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ABSTRACT Software composition analysis (SCA) is essential for understanding and optimizing complex
C programs, ensuring system reliability and efficiency. Analyzing programs at the binary level provides
insights into behavior, performance, and security. However, comprehensive evaluations of both academic
and commercialized SCA tools are lacking. To this end, this paper presents a comprehensive evaluation of
software composition analysis techniques for accurately identifying components in C/C++ binary programs.
The study examines different analysis techniques in terms of accuracy, performance, domain-specific
capabilities, and additional abilities such as detecting security vulnerabilities and code reuse potential. The
results show that SCA tools reach over 70% accuracy in detecting general libraries and the accuracy drops
to less than 45% for libraries in domain-specific software. Commercialized tools exhibit better efficiency
and practicalness than academic tools. The evaluation provides insights into the strengths and limitations of
various approaches, offering suggestions for SCA development and the selection of the most suitable tools.

INDEX TERMS Binary Program Analysis, Software Composition Analysis

I. INTRODUCTION

Software composition analysis (SCA) assumes a pivotal role
in comprehending and enhancing intricate C programs. As
software systems grow in complexity, characterized by an
intricate interplay of interdependent modules, a critical need
arises to examine individual components and their interac-
tions. This scrutiny is indispensable for ensuring the depend-
ability, manageability, and optimal operation of the system.
The primary objective of software composition analysis is
to deconstruct the program into its elemental constituents,
probing their respective functionalities, interdependencies,
and interfaces. By studying these constituents, developers
can glean insights into the program’s organizational frame-
work, identify potential performance bottlenecks or security
vulnerabilities, and facilitate efficient code reuse. Through
a meticulous approach to software composition analysis,
developers can streamline development endeavors, enhance
code quality, and elevate the overall efficiency of the system.

Furthermore, binary-level software composition analysis
emerges as a critical technique for comprehending and re-
fining C programs at the deepest level of abstraction. By
examining programs at the binary level, researchers can
dissect the compiled code, thereby extracting insights into

the program’s behavior, performance attributes, and security
characteristics—distinct from the original source code [1].

Various methods have been introduced to improve the
precision of component detection across diverse program-
ming languages. In the realm of Java, AtvHunter [2] utilizes
control flow graphs from specific Java libraries as distinctive
signatures to identify similar components. Backes et al. [3]
derive library profiles by leveraging hierarchical code infor-
mation, enabling them to detect APK packages even in the
presence of obfuscation. Libd [4] uses dependencies within
functions as signatures for detecting library reuse. LibPecker
[5] refines detection accuracy by introducing an adaptive
class similarity threshold, calculating similarity between sig-
natures and target libraries. Furthermore, several studies [6]–
[9], introduce clone detection techniques, which can also be
applied to tasks involving component detection.

Numerous methodologies have been proposed to discern
components within C/C++ binary programs. For instance,
OSSPolice [10] employs invariant literals and a hierar-
chical indexing scheme to recognize components, while
B2SFinder [11] establishes binary-to-source code mappings
using invariants to identify components within commercially
available software. Modx [12] adopts a modular approach,
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dissecting components into modules and gauging module-
level resemblances to discern component usage, with a spe-
cific focus on partially imported libraries. Moreover, com-
mercialized tools proffer component analysis capabilities.
Snyk [13] and SonarQube [14] furnish means to ascer-
tain components, primarily within the source code realm,
catering to C/C++ programming as well as languages like
Java. Conversely, BlackDuck [15] and Cybellum [16] are
tailored to optimize component detection within binary exe-
cutables. These tools harness diverse feature sets encompass-
ing strings, file names, hashes, and instruction-level details,
culminating in the precise and efficient identification of open
source components.

Despite the availability of various SCA tools for analyzing
C/C++ binary programs, there is a notable absence of com-
prehensive empirical evaluations for these tools. A pertinent
study is presented in [17], which conducts an examination
of 61 binary code similarity methods. This survey delves
into the features employed for code similarity detection,
the methodologies’ evaluation criteria, and the downstream
applications of similarity detection tasks. It is noteworthy that
SCA emerges as one of the applications within the realm of
similarity detection endeavors. Additionally, other relevant
studies are primarily focused on source code level component
analysis. Sheneamer and Kalita [18]extensively explore the
domain of code clones, covering common types of clones,
phases of clone detection, state-of-the-art techniques and
tools in code clone detection, as well as the challenges faced
by these techniques. Wang, Jingdong, et al. [19] analyze
solutions addressing the similarity search problem. Roy and
Cordy [20] conduct an in-depth study of code clone tech-
niques, providing comprehensive clone taxonomies. Rainer
Koschke [21] focuses on different clone types and assesses
the consequences resulting from code clones. Most of these
works primarily focus on surveying code clone techniques at
the source code level.

The studies aforementioned exhibit several inherent limi-
tations. Primarily, a notable constraint surfaces in the absence
of a standardized benchmark dataset for testing the efficacy
of SCA tools. It is noteworthy that the dataset dimensions
often remain constrained, comprising fewer than 100 sam-
ples [12]. However, this sample scope pales in comparison to
the practicalities of real-world software systems that typically
encompass over 10,000 files—underscoring a discrepancy of
one hundredfold in scale [22]. This incongruity intimates that
an evaluation centered on a dataset of 100 samples may fall
short of adequately assessing the real-world performance of
SCA tools. Secondarily, these studies [17]–[21] encounter a
drawback by neglecting to scrutinize the tools within specific
application domains. In practice, SCA tools are predom-
inantly employed for the identification of components in
distinct software types, deviating from the realm of com-
monly recognized open-source libraries. A salient illustration
is the disparity in component detection performance when
transitioning from generic open-source libraries to domain-
specific software configurations. Existing tools, often attuned

to the broader open-source landscape, tend to exhibit com-
promised effectiveness when confronted with the intricacies
and idiosyncrasies associated with specialized domains. This
divergence underscores the need for a more nuanced eval-
uation framework that encapsulates the challenges intrinsic
to targeted application sectors. Lastly, an imbalance exists in
the focus of extant research, with greater emphasis placed
on academic tools, inadvertently sidelining the exploration
of commercialized SCA tools.

To this end, our objective is to conduct a thorough em-
pirical study to assess the effectiveness of academic and
commercially available SCA tools in real-world C/C++ bi-
nary library detection tasks. Our methodology is outlined as
follows: first, we curated and assembled a benchmark dataset
comprising 16,713 C/C++ binary libraries from various data
sources. These cases encompass standard binary software
managers, manually obfuscated binaries, and binaries em-
ployed in vehicles manufactured by an automobile company.
Subsequently, we selected three industrial SCA tools Black-
Duck, Scantist, and Cybellum, and one academic tool for
evaluation.

Our main study focuses on the measurement of accuracy
and time consumption for each tool in SCA tasks. The results
reveal that SCA tools exhibit an accuracy rate of over 70% in
detecting general libraries, while their accuracy in detecting
domain-specific software libraries drops to less than 45%.
The academic SCA too also demonstrates competitive ac-
curacy in library name and version detection. Furthermore,
the time consumption varies significantly due to the different
usage of light and heavy weighted features. Additionally,
we conducted manual testing and in-depth exploration of
the advanced security-oriented auxiliary features of these
tools. The findings reveal that commercialized SCA tools
universally incorporate supplementary functionalities, driven
by both competitive market pressures.

In summary, our contribution is as follows:
• We collect C/C++ binaries from different sources to

build a benchmark with over 16,000 ground truth sam-
ples.

• We perform empirical studies on both academic and
industrial SCA tools to evaluate their accuracy and
performance on SCA tasks.

• We are the first to evaluate the SCA capability in a
specific application domain. The result shows that the
precision of existing tools drops to less than 45% when
detecting non-general purpose open-source libraries.

II. OVERVIEW
In this section, we furnish an overarching synopsis of our
study, represented in Figure 1. This figure depiction concur-
rently introduces the pivotal research questions (RQs) that
serve as the compass directing our investigative journey. To
commence, our primary focus, as delineated in RQ1, resides
in the meticulous evaluation of the precision with which
SCA tools discern components within diverse binary files.
Subsequently, we embark on a quantitative exploration in
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FIGURE 1: Overview of Empirical Study on Software Com-
position Analysis

RQ2, wherein we gauge the temporal investment entailed
in scanning individual binary files. This temporal scrutiny
serves as a conduit to deduce the underlying methodologies
intrinsic to the process of component detection. The trajec-
tory of inquiry escalates with RQ3, wherein we meticulously
scrutinize the accuracy of component identification within
a specific application domain. This granular examination
furnishes us with indispensable insights into the pragmatic
feasibility of these tools within authentic SCA scenarios.
Guided by the findings encapsulated within RQ1 through
RQ3, we embark on a comprehensive exposition elucidating
the detection algorithms employed by each distinct SCA
tool. This analytical venture serves to unravel the intricacies
underpinning their operational frameworks and contextual
performance. Culminating our analysis is the inquiry encap-
sulated in RQ4, wherein we undertake a thorough appraisal
of supplementary functionalities embedded within the SCA
tools. This research question stands as a pivotal juncture,
contributing to the holistic comprehension of the real-world
security paradigms orchestrated by the SCA solution.

The subsequent sections of this paper are organized as fol-
lows: In Section III, we provide a comprehensive elucidation
of the intricate procedures employed to either generate or
gather libraries in binary format. Section IV, delineates the
rationale underlying the judicious selection of the specific
SCA tools employed within this study. Moving forward, Sec-
tion V unveils the empirical study’s outcomes, accompanied
by our comprehensive interpretation of the discerned find-
ings. Engaging in a critical dialogue, Section VI delves into
the manifold insights extracted from the study, elucidating
the assimilated lessons and proffering viable directions for
future research endeavors. Section VII and Section VIII are
devoted to the thorough evaluation of pertinent prior works
and culminating conclusions, respectively.

III. BENCHMARK DATA SET
This section elucidates the methodology employed to con-
struct the benchmark ground truth dataset for our empirical

FIGURE 2: Overview of Benchmark Construction Ap-
proaches

study. The dataset comprises three distinct subsets of binary
programs, each accompanied by ground truth references.
Figure 2 presents the overview of the three approaches used
to construct the subsets in the benchmark. First, we build
the subset that encompasses general-purpose open-source
libraries via directly crawling the packages from online pack-
age managers. Second, we download the source code from
the library repositories and apply obfuscation strategies to
modify the code. Then, we compile the source code into
binary files to build the second subset. Third, we extract
the binary files from the automotive firmware to obtain the
domain-specific libraries. Since the files collected from this
approach lack ground truth, we employ security experts to
manually verify the library name and version information.

A. GENERAL PURPOSE BINARY COLLECTION
Constructing an encompassing binary Software Composition
Analysis test suite presents a notable challenge, centered
primarily around identifying pertinent and authentic compo-
nents within the intended package. To address this intricate
task, we performed a comprehensive review of practices
spanning both academic [23]–[25] and industrial spheres. We
summarize three approaches, which can provide third-party
library binaries with their names and versions from different
aspects.

The first approach involves downloading the source code
and performing compilation. This method offers the advan-
tage of selecting specific versions, particularly those with
known high-severity vulnerabilities [26], [27]. Specifically,
we crawled all the vulnerability records from the online
source [28]. Each record of the vulnerability is associated
with one Common Platform Enumeration (CPE). The CPE
contains information on the libraries that are affected by the
vulnerabilities. We ranked the libraries by the number of
vulnerabilities they include and selected the top libraries as
our test data. However, this approach entails a higher cost
due to the substantial manual effort required.

The second approach entails downloading packages that
provide explicit component or software version information,
such as component packages, software installation packages,
and container images. This approach offers the advantage of
having a well-defined target for analysis. However, it may
limit the flexibility of the test suite since it relies on the
availability of specific packages with known information.

The third approach relies on textual analysis techniques
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to determine component names, versions, and additional in-
formation. We implemented the algorithm proposed by [29],
which includes analyzing website data, examining metadata
within component packages, and extracting relevant details.
Textual analysis provides a more comprehensive view of the
components, including dependencies on other components.
Nonetheless, this approach may introduce errors or omissions
in the analysis process due to potential inaccuracies in the
textual information.

The previously outlined three steps culminate in the gen-
eration of three distinct sets of library lists, amalgamated
to create an extensive dataset. The subsequent phase is the
selection of representative candidates, forming the bench-
mark. To ensure the data completeness of the benchmark, we
leverage two distinct strategies. The initial strategy revolves
around random sampling, wherein data is randomly chosen
from diverse sources, engendering a test dataset that em-
braces diversity and represents a broad spectrum of scenarios.
In parallel, the second strategy, termed dimension coverage,
is invoked. This strategy engulfs a multitude of dimensions,
including platform architecture, file attributes, dimensions,
nesting intricacies, indirect dependency tiers, size, vulnera-
bility presence, update frequency, temporal span, minor ver-
sion variations, and manual alterations (such as the removal
of file information and symbol tables). The overarching goal
is to meticulously embrace all conceivable subtypes nested
within each dimension.

After selecting the target libraries, we ensure their format
diversity by collecting 5 different versions for each library
from a pool of available versions. The selection of 5 versions
is done randomly from the library’s available versions. If a
library has fewer than 5 versions, we replace it randomly with
another library to maintain consistency. For the formats, for
each target library we collect one copy of the amd64, i386,
AArch64, MIPS, and PowerPC binary file as the test cases.
These formats are commonly provided by software vendors
for different software platforms, making them representative
of real-world systems. In total, for each library candidate, we
select 25 (5 versions * 5 formats) variants to form the final
benchmark.

B. MANUALLY CRAFTED BINARY COLLECTION
To comprehensively assess SCA tools across various scenar-
ios, we undertake the manual compilation of library source
code to procure the corresponding expected binary files. This
compilation process diverges from the standard procedure
mentioned in the previous section, involving the manipula-
tion of compilation settings or source code to elicit mutations
in the resultant binary outputs.

Concretely, we initiate this process by amalgamating mul-
tiple libraries into a unified binary file. This fusion is or-
chestrated through compilation settings that facilitate the
static incorporation of source code from the libraries into
the software. Consequently, the compiler orchestrates the
amalgamation of all libraries into a singular binary entity.
The rationale underlying this approach is grounded in real-

world practices where libraries are often bundled and dis-
seminated together as an integral system. Separating them
into individual files without intensive program analysis is a
formidable task. Therefore, the component detection process
necessitates the ability to discriminate each library within a
confluence of libraries and self-generated code. The mixed
features from multiple libraries will increase the difficulties
for SCA since the features from one library may become
noises in detecting other libraries. We would like to test
the ability of SCA tools, which are often designed to detect
individual libraries, in mixed library detection.

Subsequently, embracing the concept of obfuscation [30],
[31], we engage in binary file modifications to yield variants
of the original library. This initiative stems from the obser-
vation that software vendors may modify the source code of
the libraries to achieve customizations, leading to deviations
from the standard binaries. Thus, our anticipation is that
SCA tools should exhibit robustness in detecting libraries
even when customizations are introduced. This dual-pronged
approach amplifies the breadth of our evaluation, shedding
light on the tools’ adaptability across multifarious real-world
scenarios.

To obtain different kinds of binary files, we apply the
following mutation strategies. We assign two researchers to
build the data set, which takes them 18 hours.

• Code Flattening: Code flattening involves transform-
ing the code’s nested structures into a single flat struc-
ture, making it harder to follow the logic. For each loop
in the source code, if the number of the iteration is
constant, we replace the loop with repeating the loop
content to flatten the loop.

• Code Substitution: Replace standard library functions
with custom implementations that have similar func-
tionality but different internal logic.

• Conditional Compiling: Use conditional compilation
to include or exclude certain code sections based on
predefined macros, making the code more complex.
Duration the compilation, we first detect the available
macros and flip the flag of these macros.

• Constant Obfuscation: Convert constant values into
expressions or use arithmetic operations to hide their
original values. For each constant number we express it
with the summation of one randomly generated number
and another calculated number (the two numbers add up
to the original constant).

• Control Flow Obfuscation: Change the order of state-
ments, insert dead code or use goto statements to create
confusing control flow paths. For each function, we
insert a random number of lines of dead code. If the
function contains if statement, we flip the condition of
the statement and the corresponding code blocks.

• String Stripping: Stripe strings in the binary to prevent
easy identification of sensitive strings and features.

• Symbol Renaming: All variable and function names
have been replaced with arbitrary and meaningless
names (e.g. rttfsmpkrnwi, xrsqrkgilfl, etc.).
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• Code Splitting: Split functions or methods into smaller
parts and obfuscate their relationships to make the code
harder to understand. For each function with over 100
lines of code, we construct two sub-functions with one
calling the other. We copy the code of the original
function into the sub-functions and build the call graphs
by replacing the original function with sub-functions.

C. AUTOMOTIVE SYSTEM BINARY COLLECTION
To collect data from the automotive system, we collaborate
with industrial partners to obtain firmware from real-world
car hardware units and the update packages.

To ensure the authenticity and real-world applicability of
our research, we established collaborations with industrial
partners to collect data from automotive systems. Through
these partnerships, we were able to obtain firmware directly
from real-world car hardware units, encompassing a diverse
range of vehicle models and configurations. This approach
allowed us to access firmware that accurately represents the
software landscape of modern automotive systems.

In addition to firmware from car hardware units, we
also acquired update packages used in over-the-air (OTA)
updates. These packages play a critical role in delivering
software updates to vehicles, making them valuable sources
of data for our research. By collaborating with our industrial
partners, we gained access to a wide variety of OTA update
packages, covering different vehicle models, software ver-
sions, and component configurations.

The collaborative nature of our data collection process
ensured that we obtained a comprehensive and representative
dataset that reflects the complexities and nuances of real-
world automotive software. It enabled us to capture the
evolution of software components, the presence of potential
vulnerabilities, and the impact of updates on the system.

To ensure the privacy and confidentiality of the data ob-
tained from our industrial partners, stringent measures were
implemented. Non-disclosure agreements were signed, and
data handling protocols were strictly followed throughout the
collaboration. All data used in our research was anonymized
and securely stored, adhering to best practices and industry
standards for data protection.

D. DATA STATISTICS
Table 1 displays the total number of data collected through
the aforementioned procedures. We gathered 1190 libraries
from the general package manager. With each library, we
generate multiple test cases with different architectures and
versions. In total, we generated 16713 test cases from the
libraries. Moreover, we collected 64 self-compiled and 432
libraries from automotive systems. Each library is regarded as
one test case for the experiment. For the general-purpose bi-
naries, the ground truth is readily available from the sources.
The names of the files, obtained when downloading the
source code or binary files, serve as the ground truth knowl-
edge. In the case of automotive systems, we employed three
binary security experts to manually examine the binary files

and extract their names. In most instances, the file names pro-
vided indicative information about their components, which
we carefully verified to ensure accurate ground truth. We
have published our benchmark at [32].

IV. SCA TOOL SELECTION AND IMPLEMENTATION
In this section, we provide a detailed description of the tool
we selected for our empirical study. We have selected three
industrial tools that are developed specifically for SCA tasks.
We focus on the problem of analyzing software components
in the automotive domain and selecting leading and hot
emerging software in the SCA domain, as well as leading
software in the automotive safety domain. Blackduck is a
Leader in the 2023 Gartner Magic QuadrantTM for Appli-
cation Security Testing (AST) for the seventh year in a row.
Based on their Ability to Execute and our Completeness of
Vision, we are positioned highest and furthest right in the
Leaders Quadrant among the 12 AST vendors evaluated by
Gartner. Cybellum has a very high market share in the field
of safety in the automotive industry. Cybellum has won the
following awards: Best Product and Device Cybersecurity
Platform, Best SBOM Management Product, Best Vulnera-
bility Management Product, Best SBOM Management Prod-
uct, and Best Vulnerability Management Product. Scantist is
a start-up company that has been recognized by many media
outlets as the most promising software component analysis
and vulnerability management platform among emerging
software.

• Blackduck [15]. Blackduck by Synopsys is the leading
provider of Software Composition Analysis solutions.
It enables comprehensive visibility into open source
and third-party dependencies compiled into binaries
and firmware. Key capabilities include GUI and au-
tomated multifactor scanning to detect dependencies,
coupled with fuzzy matching against Black Duck’s ex-
tensive knowledge base of over 6.3 million open source
projects, 2,750+ licenses, and 208,000+ vulnerabilities.
By combining fast and reliable static and string analysis
with an unmatched open source component database,
Black Duck delivers precise software composition, li-
cense compliance, and vulnerability management for
binaries and containers. It aims to help developers build
secure software while managing open source at scale.
In the experiment, we use Blackduck with version
2023.1.0.

• Cybellum [16]. Cybellum is an automotive cybersecu-
rity company that provides continuous threat monitoring
and protection for connected vehicles. Its key product is
a cybersecurity platform that leverages AI and machine
learning to automatically identify risks and vulnerabil-
ities in vehicle firmware and networks. Core capabil-
ities span firmware security assessments, compliance
checks, agent-based threat detection, and an extensive
automotive threat intelligence database. With one of the
largest datasets in the industry encompassing hundreds
of millions of vehicles, Cybellum aims to secure vehicle
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TABLE 1: Infomation of the Constructed Dataset

Data Source Description Number of Library
General Dataset

Debian By downloading and extracting C and C++ packages from Debian operating system package mirrors. 383 (7113 test cases)
RPM Downloading C and C++ related component packages from RPM mirrors. 539 (7215 test cases)
NetBSD Downloading binary components maintained by the well-known C package manager Conan. 268 (2385 test cases)

Manually Compiled Dataset
Mixed Library Combine multiple libraries into one binary file. 56
Obfuscated Library Modify the source code and compilation settings to mutate the generated binary file. 8 types of libraries

Automotive Dataset
Total Number Dataset collected from reverse-engineered firmware of the real-world automotive system. 432

cybersecurity throughout the entire product lifecycle.
Its automated, intelligent solutions help Original Equip-
ment Manufacturers (OEMs) and suppliers assess cyber
risks, enforce security standards, monitor networks for
threats, and maintain fleet-wide security. By combining
data-driven analytics with adaptive security controls,
Cybellum is driving the future of automotive cyber
safety. In the experiment, we use Cybellum with version
2.13.

• Scantist [33]. Scantist is a cybersecurity company that
provides network asset management and vulnerability
management platforms to help organizations improve
their security posture. Key functions include asset dis-
covery, vulnerability scanning, vulnerability risk man-
agement, threat intelligence integration, and security
compliance assessments. The platform utilizes both ac-
tive and passive scanning, provides vulnerability scoring
and remediation advice, enables granular asset tagging,
and has customizable workflows. With an extensive
vulnerability database of over 1.8 million entries, a
library database covering over 7.6 million libraries and
985 million versions, Scantist leverages automation and
intelligence to empower organizations with continu-
ous network asset visibility, vulnerability control, and
compliance assurance. The aim is to strengthen cyber
defense through automated, comprehensive vulnerabil-
ity and asset management. In the experiment, we use
Scantist with version 4.1.

Among academic tools, we identified BinaryAI [34], [35]
as a relevant candidate, offering a dedicated interface for
component detection. Our assessment of BinaryAI’s accu-
racy was based on the available interface. However, the
constrained usage limits of BinaryAI restricted the scale of
our testing, limiting our ability to perform comprehensive
evaluations. All the industrial and academic SCA tools are
set up with their default settings.

Additionally, our endeavor to access the source code of
other academic tools, such as ModX [12], was undertaken
with the intent of reimplementation for evaluation purposes.
Yet, these attempts were met with challenges arising from
scalability concerns. The majority of these tools grappled
with limitations in scalability, attributable to their training
with constrained datasets. Consequently, their scope for de-
tecting libraries beyond this confined realm remained cir-
cumscribed. The expansion of training data proved to be an

arduous endeavor, given the substantial time costs associated
with the existing size of open-source datasets. In light of
these constraints, the absence of viable scalability rendered
them unsuitable for our evaluation, as they yielded accuracy
levels close to zero due to data limitations.

V. EMPIRICAL STUDY
A. STUDY OVERVIEW
In this section, we address four key research questions (RQs)
aimed at exploring different aspects of software composition
analysis. There are listed as follows:

• RQ1: What is the component detection accuracy of SCA
tools in detecting different types of binary libraries?

• RQ2: What is the time cost of each SCA tool in the
component detection?

• RQ3: How do the SCA tools perform in detecting the
domain-specific third-party libraries?

• RQ4: What are the additional functionalities provided
by the SCA tools?

Firstly, in response to RQ1, we investigate the accuracy of
various analysis techniques and compare their effectiveness
in identifying software components accurately. This evalua-
tion will provide insights into the strengths and limitations of
different approaches and help practitioners choose the most
accurate technique for their specific needs. Moving on to
RQ2, we focus on the performance aspect, examining the
efficiency and speed of different analysis techniques. By
comparing their runtime and resource utilization, we aim
to identify the techniques that offer optimal performance
for large-scale software systems. Additionally, RQ3 delves
into the domain-specific component detection capabilities of
these techniques. We analyze their ability to identify and un-
derstand software components that are specific to particular
domains, such as healthcare, finance, or automotive systems.
This evaluation will shed light on the suitability of different
techniques for specialized software domains. Lastly, in re-
sponse to RQ4, we evaluate the additional abilities provided
by the analysis techniques. These abilities may include the
detection of security vulnerabilities, code reuse potential, or
maintainability metrics. By examining these additional capa-
bilities, we can determine the broader benefits and practical
utility of each technique. Through these investigations, this
paper aims to provide a comprehensive understanding of soft-
ware composition analysis techniques, their accuracy, perfor-
mance, domain-specific capabilities, and additional abilities.
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B. RQ1: ACCURACY COMPARISON
In this section, we aim to evaluate the accuracy of the SCA
tools in detecting the components in each of the benchmark
datasets. We run each of the SCA tools on each of the
components individually. In total, we have three kinds of data
(i.e. common libraries, combined libraries, and obfuscated
libraries) to test the SCA accuracy under different scenarios.
Moreover, we also evaluate the accuracy of academic SCA
tools and compare the accuracy with commercialized tools.
We use precision and recall to measure the accuracy of the
SCA tools. The precision and recall are calculated by the
following equations.

Precision = TP/(TP + FP ) (1)

Recall = TPs/(TP + FN) (2)

True positive (TP) refers to the cases where the tool correctly
detects the name or version of the given binary. False positive
(FP) refers to the cases where the tool gives a wrong name for
the binary. False negative (FN) refers to the cases where the
tool cannot predict a name or version, while the given binary
is actually a known library in our database.

TABLE 2: Precision and Recall for Component Detection on
Benchmark Dataset

SCA Tool Data Source No. of Libraries Precision Recall

Blackduck
debian 383 0.922 0.981
rpm 539 0.625 0.825
netbsd 268 0.737 0.052

Scantist
debian 383 1 1
rpm 539 0.902 0.909
netbsd 268 0.96 0.301

Cybellum
debian 383 0.614 0.987
rpm 539 0.514 0.938
netbsd 268 0.435 0.500

TABLE 3: Precision and Recall for Component Version
Detection on Benchmark Dataset

SCA Tool Data Source Number of Files Precision Recall

Blackduck
debian 7113 0.705 0.961
rpm 7215 0.54 0.642
netbsd 2385 0.416 0.037

Scantist
debian 7113 0.922 0.903
rpm 7215 0.884 0.711
netbsd 2385 0.13 0.06

Cybellum
debian 7113 0.612 0.913
rpm 7215 0.6 0.938
netbsd 2385 0.132 0.165

Common Library Detection. In this experiment, we aim to
evaluate the general component detection ability of the SCA
tools. To achieve this goal, we run the three SCA tools on
individual libraries. Each library is well-labeled with its name
and version. Each binary file contains and only contains the
instructions from one library package. In total, we collected
1190 such libraries with 16713 individual files for evaluation.
Table 2 presents the results of the library detection accuracy
evaluation. We choose one file from each library to evaluate
the name prediction accuracy since all the files in one library

share the same library name. Table 3 presents the results of
the library version detection accuracy based on each individ-
ual file. Since each file has its own version, we use all 16713
files to test the version prediction accuracy.

From Table 2, we can conclude that all three tools have
reasonably good accuracy in detecting the libraries from De-
bian and RPM. Scantist and Cybellum have similar precision
and recall in detecting the component. While Backduck has
slightly worse precision and recall. Moreover, the precision
and recall drop significantly when detecting libraries from
NetBSD. The reason is that the libraries in NetBSD have less
information such as standard library file name and package
structure. The SCA tools rely heavily on this information to
predict the names.

In the context of version detection, the observed accuracy
registers an average decline from 70.35% (library detection
accuracy) to 66.96%. This reduction can be attributed to a
twofold rationale. Primarily, the absence of version-specific
strings serves as a pivotal determinant. The crux of version
determination often hinges on the identification of strings
consisting of version information. However, the absence of
these strings within many libraries poses a notable challenge.
Furthermore, certain libraries incorporate multiple version
strings, contributing to the ambiguity that confounds SCA
tools’ capacity to precisely predict versions. In the absence
of string-based cues, SCA tools are compelled to extrapo-
late features from alternative strings or binary instructions.
Regrettably, these alternate features may not exhibit the ro-
bustness requisite for accurate version prediction, ultimately
resulting in a dip in accuracy.

Secondly, the inadequacy of discernible features across
patch versions presents an additional obstacle. Numerous
libraries adhere to the semantic versioning convention [36]
encompassing major, minor, and patch versions. For instance,
a library’s version may assume the form x.y.z, with x, y, and z
denoting major, minor, and patch versions respectively. Dur-
ing patch-level updates, developers tend to introduce minimal
code changes geared toward rectifying specific issues. In
comparison to other updates, the extent of code modification
is significantly subdued. Consequently, when endeavoring to
identify patch versions during SCA tasks, the intricate task
of ascertaining the precise version arises due to the subtle
nature of code alterations. This intricate landscape adds to
the challenge of accurate version detection.
Multi-library Detection. In this experiment, we aim to eval-
uate the ability of SCA tools in detect libraries that are com-
bined together to form one big binary. The reason for this ex-
periment is that, in the real-world use case, the developer may
choose to compile the libraries into their software system.
Without completed binary reverse engineering, it is difficult
to separate and extract the libraries from the system binary.
Therefore, during the SCA task, it is important for the SCA
tools to detect all the libraries when they are integrated into
one binary file. To achieve the goal, we manually compile
multiple libraries and mix them into one binary file. In total,
we obtain 10 such binary files with 56 libraries involved.
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Table 4 presents the accuracy of the SCA tools in detecting
these libraries.

TABLE 4: Precision and Recall for Multiple Library Detec-
tion

SCA Tools Number of Libraries Precision Recall
Blackduck

56
0.52 0.19

Scantist 0.29 0.19
Cybellum 0.84 0.19

The findings exhibit a notable decrease in the recall of
the three tools as compared to common library detection.
The major reason for this phenomenon is because of the
fact that SCA tools tend to predict one library rather than
multiple entities. In most cases, SCA tools will try to divide
the mixed binary into smaller files and predict the library
name on each of the files. Therefore, if they fail to divide
the mixed binary, they may predict only one library, which
leads to a significant decrease in the recall. This observation
underscores that the SCA tools are designed to anticipate the
library with the most compatible features. In scenarios where
the binary encompasses multiple libraries, the principal li-
braries are disproportionately favored in terms of detection
likelihood compared to secondary ones. This observation
underscores a research gap in the realm of multi-library
detection tasks, necessitating attention to precisely identify
components within such contexts.
Obfuscated Library Detection. In this experiment, we plan
to evaluate the accuracy of detecting libraries with obfusca-
tion. It is because, in the real world, developers may modify
the program to achieve customization and avoid information
leakage. For example, due to security concerns, programmers
will apply patches to the program to fix vulnerabilities. The
application of the patches can be considered as an obfusca-
tion of the component. Moreover, programmers often strip
the strings in the binary file so that the SCA tools cannot use
strings to guess the library names and versions. We select 8
strategies to mutate the original library and manually apply
the mutation to the binary files. Table 5 presents the SCA
accuracy in detecting the obfuscated library version under
different strategies.

TABLE 5: Obfuscated Library and Version Detection Ability

Obfuscation Method Blackduck Scantist Cybellum
Code Flattening N Y Y
Code Substitution N Y Y
Conditional Compiling N Y Y
Constant Obfuscation N Y Y
Control Flow Obfuscation N Y Y
String Stripping N Y Y
Symbol Renaming N Y Y
Code Splitting N Y Y

The result shows strong differences in detecting the obfus-
cated binaries. Blackduck has the worst detection accuracy
since it cannot detect the library when obfuscation is present.
It may be because it relies heavily on syntax information
to predict the library names. For example, it may use the
hash value of the entire binary file to match the binary or

TABLE 6: Precision and Recall for Comparison with Bina-
ryAI

SCA Tools No. of Libs Lib Detection Version Detection
Precision Recall Precision Recall

BinaryAI

22

0.88 0.68 0.7 0.55
Blackduck 1 0.27 1 0.09
Scantist 0.91 0.50 0.91 0.46
Cybellum 0.86 0.29 0.57 0.21

it may use the function name inside the binary to predict
the library. These features are extremely unstable when the
obfuscation is applied. Whereas, Scantist and Cybellum have
100% accuracy in detecting such binaries. We believe it uses
semantic features such as the function call relationship to
determine the library name and versions. This approach will
have relatively higher accuracy in handling the obfuscated
files. However, as more heavy program analysis algorithms
are involved the time consumption also increases. Moreover,
it may produce more false positive cases by miss-predicting
non-library binaries as third-party libraries.
Academic Tool Accuracy Evaluation.

In this section, our objective is to assess an academic
SCA tool and juxtapose it with commercial counterparts.
We evaluated one academic tool, BinaryAI, with a limited
scope due to its constraints. Specifically, BinaryAI limits the
total size of the input files. Therefore, we constructed a small
testing data set with 22 libraries to compare the accuracy with
the industrial tools. The outcomes of this assessment are pre-
sented in Table 6. Analysis of the table reveals that BinaryAI
achieves a commendable equilibrium between precision and
recall in library name and version detection, often matching
or slightly surpassing the performance of commercial tools.
An aspect of concern is its processing speed, given its re-
liance on instruction-level data and machine learning models.
While potentially time-consuming, we withhold conclusive
judgment due to the absence of tests on larger binary files.

Answer to RQ1: The results reveal that while all three
tools perform well in detecting Debian and RPM libraries,
accuracy declines for NetBSD due to lesser information.
For version detection, there is a drop in accuracy attributed
to the absence of version-specific strings and challenges
in discerning patch versions. Detection of libraries within
combined binaries is evaluated, demonstrating variations
among tools in accuracy. Detection of obfuscated libraries
is assessed with varied strategies, revealing challenges
for Blackduck and high accuracy for Cybellum due to
semantic features, despite potential time and false positive
implications. The academic SCA tool BinaryAI is evalu-
ated, demonstrating competitive accuracy in library name
and version detection.

C. RQ2: PERFORMANCE COMPARISON
In this RQ, we aim to measure the time cost of scanning
the binary files to detect the components. Table 7 shows
the results of the average time used to scan one binary file
for each of the SCA tools. From the table, it is evident that
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Scantist demonstrates the best overall performance, taking an
average of less than 1 second to scan one item with a size of
0.84 to 4.55 MB. On the other hand, Cybellum proves to be
the slowest, taking 9.358s to 34.428s to complete the scan of
one item.

TABLE 7: Time Cost of Component Detection on Bench-
mark Dataset

SCA Tool Data Source Average File Size Time

Blackduck
debian 0.84 Mb 1.518s
rpm 2.83 Mb 4.490s
netbsd 4.55 Mb 0.578

Scantist
debian 0.84 Mb 0.0168s
rpm 2.83 Mb 0.0332s
netbsd 4.55 Mb 0.679s

Cybellum
debian 0.84 Mb 13.159s
rpm 2.83 Mb 34.428s
netbsd 4.55 Mb 9.358s

Upon investigating the reasons behind relatively short and
long scan times, we have identified the following factors.
All of the SCA tools employ a drill-down approach during
scanning, indicating that they utilize multiple strategies to de-
termine components with varying levels of time cost, recall,
and precision. They begin with strategies that have the lowest
time cost. If they find a match with high confidence, they stop
the process and report the result immediately, without going
through further strategies. An example of such a strategy
is hash matching, where they pre-collect hash values for
standard components in their database and perform a lookup
of the target component’s hash. This strategy exhibits high
precision and minimal time cost. However, it suffers from
limited coverage, leading to numerous false negative cases.
Consequently, they proceed to try other strategies until they
find the component’s name or exhaust all strategies. The
rapid hash matching explains why some large binary files
can be processed in a short time by SCA tools. Conversely,
for certain binaries, the tools may take significantly longer as
they employ more time-consuming analysis methods.

Scantist stands out as it boasts a well-built binary database
and implements lightweight strategies, such as hash, string,
and file name matching. This contributes to its excellent
overall performance. It also uses the meta-information of
the packages to rapidly determine the library names and
versions, which avoids time-consuming feature extraction
and comparison tasks. Conversely, Cybellum’s use of time-
consuming strategies like string set matching hinders its
efficiency. Moreover, it introduces heavy program analysis
methods, such as symbolic execution, to further detect the
vulnerabilities inside the components. The additional func-
tionalities cost much time to slow down the process.

In addition, BinaryAI has a relatively much higher time
cost with over 100 seconds per library. We have also tested
the time cost for other academic tools such as ModX [12].
Similarly to BinaryAI, other academic tools also exhibit high
time costs as they involve reverse engineering and program
analysis techniques, such as symbolic executions, which
substantially increase time consumption.

Answer to RQ2: Scantist demonstrates exceptional per-
formance, completing scans in less than 1 second on
average for files ranging from 0.84 to 4.55 MB, while
Cybellum proves to be the slowest, taking between 9.358s
and 34.428s per scan. All tools prioritize strategies with
minimal time cost and high-confidence matches, such as
hash matching. Scantist’s success stems from its stream-
lined strategies, lightweight methods like hash, string, and
file name matching, and efficient utilization of package
meta-information. In contrast, Cybellum is coupled with
resource-intensive methods like symbolic execution for
vulnerability detection, contributing to its slower perfor-
mance.

D. RQ3: DOMAIN SPECIFIC COMPONENT DETECTION
COMPARISON

In this research question, our objective is to evaluate the
component detection capabilities of each SCA tool within
a specific application domain. We executed each tool on
a dataset collected from the automotive system, and the
accuracy results are presented in Table 8.

TABLE 8: Precision and Recall for Automotive-related Li-
brary Detection

SCA Tools Number of Libraries Precision Recall
Blackduck

432
0.45 0.10

Scantist 0.40 0.08
Cybellum 0.43 0.09

Analyzing the table reveals a notable decrease in accu-
racy compared to the detection of general libraries. This is
primarily due to the increased false negative rate, indicating
that all tools failed to detect certain components. The unique
characteristics of components used in automotive systems
require SCA tools to possess comprehensive signatures to
successfully identify them. However, commercialized tools
may lack complete coverage of libraries specific to this do-
main, leading to a higher rate of false negatives in component
detection.

On the other hand, all tools maintain a relatively low
false positive rate. This can be attributed to two factors.
First, components in automotive systems are typically not
obfuscated and are compiled using standard compilers and
settings. Additionally, the strings within these components
are generally preserved, providing sufficient features for the
SCA tools to determine their identity. Second, there is an
overlap between commonly used components and specific
components in automotive systems, allowing the SCA tools
to effectively detect them.
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Answer to RQ3: The results indicate a decrease in accu-
racy compared to general library detection due to a higher
false negative rate. This suggests that the tools struggle
to identify certain components unique to the automotive
domain. Commercial tools might lack comprehensive cov-
erage of domain-specific libraries, leading to more false
negatives. However, all tools maintain a low false positive
rate due to the absence of obfuscation and the preservation
of strings within automotive components.

E. RQ4: ADDITIONAL ABILITY EVALUATION
In this RQ, we explore the supplementary capabilities offered
by SCA tools beyond component detection. To achieve this,
we conducted manual evaluations of each SCA tool, execut-
ing them with their complete functionalities and collecting
the resulting reports. Subsequently, we thoroughly examined
these reports to identify and summarize the additional func-
tionalities provided by each tool. The comprehensive list of
these functionalities is presented in Table 9. This analysis
sheds light on the diverse capabilities offered by SCA tools
and contributes to a comprehensive understanding of their
value beyond component detection.

From the table, we can conclude that all commercialized
SCA tools offer additional functionalities. There are two
reasons for this. First, as commercial tools, they strive to
provide enhanced capabilities to outperform their competi-
tors. Second, SCA alone is not a complete security operation
solution. Knowing what components that have been used in
the software is the first step to managing the security risk.
Therefore, additional functionalities are provided to provide
full security protection.

The second notable finding is that vulnerability detection
is the most commonly provided functionality. This is because
the primary goal of SCA is to manage the security risks as-
sociated with using open-source components and identifying
vulnerabilities is a critical aspect of this process. Therefore,
all commercial tools include vulnerability detection as part of
their security solutions.

Thirdly, some of the minor functionalities prove to be
more valuable than anticipated. For example, detecting the
various interfaces used in the software is crucial as it enables
security experts to quickly identify potential attack surfaces.
Conversely, functions such as detecting password files and
unencrypted files are more commonly provided but offer
limited assistance, as most developers already acknowledge
the risks associated with these issues.

Answer to RQ4: The analysis reveals that commercialized
SCA tools universally incorporate supplementary func-
tionalities, driven by both competitive market pressures
and the recognition that SCA alone is not a comprehensive
security solution. These tools align with the primary aim of
SCA by prominently emphasizing vulnerability detection,
a crucial facet for managing security risks. Notably, some
minor functionalities, such as interface detection, provide
useful information for security expertise.

VI. DISCUSSION
A. LESSONS LEARNED
For SCA tool developers, two key factors can enhance the
capabilities of their tools. Firstly, the quality of the data
directly impacts the detection accuracy, necessitating careful
preprocessing of open source library data. Developers should
strive to improve data coverage to enhance the recall of
SCA tools. Additionally, as data size increases, signatures
may become less distinguishable, leading to a higher false
positive rate. A major reason for this issue is the presence of
dependencies between open source packages in software. For
instance, when a package Pa uses another package Pb as a
dependency, it may confuse the tools in determining whether
the software utilizes Pa or Pb. To alleviate such situations,
incorporating duplicated code removal during the construc-
tion of the open source database can be beneficial. Therefore,
developers should pay close attention to this preprocessing
step to further enhance the performance of SCA tools.

For end users of SCA tools, it is crucial to recognize that
the detection results may not guarantee the identification of
all open source libraries in the software. Failures in detection
can occur due to factors such as data gaps, non-robust fea-
tures, and limited reverse engineering capabilities. Therefore,
it becomes imperative to establish an open source security
management system throughout the entire software develop-
ment lifecycle, shifting the security operation leftwards. SCA
tools can serve as the final step to ensure that no harmful code
is introduced into the system. However, prior to this stage,
building a secure and trusted open source library warehouse
can prevent the use of dangerous libraries from the outset. By
adopting such proactive measures, end users can significantly
enhance the security of their software projects.

B. FUTURE RESEARCH DIRECTION
In this section, we outline potential research directions for
future work in the field.

First, there is ample room to improve the overall accuracy
of SCA tools. Existing industrial SCA tools rely on simple
features to build component fingerprints, such as strings
and constants. However, these features suffer from coverage
issues, as not all components have distinguishable strings and
constants. Moreover, they lack robustness, as they can be eas-
ily changed, making them less effective in detecting different
versions of target components. To address these limitations, it
is essential to incorporate more robust features that can better
handle the variability and versioning of components.

Second, the generalizability of academic SCA tools needs
improvement. Our empirical study revealed challenges in
reproducing the results of academic SCA tools across dif-
ferent datasets. Most academic tools are not open-sourced
and require sophisticated software engineering techniques
like reverse engineering and program analysis to extract fine-
grained features. While these features can enhance detection
accuracy, obtaining them can be time-consuming and non-
scalable. Future research should focus on developing SCA
tools that can effectively detect libraries in real-world sys-
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TABLE 9: Additional Ability. (Bd for Blackduck, Cy for Cybellum, and Sc for Scantist)

Function Description Bd Cy Sc
Unknown Vulnerability Perception Detect unknown vulnerabilities based on predefined rules. N Y Y
Known Vulnerability Scanning Identify known vulnerabilities by referencing publicly disclosed vulnerabilities. Y Y Y
Fortification Method Perception Detect fortification methods employed by binary programs in the firmware. Y Y Y
Password File Detection Analyze the presence of public and private key files in the scanned package. Y Y Y
Unencrypted Communication Perception Identify executable files using specific communication functions. Y Y Y
Coding Standard Detection List files not complying with coding standards. N Y Y
Password Information Leakage Detection Identify files that may contain leaked account credentials. Y Y Y
Sensitive Information Leakage Detection List identified sensitive information in the firmware package. Y Y Y
Error Security Configuration Detection Identify potential erroneous system configurations. Y Y Y
Firmware Component Attribution List potential third-party components present in the firmware package. Y Y N
License Recognition Identify open-source software licenses associated with third-party components. Y Y Y
Interface Recognition List files potentially related to various interfaces. N Y N
Remediation Give advice for vulnerability fixes and software updates Y Y Y

tems using larger datasets, and the tools should be designed
with better generalization capabilities.

Third, given the current challenges faced by existing SCA
tools in effectively detecting components in automotive sys-
tems due to limited data support, researchers can address
this issue by proposing data scope analysis. This analysis
aims to define the specific data that SCA tools should in-
clude to reduce false negatives in automotive systems. It
involves outlining the data available from various sources,
such as libraries hosted on Github, individual websites, and
other repositories. Additionally, researchers should devise
appropriate methods to select important libraries from this
vast quantity of data to ensure comprehensive coverage and
accuracy in component detection.

VII. RELATED WORKS
In this section, we list the related works that focus on the
SCA tools and SCA tool evaluation.
SCA Tool Evaluation. There are a few works that focus on
evaluating the accuracy of the SCA tools. For example, [37]
conducting an empirical study to analyze the vulnerability
reporting functionality of 9 SCA tools for Java and JavaScript
projects. Haq and Caballero [17] analyze 61 binary code
similarity methods to provide the characteristics, the imple-
mentation, and the scope of these works. Sheneamer and
Kalita [18] discuss code clones, common types of clones,
phases of clone detection, the state-of-the-art in code clone
detection techniques and tools, and challenges faced by clone
detection techniques. Wang, Jingdong, et al. [19] analyze the
solutions to address the similarity search problem. Roy and
Cordy [20] study the code clone techniques and provide clone
taxonomies. Rainer Koschke [21] focuses on the different
clone types and measures the consequences resulting from
code clones. Most of these works focus on surveying source
code-level code clone techniques. Our work aims to provide
a study on SCA tools, which provide the downstream task of
the code clone. We aim to examine the industrial usage of the
SCA tools and provide suggestions for open-source software
management tasks. Moreover, we perform the study at the
binary level, which is close to the real-world use case.
SCA Tools. Numerous approaches have been proposed
to enhance the accuracy of component detection across

various programming languages. In the context of Java,
AtvHunter [2] utilizes the control flow graph of specific
Java libraries as signatures for detecting similar components.
Backes et al. [3] extract library profiles by leveraging code
hierarchy information, enabling them to detect APK pack-
ages despite obfuscation. Libd [4] employs dependencies
within functions as signatures for library reuse detection.
LibPecker [5] further enhances detection accuracy by in-
troducing an adaptive class similarity threshold to calcu-
late the similarity between signatures and target libraries.
Additionally, several works [6]–[9] propose clone detection
techniques, which can also be applied to component detection
tasks.

For the C programming language at the binary level,
BAT [38] employs clone detection with string literal match-
ing algorithms to detect binary libraries. OSSPolice [10]
leverages invariant literals and a hierarchical indexing
scheme to identify components. B2SFinder [11] maps bi-
naries to source code using invariants to detect components
in commercial-off-the-shelf software. ModX [12] introduces
modularization techniques, dividing libraries into smaller
parts to enable finer-grained matching for component detec-
tion. Furthermore, there are works that focus on detecting
libraries at the source code level. For instance, Centris [39]
proposes a duplication removal technique to filter out clones
between two libraries, thereby improving signature qual-
ity. TPLite [40] performs detailed analysis on source code
level SCA tool Centris and proposes TPLite, which outper-
forms it via accurately determining the function birth time.
OSSFP [41] enhances Centris by categorizing functions into
core and non-core types, applying duplication removal only
to less important functions.

Additionally, research efforts have aimed at component
detection in languages such as JavaScript, Python, etc., with
a focus on improving accuracy and performance. However,
none of these works have been evaluated using widely
agreed-upon benchmarks, making cross-comparisons chal-
lenging. Our work addresses this issue by providing a bench-
mark for evaluating SCA tools and facilitating future compar-
isons and assessments of component detection capabilities.
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VIII. CONCLUSION
In this paper, we present an empirical study evaluating the
component detection capabilities of software composition
analysis tools in the C/C++ programming language. We
curate and introduce two datasets comprising over 16,000 in-
dividual binary components, establishing ground truth bench-
marks for evaluation. Our study covers three industrial SCA
tools and examines the performance of the academic tool
BinaryAI. The results indicate that industrial tools exhibit
higher accuracy (70.35%) in detecting commonly used com-
ponents, with a significant decline in precision to less than
45% when handling automotive binaries. Moreover, indus-
trial tools have relatively equal accuracy with BinaryAI.
However, due to the inability to reproduce claimed results
and limited access to open-source libraries, other academic
tools fail to have satisfactory results as the industrial tools.
Additionally, all tools demonstrate acceptable performance
and offer a wide array of security-related functionalities
to support open-source security management. Overall, our
study provides valuable insights into the capabilities and lim-
itations of SCA tools, aiding software engineers in making
informed choices for effective component detection.
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