness
of Fit

03/04 288 327 39 13.54%
03/05 426 451 25 5.87%
03/06 616 621 5 0.81% 98.92%
03/07 948 854 94 9.92%
03/08 1125 1170 45 4.00%
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FIGURE 3. The graphs of t → A(t), t → U(t), and t → H(t) in each
country.

FIGURE 4. The stacked histogram of report rate and under-report rate
in four countries.

in Italy is higher than those in the other countries at the early
phase.
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FIGURE 5. The CFR and DCFR in 66 days after the first case confirmed in
each country.

C. COMPARISON OF CFR AND DCFR
By using of (24) and the data of the confirmed cases, the death
cases and the cured cases presented in [35], [36], we fit both
the CFR and DCFR in each country, and the curves are shown
Fig. 5, respectively. We choose the data (1) from January 17
toMarch 22, 2020 in China, (2) from February 21 to April 26,
2020 in Italy, (3) from March 9 to May 13, 2020 in Germany,
and (4) from February 15 to April 20, 2020 in France.
Seen from Fig. 5 that CFR increases with the increasing

of the number of deaths at the early stage of the pandemic,
and then grows slowly at the end of time and ends at 4%,
13.5%, 4.5% and 13%, respectively. However, even though
CFR increases continuously, DCFR becomes stable at 4.5%,
29%, 5%, and 35.5%, respectively, after the first oscitation.
The decrease and stabilization of DCFR curve indicates a
decrease in the number of deaths and an increase in the
number of cured individuals. Calculating DCFR can evaluate
the medical situation in different regions, provide scientific
guidance, and reasonably arrange subsequent medical mat-
ters.

D. PREVENTION AND CONTROL STRATEGIES
By fixing 1

υ = 7 , we estimate how the parameters f1 and
1
η affect the value of the basic reproduction of R0 using (25)
in the domain 0 ≤ 1

η ≥ 7, 0 ≤ f1 ≥ 1, to demonstrate the
significance of report rate in the progression of the epidemic.
The numerical results are shown in Fig. 6.
In Fig. 6, the maximum value of R0 is larger than 3 for each

of the selected countries, and then decreases to the number
less than threshold value 1 as the decreasing of η and increas-
ing of f1. That is to see that disease can be controlled and
then extinguish if the government takes effective measures to
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FIGURE 6. The range of R0 with respect to f1 and 1
η in each country.

improve the report rate of symptomatic infectious individuals
and reduces the removal rate of asymptomatic infectious indi-
viduals in a country. In most cases, whether an asymptomatic
patient turns to a symptomatic one is unpredictable. There-
fore, we confirm that report rate is an important parameter
can be adjusted to affect the development of disease.

Considering China as an example, in addition, we will
discuss the effect of control strength and the wait time on the
control and prevention by using (26). ChineseNational Health
and Wellness Commission released the first version of Pre-
vention and control of COVID-19 on January 15, 2020, which
was implemented on January 16, 2020 [39]. It needs about 7
to 14 days for a prevention and control measure to take effect
after it is implemented (see [40]). For simplicity, we assume
that the time period for a control measure taking effect is 10
days. So, we deduce that the wait time is January 26, 2020
(i.e.T = 26) in China. In follows, we illustrate time-varying
transmission rate τt in Fig. 7 with τ0 = 4.44×10−8, δ = 0.18
(estimated in [32]) and T = 26.
It can be seen from Fig. 7 that the transmission rate de-

clines sharply after the prevention and control measure taking
effect and then tends to zero asymptotically. In the follows,
Fig. 8a and Fig. 8b show the sensibility of τt with respect to
the parameters δ and T , respectively.
From Fig. 8, the bigger the value of control strength and the

earlier the prevention and control measure taking effect, the
more quickly the transmission rate τt tends to 0. These mean
that control strength and wait time may have a significant
impact on the spread of the epidemic.

IV. CONCLUSION
In the present study, we formulate a SAIUHR compartment
model to estimate the report rate of the infected cases which
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FIGURE 7. The change of transmission rate in China with T = 26 and
α = 0.18.

Dec. 31st, 2019

Jan. 10th, 2020

Jan. 20th, 2020

Jan. 30th, 2020

Feb. 9th, 2020

Feb. 19th, 2020

Feb. 29th, 2020

Mar. 10th, 2020

Mar. 20th, 2020

time

0×10−8

1×10−8

2×10−8

3×10−8

4×10−8
th

e 
tra

ns
m

is
si

on
 ra

te
δ=0.26
δ=0.22
δ=0.18
δ=0.14
δ=0.10

(a) Plot with δ = 0.10, 0.14, 0.18, 0.22, 0.26 and T = 26

Dec. 31st, 2019

Jan. 10th, 2020

Jan. 20th, 2020

Jan. 30th, 2020

Feb. 9th, 2020

Feb. 19th, 2020

Feb. 29th, 2020

Mar. 10th, 2020

Mar. 20th, 2020

time

0×10−8

1×10−8

2×10−8

3×10−8

4×10−8

th
e 

tra
ns

m
is

si
on

 ra
te

T=34
T=30
T=26
T=22
T=18

(b) Plot with T = 18, 22, 26, 30, 34, and δ = 0.18

FIGURE 8. Influence of δ and T on τt .

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3342920

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

cannot be directly accessible from the surveillance systems,
and to calculate the starting time, the basic reproduction num-
ber and the initial conditions for the compartments by using
the cumulative confirmed cases across different geographical
areas. A simple data-driven approach is adopted to estimate
the variables of CFR and DCFR in terms of time series with
confirmed cases, death cases and cured cases. A piecewise
function τt is used to express the transmission rate, which is
perturbated by the wait time T .

The designed method was applied to epidemiological time-
series datasets in the China, Italy, Germany, and France. Fig. 2
shows that our model fits the early cumulative data of con-
firmed cases in four countries well. With the actual data from
the National Health Commission of the People’s Republic of
China and the Johns Hopkins Coronavirus Resource Center,
we project the number of cases, asymptomatic, underreported
symptomatic, and hospitalized, in each country during the
time window. The results in Fig. 4 exhibit that the report rate
in Italy is lower than those in other countries at the early
phase of disease. Even though CFR increases continuously,
DCFR tends to a stable value after significant fluctuations
(as evident in Fig. 5). This means DCFR is more effective
in predicting the controllability of the pandemic than the rate
CFR, which also gives positive information the public and
encourages them a lot to deal with the disease. By analyzing
the impact of report rate f1 on the basis reproduction number
R0 and the impact of controlling strength δ and the wait time
T on the time-dependent transmission rate, as illustrated in
Fig. 6, Fig. 7, Fig. 8, we find that report rate, controlling
strength and wait time affect the future tend of the disease
tremendously. It is evident that the government authorities
and the public health department should take the stricter
containmentmeasures and improve ability to identify asmany
as possible existing cases at the early stage to deal with the
emerging and re-emerging infectious diseases.

This paper does have certain limitations. First, a few re-
search findings have discovered that population movement,
climate, and various mutated viruses may have some influ-
ence on the emergence of pandemics [18], [41], [42]. How-
ever, our model does not take these factors into account,
and we will consider these factors in subsequent studies to
make the model more consistent with reality. Second, We
will study the model’s stability analysis, method analysis and
other factors, such as delayed and take geographic proximity
into consideration as a risk factor in subsequent research.
Third, because most of the parameters will change over time
as the epidemic evolves, we fixed a few of them based on
existing studies to reduce the uncertainty, and the validity
of each parameter value will need to be improved further in
future research.
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