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ABSTRACT Non-rigid deformation of a template to fit 3D scans of human subjects is widely used to develop
statistical models of 3D human shapes and poses. Complex optimization problems must be solved to use
these models to parameterize scans of pregnant women, thus limiting their use in antenatal point-of-care
tools in low-resource settings. Moreover, these models were developed using datasets that did not contain
any 3D scans of pregnant women. In this study, we developed a statistical shape model of the torso of
pregnant women at greater than 36 weeks of gestation using fast and simple vertex-based deformation of
a cylindrical template constrained along the radial direction. The 3D scans were pre-processed to remove
noisy outlier points and segment the torso based on anatomical landmarks. A cylindrical template mesh T
was then fitted onto the segmented scan of the torso by moving each vertex of T in the direction of the radial
vector. This process is computationally inexpensive taking only 14.80 seconds to deform a template with
9090 vertices. Principal component analysis (PCA) was performed on the deformed vertex co-ordinates to
find the directions of maximum variance. The first 10 principal vectors of our model explained 79.03% of the
total variance and reconstructed unseen scans with a mean error of 2.43 cm. We also used the PCA weights
of the first 10 principal vectors to accurately predict anthropometric measurements of the pregnant women.

INDEX TERMS Anthropometry, CPD, non-rigid deformation, pregnancy, point-of-care, radial deformation,
SSA, template fitting.

I. INTRODUCTION

THE ease of use, accuracy, and precision of 3D scan-
ning technologies [1], [2] have made them increasingly

popular as a tool for obtaining reliable anthropometric mea-
surements. Conventional anthropometry suffers from several
drawbacks, such as large measurement errors, poor reliability
[3], operator-to-operator variability [2], and the long time
required to collect multiple measurements. Digital anthropo-
metric tools address these drawbacks and have been shown
to be faster while having higher reliability and precision [1],
[2], [4]. These tools are used to collect traditional anthropo-
metric measurements such as height or body circumference.
However, the definitions of these measurements are often
unclear because of proprietary software and are unique to
each manufacturer [5], making it difficult to leverage the
potential of 3D data to develop universal prognostic models

that can be used as clinical interventions.

Low-cost, handheld 3D scanners have been validated for
recording various anthropometric measurements, such as
height, body circumference and body volume [6]–[8]. In bio-
logical anthropology, landmarks and semilandmarks are used
to analyze shape variations of specific anatomical regions
using 3D geometric morphometrics [9]. These landmarks are
either detected manually [7], [9] or estimated automatically
from the scan [6]–[8], [10]. Manual detection of landmarks is
time-consuming and the presence of noise and holes in raw
scans make automated landmark detection challenging. Pre-
vious studies have used non-rigid vertex-based deformations
of predefined templates to obtain clean scans [11]–[15]. An
additional benefit of template deformation is the standard-
ization of mesh topology across all participants making it
easy to develop a statistical shape model. This model could
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also enable accurate and automatic detection of homologous
anatomical landmarks and semilandmarks for 3D geometric
morphometrics. The predefined templates can be custom-
generated [11], [12] or derived from existing models such as
SCAPE [16] or SMPL [17], and undergo shape deformation
and pose deformation to fit the observed scan [18]. However,
solving these deformation parameters is computationally ex-
pensive and can take hours on point-of-care tools that include
smartphones and tablets.

Maternal anthropometric measurements constitute an im-
portant component of the WHO (World Health Organiza-
tion) guidelines for antenatal care, especially as a metric
for characterizing under-nutrition [19]. These measurements
have also been effective in predicting risk of cephalopelvic
disproportion (CPD) [6], [20], [21]. CPD is a mismatch in
the size of the maternal pelvis and fetal head that often leads
to obstructed labor and requires delivery by Cesarean section
(C/S) [20]. Emergency C/S facilities are rarely available to
women living in low-resource settings and a lack of timely ac-
cess to these facilities leads to a higher incidence of maternal
and perinatal mortality due to CPD-related obstructed labor
[6], [20]. Maternal anthropometric measurements have been
strongly linked with pregnancy outcomes [6], [20]–[23], and
analyzing 3D shape variations in pregnant women could help
determine the risk of CPD in the early stages of gestation. This
would enable high-risk women to be referred early to health-
care facilities where emergency C/S is available. Existing
parametric models of human shape [16], [17] are learned on
large publicly available data-sets of 3D scans [12], [24], [25],
which do not include any data from the pregnant population.
This makes it challenging to use these models to characterize
shape variations in pregnant women. Even though there are
pregnancy-related shape models that use MRI or ultrasound
data to characterize specific structures, such as the uterus
or the pelvic floor [26], [27], there is a strong need for a
statistical model that characterizes the morphological shape
of pregnant women using 3D scans.

The objective of this study was to address these gaps and
we make two novel contributions to that end. First, we intro-
duce a simple, constrained optimization to parameterize 3D
scans, which is computationally inexpensive and can be per-
formed on standard tablets and smartphones, enabling its use
as a point-of-care tool for routine antenatal care. Second, we
developed a statistical model to represent the shape variations
of the torso of pregnant women, at or near term. Our model
used the radial deformation of a cylindrical template mesh to
fit the observed 3D scan (Fig. 1). Each vertex of the template
was constrained to move in the radial direction, making it
easy to solve the optimization problem. The methods and
model presented in this study can be used to characterize, in
real-time, the morphological shape variations in the pregnant
population which can then be correlated with the risk of
adverse maternal outcomes like CPD.

II. METHODS

A. COLLECTION OF 3D SCANS FROM PARTICIPANTS
Data collection was approved by the Institutional Review
Board (IRB) at Addis Ababa University, College of Health
Sciences (Protocol number: 054/15/gyn) and the Georgia In-
stitute of Technology IRB (Protocol number: H19320). In this
study, we used 225 3D scans of primigravidawomen, aged be-
tween 18 and 40 years, with singleton pregnancies collected
after 36 weeks of gestation. Following previously described
methods, 3D meshes were collected by trained nurses using a
Structure 3D Sensor (Occipital, Inc.) across two health facil-
ities (Woreda 11 Health Center and Gandhi Memorial Hospi-
tal) in Addis Ababa, Ethiopia [6]. The participants were asked
to remove any loose clothing items and stand with their arms
lifted to at least 45◦, and their feet were placed approximately
50 cm apart (Fig. 2). Participants with hair extending beyond
the shoulder were asked to tie it up to prevent occlusion of
the back or shoulders (Fig. 3). The time taken by a trained
nurse to collect a 3D scan using this method was between 3
to 5 minutes. Along with the 3D scans, eight anthropometric
measurements were collected for each participant: height,
weight, shoulder width, shoulder height, waist circumference,
waist height, hip circumference, and trochanteric height us-
ing previously described methods [6]. To assess inter-user
variability, 12 additional participants were recruited with the
same demographics as described above. For each participant,
3D scans and anthropometric measurements were obtained
by three different trained nurses. The 3D mesh processing,
template fitting, and subsequent statistical analysis were all
performed on a MacBook Pro (Apple, Inc.) with an Apple
M1 chip and 16 GB RAM.

B. MESH PRE-PROCESSING
Raw scans were processed to remove outlier objects along
with the floor plane. The approximate positions of the left
and right armpits, left and right shoulders, and groin were
marked manually on each scan. These landmarks were used
to segment the scan into five regions (Fig. 4). All regions
except the torso were removed. Each scan was then rotated to
a frontal position and normalized to fit a unit sphere centered
at origin as follows:

vi =
vi − µS

max||vi − µS ||2
, (1)

where vi is the ith vertex of segmented scan S, µS is the
centroid of S, and ||.||2 represents the L2 norm.

C. RADIAL DEFORMATION OF CYLINDRICAL TEMPLATE
Cylindrical template mesh T was deformed to fit the seg-
mented scanned mesh S, as shown in Fig. 1. Template T , with
a unit radius and height of two units, was centered at the origin
and oriented in the y-direction. The number of vertices NT
of T was controlled by two factors: (i) the differential angle
∆θr (in degrees) subtended at the centerline of the cylinder by
neighboring vertices on the same xz plane, as shown in Fig. 5a,
and (ii) the cross-sectional distance ∆y between individual
xz planes along the y-axis, as shown in Fig. 5b. Template T
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was compressed uniformly along the y-axis to align with the
height of S. This is followed by deformation of each vertex
xi, i = 1, 2, .....NT of T given by

xi = xi + tiri, (2)

where ri is the direction of the radial vector from xi towards
the centerline of the cylinder along the xz plane and ti is the
radial deformation, that is, the shortest distance between xi
and the front-facing surfaces of S along ri. Radial deformation
was calculated using the Moller-Trumbore algorithm [28],
which efficiently checks for ray-face intersections in three-
dimensions. If the scan had holes along the surface (Fig. 6),
some of the radial rays would pass through S without inter-
secting any face. The radial deformations of these vertices
were calculated by iteratively averaging the radial deforma-
tions of the neighboring vertices.

Radial deformation of the cylindrical mesh was imple-
mented for six different values of NT . The average time
taken for each deformation and the average error between the
deformed template T

′
and original scan S were calculated for

each NT . The reconstruction error ER is given by

ER =

∑NT
i=1 ||xi − vSi ||2 −

∑NS
i=1 ||xTi − vi||2

NT + NS
, (3)

where NS is the total number of vertices in S, ySi is the closest
point in S to xi and xTi is the closest point in deformed template
T

′
to yi.

D. STATISTICAL MODELLING OF SHAPE VARIATIONS
To develop the statistical model, the data-set was randomly
divided into training (n=180) and testing set (n=45). This was
done to demonstrate the ability of our model to generalize
to unseen scans, i.e., the scans in the testing set. The x, y,
and z co-ordinates of the deformed template vertices in the
training set were concatenated into 180 vectors, each of length
3NT .NT was chosen to be 9090. Principal component analysis
(PCA) was then performed on these vectors to determine
the directions of maximum variance. To test the model, the
reconstruction error was calculated for the scans in the testing
set using the first 10, 25, 50, and 100 principal vectors,
according to (3). In addition, we also developed and tested
the statistical shape model using the metrics of compactness,
generalization, and specificity for the first 10, 25, 50, and
100 principal vectors [29]. The compactness of the model,
which was developed using all the 225 scans, was defined
as the ratio of the total variance explained by the principal
vectors. The generalization error was calculated using leave-
one-out cross-validation for all the 225 scans [30] and the
specificity was calculated as the average minimum distance
of uniformly distributed, randomly generated scans (n=100)
from the training set (n=225) [29].

We also trained a linear regression model to find a function
f (pi) → ai that maps a set of PCA weights pi to a set of
anthropometric measurements ai. The weights for the first
10 principal vectors of the training set were taken as the
independent variable for f (pi) and the dependent variable was

the set of eight anthropometric measurements collected for
each participant. The cube root of the weight was used for the
regression model to make it comparable to the other measure-
ments because the weight is roughly proportional to volume
[11]. The inter-user variability of the trained regressionmodel
was compared with that of anthropometric measurements
obtained by trained nurses using a tape measure. The vari-
ability of the measurements was defined as the standard de-
viation between repeated measurements of the same partici-
pant (n=12). To obtain the predicted anthropometric measure-
ments, a cylindrical template (NT=9090) was deformed to fit
the three different 3D scans of each participant. The weights
of the first 10 principal vectors of the deformed vertices were
then used to predict the anthropometric measurements. All
comparisons of significance were performed using two-tailed
T-tests.

III. RESULTS
The time taken for our template deformation increased al-
most linearly with an increase in NT (Table I). The average
deformation error also showed a generally decreasing trend
with increasing NT and started to plateau beyond NT=36000.
Decreasing the cross-sectional distance∆y beyond 0.01 units,
while keeping NT nearly constant leads to an increase in the
deformation error (Table I). This could be attributed to the
intrinsic resolution of S which is a function of the scanning
device. The first 10 principal vectors of the trained PCA shape
model explained 79.1% of the total variance. This increased
to 90.4%, 95.3%, 98.3% for the first 25, 50 and 100 principal
vectors, respectively. The major principal directions of the
developed model are shown in Fig. 7. The first principal
vector affects the curvature of the spine and bust size. The
second principal vector affected the torso circumference and
the length of the torso and the third principal vector influenced
the hip size as well as the torso length. These vectors were
then used to successfully reconstruct the unseen scans, i.e.,
the scans in the testing set (n = 45). As expected, the
mean reconstruction error decreased when the number of
principal vectors k increased (Table II). The largest decrease
was observed when k was increased from 10 to 25. The
reconstruction is visualized using Hausdorff distance (Fig. 8)
and by overlaying the reconstructed scans on the original ones
(Fig. 9). The compactness, generalization and specificity of
the model is shown in Table III. As the number of principal
vectors increase, the model becomes more compact and gen-
eralizes better but the specificity error increases (Table III).
The average error (%) between the actual and predicted

anthropometric measurements is shown in Table IV. The
average error for all predicted measurements, except for the
weight, was below 5%. No improvement was observed in the
average error % after increasing the number of vertices, NT ,
of the cylindrical template. The predicted measurements of
shoulder width, waist height and trochanteric height showed
a significant reduction (p < 0.005) in inter-user variability
when compared to the actual measurements taken using the
tape measure (Fig. 10). No significant differences were ob-
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served in the inter-user variability of the other anthropometric
measurements.

IV. DISCUSSION
Existing 3D shape models of the human body use both
shape and posture parameters to characterize the variations
observed in the human population [12], [16], [17]. Owing to
the complexity of the human pose and shape, these models
require solving expensive optimization problems to obtain
the deformation parameters. In addition, these models have
been trained on datasets [12], [24], [25] that do not include
any 3D scans of pregnant women. In this paper, we present
the first statistical shape model to characterize morphological
variations in a pregnant population.

Our shape model focuses only on the torso regions of the
participants. Pose-related parameters have little prognostic
value for assessing the risk of adverse events in the preg-
nant population. In the standing posture, these parameters
are primarily affected by the differences in the positioning
of the arms and legs (Fig. 2). To eliminate the effect of
these parameters on our model, we segmented the arms and
legs. We also removed the head and neck region to pre-
vent facial or hairstyle variations (Fig. 3) from affecting the
model. The segmented torso region might still be affected
by pose-related variations arising from presence of quasi-
similar postures [30]. The choice of cylindrical template was
inspired by previous studies [31], [32], which used either
cylinders or truncated cones as part of the template to model
the human shape. The constrained radial deformations used
for developing the model assume that the transverse plane of
the scan is perpendicular to the y-axis. This is a reasonable
assumption considering the average tilt of the floor plane with
respect to the y-axis was 0.61 degrees for the 225 scans and
the maximum tilt angle was 1.67 degrees. The regularization
term used in previous vertex-based deformation models [11],
[12], [18] is also omitted because our proposed deformation
is not isometric. This further simplifies the optimization pro-
cess. The results also demonstrate smooth surfaces without
requiring any additional constraints, as shown in Fig. 1, Fig.
5 and Fig. 6. Our proposed deformation is quick, taking only
14.80 seconds to deform 9090 vertices, and can potentially be
used in point-of-care applications.

The statistical shape model successfully characterizes the
variations observed in 3D scans of the torso of pregnant
women. The model accurately reconstructs most regions of
the torso, except the region between the belly and the hip and
areas with higher curvature such as the sides of the breast (Fig.
8).

In future studies, we plan to use the radial deformation and
the statistical shape model for assessing the risk of CPD. The
radial deformation allows us to encode any mesh as a vector
of length NT , consisting of the radial distances of the mesh
from a fixed cylinder. This encoding can potentially be used
as a feature vector for predicting the risk of CPD. The PCA
vectors obtained from the statistical shapemodel represent the
morphological shape of a pregnant woman and previous stud-

ies have successfully used morphological features to predict
CPD [6], [20]–[23]. We could use these vectors, individually
or in combination with the radial encoding, as inputs to a
model that would determine the probability that a pregnant
woman develops CPD during labor.
The PCA vectors of our deformation model served as

features for predicting anthropometric measurements using
linear regression. The predicted values for all measurements,
except the weight, closely matched with the actual measure-
ments. For two different values of NT , the height prediction
had the minimum error and the hip circumference predic-
tion had the maximum error. The prediction error was not
affected by the number of vertices, NT , of cylindrical tem-
plate T . The poor prediction of weight the can be attributed
to the fact that we used only the torso region to develop
our model. The predicted anthropometric measurements also
showed lower inter-user variability compared to traditional
anthropometric measurements obtained using a tape measure.
The predicted measurements of shoulder width, waist height,
and trochanteric height showed significantly reduced inter-
user variability (Fig. 10). Our proposed model can be used as
a more reproducible alternative to traditional tape measure-
ments for collecting maternal anthropometric data.
The model proposed in this study has several limitations.

First, it was developed using a small data-set of only 225
scans. A larger dataset would allow the model to capture
a wider range of variations and improve the prediction of
anthropometric measurements. Furthermore, the use of PCA
on a small set of training scans prevents the model from fully
spanning the high-dimensional space of non-rigid transfor-
mations [33]. This can be addressed in future work by incor-
porating alternative strategies like wavelet-based decomposi-
tion coupled with PCA [33]. Second, the model characterizes
the shape variations of only the torso region using a cross-
sectional encoding. Performing PCA directly on the cross-
sectional encoding prevents the statistical shape model from
being isometric-invariant. The model cannot be extended
robustly to rigid transformations and non-rigid bending of
the raw 3D scan. This could be addressed in future work
by leveraging deep learning techniques that would use larger
datasets to learn intuitive and efficient cross-sectional encod-
ings [34]. These techniques could also characterize shape
variations across different regions in addition to the torso.
Finally, the developed model did not capture the growth or
longitudinal shape changes observed during pregnancy. This
could be addressed in future studies by training amodel on 3D
scans of pregnant women across different gestational periods.
Our eventual goal is to develop a point-of-care tool that uses
statistical shape models to analyze, in real-time, the shape
variations in 3D scans of pregnant women and assess the risk
of CPD-related obstructed labor at the earliest possible stages
of gestation.

V. CONCLUSION
This paper presents a fast, constrained optimization to param-
eterize 3D scans and uses the deformation parameters to build
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a statistical model that represents the shape variations of the
torso of pregnant women beyond 36 weeks of gestation. The
model successfully characterized the shape changes of the
torso of the pregnant population, adapted well to unobserved
3D scans, and accurately predicted various maternal anthro-
pometric measurements with reduced inter-user variability.
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TABLE I. Average time taken for deformation and average deformation
error for six different values of NT .

NT ∆θr
(degrees)

∆y
(m)

Average deformation
time (s)

Average deformation
error (m)

9090 4 0.02 14.80 0.0152
18090 4 0.01 29.12 0.0116
18180 2 0.02 29.87 0.0119
36090 4 0.005 58.22 0.0094
36180 2 0.01 58.03 0.0086
72360 1 0.01 114.21 0.0072

TABLE II. Mean of reconstruction error and reconstruction error %
(calculated as (error / height) * 100) between original scan S, belonging
to testing set, and reconstructed scan for the first k principal vectors.

k Mean reconstruction
error (m)

Mean reconstruction
error %

10 0.0243 1.45%
25 0.0208 1.23%
50 0.0192 1.14%
100 0.0179 1.07%

TABLE III. Compactness, generalization, and specificity of statistical
shape models built using the first k principal vectors. The
generalization error was calculated as the average reconstruction error
and the generalization error % was calculated as (generalization error /
height) * 100

k Ratio of
explained
variance

Generalization
error (m)

Generalization
error %

Specificity
(m)

10 0.791 0.0398 2.36% 0.0324
25 0.904 0.0375 2.22% 0.0406
50 0.953 0.0363 2.15% 0.0483
100 0.983 0.0355 2.10% 0.0520

TABLE IV. Average error percentage of the predicted measurements,
calculated as (error / actual anthropometric measurement) * 100, for
eight different anthropometric measurements using two different
values of NT .

Anthropometric measurement Average error %
(NT=9090)

Average error %
(NT=18090)

Height (cm) 2.98% 3.02%
Weight (kg) 10.19% 10.13%
Shoulder width (cm) 4.24% 4.26%
Shoulder height (cm) 3.59% 3.65%
Waist circumference (cm) 4.21% 4.20%
Waist height (cm) 3.81% 3.82%
Hip circumference (cm) 4.70% 4.67%
Trochanteric height (cm) 4.29% 4.31%
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FIGURE 1. Our method parameterizes a given scan by deforming a cylindrical template to fit the shape of the scan.

FIGURE 2. The dataset consists of scans of women beyond 36 weeks of gestation collected in the standing posture with the position of the arms
ranging from (a) T-Pose to (b) A-Pose.

FIGURE 3. The participants had their hair tied up in various styles and shapes. The head and neck regions were removed from all scans to prevent
these variations from affecting our shape model.
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FIGURE 4. Each scan was segmented into five regions - left arm (shown in cyan), right arm (shown in yellow), left and right legs (shown in blue), torso
(shown in red) and head and neck (shown in green). Only the torso region was used for shape modelling.
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FIGURE 5. (a) The angle ´θr subtended by neighboring vertices, depicted as red squares, on the same xz plane and (b) the cross-sectional distance ´ y
between individual xz planes

FIGURE 6. The holes in the (a) raw scan are filled to give the (b) clean deformed template
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FIGURE 7. Meshes showing deviations by one standard deviation (σ), three standard deviations (3σ) and five standard deviations (5σ) from the mean
shape (µ) along each of the first three principal components (v1, v2, v3).

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3342608

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Fast and simple statistical shape analysis of pregnant women using radial deformation of a cylindrical template

FIGURE 8. Heat map of the Hausdorff distance from the original scanned mesh displayed on the mesh reconstructed using first 25 principal vectors
from (a) front, (b) side, and (c) back views. The green areas had the lowest Hausdorff distance while the red areas had the highest Hausdorff distance.

FIGURE 9. The original scanned mesh (grey) overlaid on the reconstructed mesh (black wireframe) made using (a) first 10, (b) first 25, (c) first 50, and
(d) first 100 principal vectors.
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FIGURE 10. Boxplots of the standard deviation of actual and predicted anthropometric measurements of (a) height, (b) shoulder width, (c) shoulder
height, (d) waist circumference, (e) waist height, (f) hip circumference and (g) trochanteric height of each participant (n=12). The red asterisk (*) next
to the plot title indicates a significant difference (p-value < 0.005) between the actual and predicted measurements.
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