Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

XINYUE CHU

School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China
Corresponding author: Xinyue Chu (e-mail: $2316607219 @$ qq.com).

Abstract

In this study, in order to further improve the construction efficiency of sparse approximate inverse (SPAI) preconditioners, we attempt to explore the construction method of SPAI preconditioners in mixed-precision mode from the perspective of single and double precision mixing, and thus propose two mixed-precision SPAI preconditioning algorithms on GPU, abbreviated as MP-SSPAI and MP-HeuriSPAI, respectively. In MP-SSPAI, with original static SPAI preconditioning algorithm as the research object, we mainly consider the following factors to construct its preconditioner in mixed-precision mode: 1) use single precision as much as possible to improve computational efficiency of the preconditioner while ensuring its validity; 2) store certain components in single precision after they have been determined to require single-precision computation to improve read efficiency; and 3) maintain the high-precision output of the preconditioner to ensure that it is computed with high precision when applied to the iterative algorithm. In MP-HeuriSPAI, a mixed-precision heuristic dynamic SPAI preconditioning algorithm on GPU is presented based on the above factors, using HeuriSPAI as the object of study. The experimental results demonstrate the effectiveness and high performance of the proposed MP-SSPAI and MP-HeuriSPAI by comparing them with their respective double-precision versions, single-precision versions, and extended versions.

INDEX TERMS GPU, mixed precision, preconditioning algorithm, sparse approximate inverse.

I. INTRODUCTION

IN general, the large sparse linear systems can be interpreted as follows:

$$
\begin{equation*}
A x=b, \quad x, b \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n} \tag{1}
\end{equation*}
$$

Here coefficient matrix A is large, sparse, and nonsingular, and x and b are given vector and unknown one, respectively. To address above problem better, preconditioning Krylov iterative methods come into view, which can accelerate convergence and have higher robustness compared with Krylov iterative methods. Using preconditioning techniques, equation (1) can be further transformed into a more tractable form as:

$$
\begin{equation*}
M A x=M b \text { or } A M y=b, x=M y . \tag{2}
\end{equation*}
$$

Here M is referred to as left (right) preconditioner. A better preconditioner M should satisfy the following three conditions:

1) its operation should be simple and cheap.
2) it is supposed to accelerate convergence of iterative methods.

3) it is effectively computed in parallel.
However, the construction of preconditioners is timeconsuming, leading to a significant increase of time cost of
seeking the approximate solution (\hat{x}). Programmable graphics processing units(GPUs) have the feature of multiple core structures, which makes them powerful for scientific computing and big data processing. And due to easiness of learning and using, and needless of graphics knowledge for developers, the compute united device architecture(CUDA) [1] introduced by NVIDIA is much popular, which supports joint CPU/GPU execution of applications and designs a Cbased programming language CUDA C for GPU computing. Therefore, it is utilized in much work [2]-[4] to accelerate the construction of preconditioners.

At present, there are various preconditioners, such as Jacobi preconditioner [5], [6], block-Jacobi preconditioner [7], [8], factorized sparse approximate inverse preconditioner [9][11], polynomial preconditioner [12]-[14], incomplete LU decompositions [15]-[17], and sparse approximate inverse (SPAI) preconditioner based on F-norm minimization [18][22]. Because of high parallelism and simplicity, the SPAI preconditioner has received widespread attention. And according to the construction method, it is usually classified into static SPAI preconditioning algorithm [23]-[28] and dynamic SPAI preconditioning algorithm [29]-[33].

In addition, with the advancement of technology, GPUs un-
der the CUDA architecture not only support double-precision floating-point operations but also single-precision floatingpoint operations and even half-precision floating-point operations. Theoretically, single-precision floating-point operations are twice as fast as double-precision floating-point operations and require relatively less memory. As a result, mixed-precision floating-point computations based on single and double precision have been used in multiple research areas [34]-[37]. Inspired by this, in order to further improve the computational efficiency of preconditioning algorithms without losing their effectiveness, some researchers have attempted to construct preconditioners in mixed-precision mode [4], [38]-[43]. However, research on mixed-precision SPAI preconditioning algorithms is scarce.

Therefore, on the basis of precision consideration, we present two mixed-precision SPAI preconditioning algorithms on GPU, abbreviated as MP-SSPAI and MPHeuriSPAI, respectively. For the construction of the mixedprecision SPAI preconditioner, the following factors are considered: 1) use single precision as much as possible to improve computational efficiency of the preconditioner while ensuring its validity; 2) store certain components in single precision after they have been determined to require single precision computation to improve read efficiency; and 3) maintain the high-precision output of the preconditioner to ensure that it is computed with high precision when applied to the iterative algorithm.

The main contributions in this work are summarized as follows.

- Mixed-precision static SPAI preconditioning algorithm and mixed-precision heuristic SPAI preconditioning algorithm are presented;
- The parallel versions of proposed two mixed-precision SPAI preconditioning algorithms, abbreviated as MPSSPAI and MP-HeuriSPAI, respectively, are implemented;
- The extended versions of MP-SSPAI and MPHeuriSPAI are given, abbreviated as MP1-SSPAI and MP1-HeuriSPAI, respectively. Then, a series of experiments demonstrate the effectiveness and high performance of the proposed MP-SSPAI and MP-HeuriSPAI by comparing them with their respective doubleprecision versions, single-precision versions, and extended versions.

The rest of the paper is organized as follows. In Section 2, sparse approximate inverse (SPAI) preconditioner based on F-norm minimization is summarized. Mixed-precision static SPAI preconditioning algorithm and mixed-precision heuristic SPAI preconditioning algorithm are presented in Section 3. And their parallel implementations on GPU are given in Section 4. Section 5 gives effectiveness analysis and performance evaluation. Finally, Section 6 concludes conclusions and discussions.

II. SPARSE APPROXIMATE INVERSE (SPAI) PRECONDITIONER BASED ON F-NORM MINIMIZATION

The preconditioner M of SPAI preconditioning algorithm is the approximation of A^{-1}. For static SPAI preconditioning algorithm, the sparse pattern of preconditioner M is predetermined, which generally consistents with the sparse pattern of coefficient matrix A or identity matrix E. As shown in [24], preconditioner M is computed by following equation:

$$
\begin{equation*}
\min \|A M-\mathcal{I}\|_{F}^{2}, \quad \mathcal{I} \in \mathbb{R}^{n \times n} \tag{3}
\end{equation*}
$$

Here for M, its columns are independent with each other, thus, equation (3) can be expressed as the following equation:

$$
\begin{equation*}
\min \sum_{k=1}^{n}\left\|A m_{k}-e_{k}\right\|_{2}^{2}=\sum_{k=1}^{n} \min \left\|A m_{k}-e_{k}\right\|_{2}^{2} \tag{4}
\end{equation*}
$$

where m_{k} and e_{k} represent the k th column of preconditioner M and identity matrix E, respectively. Obviously, it can be further decoupled as n least squares problems:

$$
\begin{equation*}
\min \left\|A m_{k}-e_{k}\right\|_{2}^{2}, \quad k=1,2, \ldots, n \tag{5}
\end{equation*}
$$

Observing that, for smaller n, all columns of the preconditioner M can be solved concurrently. This indicates that the SPAI preconditioning algorithm has high degree of parallelism.

In order to solve the preconditioner M easily, its each column will be computed by dimensionality reduction. Taking the k th column of $M\left(m_{k}\right)$ as an example, first, find its row indices of nonzero entries of m_{k} and save them in set J_{k}. Second, delete zero rows in matrix $A\left(., J_{k}\right)$ and save its indices of nonzero rows in set I_{k}, then we can obtain the submatrix \hat{A}_{k}, where $\hat{A}_{k}=A\left(I_{k}, J_{k}\right)$. Based on this, equation (5) can be transformed into the following equation:

$$
\begin{equation*}
\min \left\|\hat{A}_{k} \hat{m}_{k}-\hat{e}_{k}\right\|_{2}^{2}, \quad k=1,2, \ldots, n \tag{6}
\end{equation*}
$$

where \hat{m}_{k} and \hat{e}_{k} are the reduced m_{k} and e_{k}, respectively. Third, perform QR decomposition on matrix \hat{A}_{k} with the modified Gram-Schmidt method. Finally, solve the above equation.

The detailed procedure of static SPAI preconditioning algorithm based on double precision (SSPAI for short) is shown as following:
Algorithm 1: Static SPAI preconditioning algorithm (SSPAI) For each column $m_{k}, k=1,2, \cdots, n$ of M :

1) Set $J_{k}=\left\{j \mid m_{k}(j) \neq 0\right\}$, and set its length as $n 2$;
2) Construct I_{k}, where its any element (i) makes $A\left(i, J_{k}\right)$ not all 0 , and set its length as $n 1$;
3) Construct submatrix \hat{A}_{k} where $\hat{A}_{k}=A\left(I_{k}, J_{k}\right)$ and $\hat{A}_{k} \in$ $\mathbb{R}^{n 1 \times n 2} ; \quad$ (double precision)
4) Perform QR decomposition on matrix \hat{A}_{k}, then, the orthogonal matrix $Q_{k} \in \mathbb{R}^{n 1 \times n 2}$ and the upper triangular matrix $R_{k} \in \mathbb{R}^{n 2 \times n 2}$ are obtained; (double precision)
5) Set $\hat{A}_{k}=Q_{k} R_{k}$, and then solve \hat{m}_{k} by (6); (double precision)
6) Scatter \hat{m}_{k} to m_{k}; (double precision)

For dynamic SPAI preconditioning algorithm, its sparse pattern of preconditioner M is acquired dynamically without a
pre-given. Taking HeuriSPAI [33] as an example, first, solve initial m_{k} according to Algorithm 1, and then compute initial residual $r_{k}=e_{k}-A m_{k}$. Second, it uses

$$
\begin{equation*}
C_{k}^{l}=(E+|A|) C_{k}^{l-1}, \quad l=1,2, \cdots, l_{\max } \tag{7}
\end{equation*}
$$

to iteratively generate the candidate indices that might be added to J_{k}^{l-1}, where l is the internal loop variable, $l_{\text {max }}$ is the maximum iterative number of the heuristic computation, E is identity matrix, and J_{k}^{l-1} represents the sparse pattern of the k th column of the preconditioner M at the $l-1$ st iteration. C_{k}^{0} is equal to initial sparse pattern of the k th column of the preconditioner $M\left(J_{k}^{0}\right)$. Third, save the indices that appear in C_{k}^{l} but not in J_{k}^{l-1} into set \tilde{J}_{k}^{l}. Fourth, to avoid excessive computation, the elements in \tilde{J}_{k}^{l} need to be reduced. In detail, for each candidate index $j\left(j \in \tilde{J}_{k}^{l}\right)$, consider the following one-dimensional minimization problem:

$$
\begin{equation*}
\min _{\mu_{j} \in R}\left\|r_{k}+\mu_{j} A e_{j}\right\|=: \rho_{j} \tag{8}
\end{equation*}
$$

Then, ρ_{j}^{2} can be presented by

$$
\begin{equation*}
\rho_{j}^{2}=\left\|r_{k}\right\|_{2}^{2}-\left(\frac{r_{k}^{T} A e_{j}}{\left\|A e_{j}\right\|_{2}}\right)^{2} \tag{9}
\end{equation*}
$$

For each $j \in \tilde{J}_{k}^{l}$, if its corresponding ρ_{j} is smaller, then it will be considered the most profitable index and retained, otherwise it will be deleted. Fifth, utilize the deleted set \tilde{J}_{k}^{l}, the new row indices set $\tilde{I_{k}^{l}}$ is determined, and then execute the QR decomposition of the new submatrix $A\left(\tilde{I}_{k}^{l-1} \cup \tilde{I}_{k}^{l}, J_{k}^{l-1} \cup \tilde{J}_{k}^{l}\right)$. Finally, compute new $m_{k}\left(m_{k}\left(J_{k}^{l-1} \cup \tilde{J}_{k}^{l}\right)\right), r_{k}$, and $\left\|r_{k}\right\|_{2}$. If r_{k} satisfies the loop-stopping condition, the algorithm stops; otherwise, set $l=l+1$ and then the loop continues. Furthermore, to maintain the sparsity of preconditioner, it sets the filling threshold for each column of $M\left(u_{k}\right)$ by the following equation

$$
\begin{equation*}
u_{k}=\alpha \cdot x_{k} \tag{10}
\end{equation*}
$$

where α is a small real number and x_{k} is the nonzero number of the k th column of A. Algorithm 2 shows its detailed procedure of Heuristic SPAI preconditioning algorithm based on double precision (HeuriSPAI for short), where $\left|J_{k}^{l-1}\right|$ denotes the length of set J_{k}^{l-1}.

Algorithm 2: Heuristic SPAI preconditioning algorithm (HeuriSPAI)
For every column $m_{k}, k=1,2, \cdots, n$ of M :

1) Choose an initial sparsity $J_{k}^{0}=\{k\}$, set $l=1, C_{k}^{0}=J_{k}^{0}$, a suitable tolerance $\varepsilon, l_{\max }$, and compute u_{k} by (10);
2) Solve initial m_{k} by Algorithm 1 and compute r_{k} with double precision;
While $\left\|r_{k}\right\|_{2}>\varepsilon$ and $l<l_{\text {max }}$ and $\left|J_{k}^{l-1}\right|<u_{k}$:
3) Compute C_{k}^{l} by (7);
4) Save the indices that belong to C_{k}^{l} but not in J_{k}^{l-1} into set \tilde{J}_{k}^{l};
5) For every $j \in \tilde{J}_{k}^{l}$, compute ρ_{j}^{2} by (9), and delete from \tilde{J}_{k}^{l} all but the most profitable indices; (double precision)
6) Determine the new row indices $\tilde{I_{k}^{l}}$ and then execute the QR decomposition of the new submatrix $A\left(I_{k}^{l-1} \cup\right.$ $\left.\tilde{I}_{k}^{l}, J_{k}^{l-1} \cup \tilde{J}_{k}^{l}\right) ; \quad$ (double precision)
7) Compute new m_{k}, r_{k}, and $\left\|r_{k}\right\|_{2}$, then set $J_{k}^{l}=J_{k}^{l-1} \cup \tilde{J}_{k}^{l}$, $I_{k}^{l}=I_{k}^{l-1} \cup \tilde{I}_{k}^{l}, C_{k}^{l}=J_{k}^{l}$, and $l=l+1 ; \quad$ (double precision)

III. MIXED-PRECISION SPARSE APPROXIMATE INVERSE PRECONDITIONING ALGORITHM

A. MIXED-PRECISION STATIC SPARSE APPROXIMATE INVERSE PRECONDITIONING ALGORITHM

First, with original double-precision static SPAI preconditioning algorithm shown in Algorithm 1 as the research object , we describe the detailed procedure of the mixed-precision static SPAI preconditioning algorithm (see Algorithm 3). Analyzing Algorithm 3, when constructing the submatrix in the third step, it only involves the assignment of values and does not require inter-valued calculations, thus, singleprecision floating-point calculations are used to improve the read efficiency. In the fifth step, the single-precision floatingpoint computation is still used due to the complexity and timeconsuming of QR decomposition. In the sixth and seventh steps, the double-precision floating-point calculation is used to keep the output of the preconditioner with high accuracy, so that when it is applied to the iterative algorithm, the high precision computation is maintained and the accuracy of the solution is not lost.
Algorithm 3: Mixed-precision static SPAI preconditioning algorithm
For every column $m_{k}, k=1,2, \cdots, n$ of M :

1) Set $J_{k}=\left\{j \mid m_{k}(j) \neq 0\right\}$, and set its length as $n 2$;
2) Construct I_{k}, where its any element (i) makes $A\left(i, J_{k}\right)$ not all 0 , and set its length as $n 1$;
3) Construct submatrix \hat{A}_{k} where $\hat{A}_{k}=A\left(I_{k}, J_{k}\right)$ and $\hat{A}_{k} \in$ $\mathbb{R}^{n 1 \times n 2} ; \quad$ (single precision)
4) Perform QR decomposition on matrix \hat{A}_{k}, then, the orthogonal matrix $Q_{k} \in \mathbb{R}^{n 1 \times n 2}$ and the upper triangular matrix $R_{k} \in \mathbb{R}^{n 2 \times n 2}$ are obtained; (single precision)
5) Set $\hat{A}_{k}=Q_{k} R_{k}$, and then solve \hat{m}_{k} by (6); (double precision)
6) Scatter \hat{m}_{k} to m_{k}; (double precision)

Then, observing that, in Algorithm 3, coefficient matrix A requires single-precision input, while the double-precision coefficient matrix will still be used in iterative solving stage to ensure the robustness and convergence of the iterative algorithm. Therefore, the double-precision coefficient matrix A needs to be converted to a single-precision one on GPU and stored in the array $A 1$ before constructing the preconditioner. In addition, the conversion from high precision to low precision may result in numerical overflow, thus, to avoid the situation, we set those numerical overflow values uniformly to half of the maximum value that can be represented by single precision.

In summary, the complete procedure of mixed-precision static SPAI preconditioner applied to the Krylov iterative
algorithm for solving linear systems in (1) will be given below.

FIGURE 1. Main procedure of Krylov iterative algorithm with mixed-precision static SPAI preconditioner

Finally, based on proposed mixed-precision static SPAI preconditioning algorithm (see Algorithm 3), we give its extended version shown in Algorithm 4 to confirm its high performance. Compare to Algorithm 3, in Algorithm 4, the QR decomposition is performed in double precision, which improves orthogonality but increases time cost. Moreover, it employs single-precision computation in solving m_{k}, thereby reducing the effectiveness of the preconditioner M.

Algorithm 4: The extended version of mixed-precision static SPAI preconditioning algorithm
For every column $m_{k}, k=1,2, \cdots, n$ of M :

1) Set $J_{k}=\left\{j \mid m_{k}(j) \neq 0\right\}$, and set its length as $n 2$;
2) Construct I_{k}, where its any element (i) makes $A\left(i, J_{k}\right)$ not all 0 , and set its length as $n 1$;
3) Construct submatrix \hat{A}_{k} where $\hat{A}_{k}=A\left(I_{k}, J_{k}\right)$ and $\hat{A}_{k} \in$ $\mathbb{R}^{n 1 \times n 2} ; \quad$ (single precision)
4) Perform QR decomposition on matrix \hat{A}_{k}, then, the orthogonal matrix $Q_{k} \in \mathbb{R}^{n 1 \times n 2}$ and the upper triangular matrix $R_{k} \in \mathbb{R}^{n 2 \times n 2}$ are obtained; (double precision)
5) Set $\hat{A}_{k}=Q_{k} R_{k}$, and then solve \hat{m}_{k} by (6); (single precision)
6) Scatter \hat{m}_{k} to m_{k}; (single precision)

B. MIXED-PRECISION HEURISTIC SPARSE APPROXIMATE INVERSE PRECONDITIONING ALGORITHM

First, with original double-precision heuristic SPAI preconditioning algorithm shown in Algorithm 2 as the research object, we give the computational procedure of the mixedprecision heuristic sparse approximate inverse preconditioning algorithm, which is given below:
Algorithm 5: Mixed-precision heuristic sparse approximate inverse preconditioning algorithm
For every column $m_{k}, k=1,2, \cdots, n$ of M :

1) Choose an initial sparsity $J_{k}^{0}=\{k\}$, set $l=1, C_{k}^{0}=J_{k}^{0}$, a suitable tolerance $\varepsilon, l_{\max }$, and compute u_{k} by (10);
2) Solve initial m_{k} using Algorithm 3 and compute r_{k} with double precision;
While $\left\|r_{k}\right\|_{2}>\varepsilon$ and $l<l_{\max }$ and $\left|J_{k}^{l-1}\right|<u_{k}$:
3) Compute C_{k}^{l} by (7);
4) Save the indices that belong to C_{k}^{l} but not in J_{k}^{l-1} into set \tilde{J}_{k}^{l};
5) For every $j \in \tilde{J}_{k}^{l}$, compute ρ_{j}^{2} by (9), and delete from \tilde{J}_{k}^{l} all but the most profitable indices; (single precision)
6) Determine the new row indices $\tilde{I_{k}^{l}}$ and then execute the QR decomposition of the new submatrix $A\left(I_{k}^{l-1} \cup\right.$ $\left.\tilde{I}_{k}^{l}, J_{k}^{l-1} \cup \tilde{J}_{k}^{l}\right) ; \quad$ (single precision)
7) Compute new m_{k}, r_{k}, and $\left\|r_{k}\right\|_{2}$, then set $J_{k}^{l}=J_{k}^{l-1} \cup \tilde{J}_{k}^{l}$, $I_{k}^{l}=I_{k}^{l-1} \cup \tilde{I}_{k}^{l}, C_{k}^{l}=J_{k}^{l}$, and $l=l+1 ; \quad$ (double precision)

Then, observing Algorithm 5, in the initial stage, it computes initial $m_{k}, k=1,2, \cdots, n$ with Algorithm 3, and utilizes double precision to compute r_{k} and $\left\|r_{k}\right\|_{2}$. In the loop finding filling indices stage, it is experimentally found that for different j, their corresponding ρ values are generally different, so that single-precision computing does not affect the final choice of the potential filling indices. In addition, as in Algorithm 3, single precision is used in step 6, while double precision is used in step 7.

In summary, the complete procedure of mixed-precision heuristic SPAI preconditioner applied to the Krylov iterative algorithm for solving linear systems is likewise given below:

FIGURE 2. Main procedure of Krylov iterative algorithm with mixed-precision heuristic SPAI preconditioner

Finally, in order to prove the high performance of proposed mixed-precision heuristic sparse approximate inverse preconditioning algorithm (see Algorithm 5), we also give its extended version shown in Algorithm 6. Different from Algorithm 5, in Algorithm 6, the extended version of mixed-precision static SPAI preconditioning algorithm (see Algorithm 4) is used to solve initial m_{k}. The QR decomposition is performed in double precision, which improves orthogonality but increases time cost. Besides that, single precision is utilized to solve m_{k}, thereby reducing the effectiveness of the preconditioner M.

Algorithm 6: The extended version of of mixed-precision heuristic sparse approximate inverse preconditioning algorithm
For every column $m_{k}, k=1,2, \cdots, n$ of M :

1) Choose an initial sparsity $J_{k}^{0}=\{k\}$, set $l=1, C_{k}^{0}=J_{k}^{0}$, a suitable tolerance $\varepsilon, l_{\max }$, and compute u_{k} by (10);
2) Solve initial m_{k} using Algorithm 4 and compute r_{k} with double precision;
While $\left\|r_{k}\right\|_{2}>\varepsilon$ and $l<l_{\text {max }}$ and $\left|J_{k}^{l-1}\right|<u_{k}$:
3) Compute C_{k}^{l} by (7);
4) Save the indices that belong to C_{k}^{l} but not in J_{k}^{l-1} into set \tilde{J}_{k}^{l};
5) For every $j \in \tilde{J}_{k}^{l}$, compute ρ_{j}^{2} by (9), and delete from \tilde{J}_{k}^{l} all but the most profitable indices; (single precision)
6) Determine the new row indices $\tilde{I_{k}^{l}}$ and then execute the QR decomposition of the new submatrix $A\left(I_{k}^{l-1} \cup\right.$ $\left.\tilde{I}_{k}^{l}, J_{k}^{l-1} \cup \tilde{J}_{k}^{l}\right) ; \quad$ (double precision)
7) Compute new $\underset{\tilde{I_{k}}}{m_{k}}, r_{k}$, and $\left\|r_{k}\right\|_{2}$, then set $J_{k}^{l}=J_{k}^{l-1} \cup \tilde{J}_{k}^{l}$, $I_{k}^{l}=I_{k}^{l-1} \cup \tilde{I}_{k}^{l}, C_{k}^{l}=J_{k}^{l}$, and $l=l+1 ; \quad$ (single precision)

IV. PARALLEL IMPLEMENTATION OF MIXED PRECISION SPARSE APPROXIMATE INVERSE PRECONDITIONING ALGORITHM ON GPU

First, the parallel version of mixed-precision static SPAI preconditioning algorithm, called MP-SSPAI, is given as below, which includes three stages:

Pre-MP-SSPAI stage

First, allocate global memory to A on GPU. Second, as mentioned early, preconditioner M is computed in parallel by column, thus, all of $A, A 1$ and M are stored in CSC(Compressed Sparse Column) format, which includes three arrays: $A_{-} c D a t a, A_{-} c I n d e x$ and $A_{-} c P t r$. Third, to facilitate the calculation of matrix-vector product in iterative process, convert the storage format of A and M into CSR(Compressed Sparse Row), which also includes three arrays: $A_{-} r$ Data, A_{-}rIndex and $A_{-} r$ Ptr. Fourth, to simplify the accesses of data in memory and enhance the coalescence, the dimensions of all local submatrices (e.g., $\left.\widehat{A}_{k}\left(n 1_{k}, n 2_{k}\right)\right)$ are uniformly defined as (maxI, maxJ), where $\max I=\max _{k}\left\{n 1_{k}\right\}$ and $\max J=\max _{k}\left\{n 2_{k}\right\}$. Finally, allocate global memory to these arrays used in MP-SSPAI shown in Table 1, where $I=$ $\left\{I_{1}, I_{2}, \cdots, I_{k}, \cdots, I_{n}\right\}$ and $J=\left\{J_{1}, J_{2}, \cdots, J_{k}, \cdots, J_{n}\right\}$.

TABLE 1. Arrays Used in MP-SSPAI

Arrays	Size	Type	Arrays	Size	Type
A_cData	nonzeros	single	jPTR	$n_{1}{ }^{\text {a }}$	integer
A_cIndex	nonzeros	integer	J	$n_{1} \times \operatorname{maxJ}{ }^{\text {b }}$	integer
A_cPtr	$n+1$	integer	iPTR	n_{1}	integer
A1_rData	nonzeros	double	I	$n_{1} \times \max ^{\text {c }}$	integer
A1_rIndex	nonzeros	integer	\hat{m}	$n_{1} \times \max J$	double
A1_rPtr	$n+1$	integer	$\hat{A}(Q)$	$n_{1} \times \max I \times \max J$	single
atom	n	integer	R	$n_{1} \times \max J \times \max J$	single

${ }^{\mathrm{a}}$ The number of columns executed in parallel at one time.
${ }_{\mathrm{c}}^{\mathrm{b}}$ The maximum of padding toplimits of all columns of M.
${ }^{c}$ The maximum number of row indices of M.

Compute-MP-SSPAI stage

In this stage, a thread group consisted of z threads is used to compute one column of M (e.g., m_{k}). Thus, it can compute $512 / z$ columns in parallel when a block is assigned 512 threads. And further columns of M can be computed simultaneously by multiple blocks. For z, assume that the number of theads in a block is set to 256 , it varies with the value of maxJ of sparse matrix. Its principal thought is: if maxJ is less than or equal to 2 , we set z to 2 ; if maxJ belongs to the right closed interval 2 to $4, z$ is set to 4 ; and so on until maxJ exceeds upper bound $256, z$ is set to 256 . In addition, one m_{k} is computed in parallel by z threads. Taking m_{k} as an example, its specific process is shown below:

1) Determine J_{k} : Threads within a thread group are assigned to write its row indices of nonzero entries of M into J_{k} in parallel.
2) Determine I_{k} : Firstly, for c, the first element of J_{k}, threads in the thread group load row indices of $A(:, c)$
into I_{k} in parallel. Then, for other elements of J_{k}, namely, the corresponding columns of A, row indices of them are compared successively with elements in I_{k}. Those indices not in I_{k} will be appended into I_{k} using the atomic operations. Finally, these elements in I_{k} are sorted in ascending order in parallel.
3) Construct \hat{A}_{k} : After determining J_{k} and I_{k}, a thread group is assigned to construct submatrix $\hat{A}_{k}=$ $A\left(I_{k}, J_{k}\right)$. And it includes two steps: firstly, load row indices of I_{k} in parallel, then, determine the elements of \hat{A} according to column indices of J_{k}. The Figs. 3 and 4 show the kernel and main procedure of constructing submatrix \hat{A}_{k}, respectively.
4) Decompose \hat{A}_{k} to $Q_{k} R_{k}$: A thread group is assigned to perform one $Q_{k} R_{k}$ decomposition. To be more efficient, shared memory is utilized in this stage. The kernel and main procedure of $Q R$ decomposition are shown in Figs. 5 and 6, respectively. As shown in Fig. 6, for each loop i, firstly, read the i th column of \hat{A}_{k} into Q_{k} in parallel. Second, compute $R_{k}(i, i: A N)$ and save them into shared memory $R_{-} s$ in parallel. Third, normalize column i of Q_{k} and compute projection factors $R_{k}(i, i: A N)$ and the corresponding $R_{-} s$ in parallel. Finally, update Q_{k} using shared memory $R_{-} s$.
5) Compute \hat{m}_{k} : As mentioned in Algorithm $1, \hat{m}_{k}=$ $R_{k}^{-1} Q_{k}^{T} \hat{e}_{k}$. Thus, inside a thread group, firstly, we compute $Q_{k}^{T} \hat{e}_{k}$ in parallel. And then a upper triangular linear $\operatorname{system}\left(R_{k} \hat{m}_{k}=Q_{k}^{T} \hat{e}_{k}\right)$ is solved to gain \hat{m}_{k} in parallel. Similarly, we give its kernel and main procedure in Figs. 7 and 8.
```
template <unsigned int WarpSize>
    global__ void Compute Ahat(float *Ahat, float *A_cData, int *A_cPtr, int
    *}\mp@subsup{A}{_}{\prime}cInd\overline{dex},\mathrm{ int }n,\mathrm{ int *II, int *}\mp@subsup{}{iPTR, int * J, int *jPTR, int MAXI, int MAXX}{
    int gid = blockIdx.x* blockDim.x + threadIdx.x;
    int offset = blockDim.x /WarpSize * gidDim.x;
    int Warp_id = gid / WarpSize;
    int lane = gid & (WarpSize - 1 );
    int col,i,irow, j, jcol, jcol_b,jcol_e, jcol1, AM, AN;
    float idata;
    for(col = warp_id;col <n; col + =offset ){
    AM = iPTR[col ];
    AN = jPTR[col];
    for(i=0;i<AM;i++){
        irow = I[col* MAXI +i];
        for( }j=\mathrm{ lane ; }j<AN;j+=\mathrm{ warpSize ){
            jcol = J[col* MAXJ + j];
            jcol_b = A_cPtr[jcol];
            jcol_e = A_cPtr[jcol +1];
            idata = 0.0;
            for( jcol1 = jcol_b; jcol1< jcol__ e; jcol 1++){
                if( A_cIndex[j-
                    idata = A_cData[jcol1];
                    break;
            }
            }
            Ahat[col* MAXI* MAXJ + iMAXJ + j] = idata;
        }
        _ syncthreads();
    }
}
```

FIGURE 3. Kernel of constructing submatrix \boldsymbol{A}

Post-MP-SSPAI stage

FIGURE 4. Main procedure of constructing submatrix \boldsymbol{A}

```
template <unsigned int WarpSize, unsigned int Size_R_Shared >
    global__ void QRDecomposition with Shared Memory(float * Q, float * R,
    int }n,\mathrm{ int *}\mp@subsup{*}{iPTR, int *}{jPTR, int MAXI, int MAXJ ) {
    shared__float R_s[Size_R_Shared];
    int gid = blockIdx.}
    int offset = blockDim.x /WarpSize * gidDim.x;
    int Warp_id = gid / WarpSize;
    int lane = gid & (WarpSize}-1
    int tid = threadIdx.x/WarpSize;
    int col,i,j,k,AM,AN;
    float rii,tR;
    int segR=Size _R_Shared *WarpSize / blockDim.x ;
    for(col = warp_id;col <n; col + = offset ){
    AM = iPTR[col];
    AN = jPTR[col];
    for( }i=0;i<AN;i++)
        for( j=lane +i;j<AN;j+= warpSize ){
        tR=0.0;
        for( }k=0;k<AM;k++)
            tR+=Q[col*MAXI*MAXJ +i+k*MAXJ]
                +Q[col* MAXI* MAXJ +j+k*MAXJ ];
        }
        R_s[tid* segR+j-i]=tR;
        }
        syncthreads();
        rii}=\operatorname{sqrt(R_s[tid}\mp@subsup{}{}{*}\operatorname{seg}R])
        for( j=lane ; j<AM; j+=WarpSize ){
            Q[col*MAXI*MAXJ +j*MAXJ +i]/=rii;
        }
        _syncthreads();
        for( j= lane +i;j<AN;j+= WarpSize )
            R_s[tid* segR+j-i]/=rii;
            R[\mp@subsup{col}{}{*}MAXJ* MAXJ +i*MAXJ +j]/ = R_s[tid}*\operatorname{segR}+j-i]
        }
            syncthreads();
        for(}j=\mathrm{ lane +i+1;j<AN;j+=WarpSize ){
            for( }k=0;k<AM;k++)
                Q[col* MAXI*MAXJ + k* MAXJ +j]-= R_s[tid* segR +j-i]
        }
                    * Q[col* MAXI * MAXJ + k}\mp@subsup{}{}{*}MAXJ + i]
        }
            _syncthreads();
    }
}
```

FIGURE 5. Kernel of $Q R$ decomposition

FIGURE 6. Main procedure of $Q R$ decomposition

```
template <unsigned int WarpSize>
    global__ void Solve M (float * Q, float * R, double * X, int * }E\mathrm{ ,
    int n, int *jPTR, int MAXI, int MAXJ ){
    int gid = blockIdx.x * blockDim.x + threadIdx.x;
    int offset = blockDim.x /WarpSize * gidDim.x ;
    int Warp_id = gid / WarpSize;
    int lane = gid & ( WarpSize - 1 );
    int col,i,j,AN;
    for(col=warp_id;col <n;col +=offset ){
        AN = jPTR[col ];
        f(E(col)==-1){
            for( }i=\mathrm{ lane ; i<AN;i+= warpSize ){
            X[col*MAXJ +i]=0.0;
        }
        }else{
            for( }i=\mathrm{ lane ; i<AN; i+= warpSize ) {
                X[col*}MAXJ+i]=Q[col*MAXI*MAXJ + E[col ]*MAXJ +i]
        }
    }
        syncthreads();
        for( i=AN-1;i\geq0;i-- ){
            if(lane == 0){X[col*MAXJ +i]/=R[col*MAXJ*MAXJ +i];}
            syncthreads();
            for( }j=\mathrm{ lane ; j<i;j+= warpSize ){
                X[col* MAXJ +j]-= R[col*MAXJ*MAXJ +j*MAXJ +i]
                            * X[col* MAXJ + i];
        }
            _syncthreads();
    }
}
```

FIGURE 7. Kernel of solving upper triangular linear systems

FIGURE 8. Main procedure of solving upper triangular linear systems

This stage is to assemble M in the CSC storage format, and store it to the MPtr, MIndex, and MData arrays. it includes the following steps:

1) On the GPU, we assemble MPtr using $J P T R$;
2) Utilizing \widehat{m}_{k} and J_{k} to assemble MData and MIndex. Each warp is responsible for assembling one \widehat{m}_{k} to MData and one J_{k} to MIndex in parallel.
Obviously, MPtr, MIndex, and MData arrays are generated on the GPU memory and do not need to be transferred to the CPU.

Then, the parallel version of mixed-precision heuristic SPAI preconditioning algorithm, called MP-HeuriSPAI, is given. It also consists of the following three phases:

Initial-MP-HeuriSPAI stage

In this phase, first, allocate memory for coefficient matrix A on GPU. Second, the upper bounds of the filling nonzero elements in each column are computed in parallel. Then, appropriate memory is allocated for the main arrays (as shown in Table 2). Finally, the parallel implementation of MP-SSPAI is used to compute the initial m_{k} and r_{k}.

Compute-MP-HeuriSPAI stage

This stage is basically the same as the computing stage of HeuriSPAI in literature [33], except that single precision com-

TABLE 2. Arrays Used in MP-HeuriSPAI

Arrays	Size	Type	Arrays	Size	Type
AData	nonzeros	double	$J P T R$	n	integer
AIndex	nonzeros	integer	J	$n \times$ max J	integer
APtr	$n+1$	integer	$I P T R$	n	integer
CData	$n \times \max I$	double	I	$n \times \max I$	integer
CIndex	$n \times \operatorname{maxI}$	integer	\hat{J}	$n \times \max J$	integer
CPtr	n	integer	$\tilde{J} P T R$	n	integer
\hat{A}	$n \times \max I \times \max J$	single	\tilde{I}	$n \times \max I$	integer
Q	$n \times \max I \times \max J$	single	$\tilde{I} P T R$	n	integer
R	$n \times \max J \times \max J$	single	\hat{m}	$n \times \max J$	double
atom	n	integer	\hat{r}	$n \times \max I$	double

putation will be used in the computation of ρ, the construction of the submatrix $A\left(I_{k} \cup \tilde{I}_{k}, J_{k} \cup \tilde{\cup}_{k}\right)$, and its QR decomposition, as detailed in literature [33].

Post-MP-SSPAI stage

This stage is also to assemble M in the CSC storage format.

v. EFFECTIVENESS ANALYSIS AND PERFORMANCE EVALUATION

In this section, we evaluate the performance of MP-SSPAI and MP-HeuriSPAI. Table 3 shows the overview of NVIDIA GPUs that are used in the performance evaluation. The test matrices are selected from the SuiteSparse Matrix Collection [47], and have been widely used in some previous work [18], [32], [33], [44]. Table 4 gives the information of the sparse matrices, including the name, kind, number of rows, total number of nonzeros, and positive definiteness. In addition, the constructed preconditioner is applied to GPUPBICGSTAB (a parallel implementation of the preconditioned BICGSTAB on GPU using the CUBLAS [45] and CUSPARSE [46] libraries). And the source codes are compiled and executed using the CUDA toolkit 11.0 [1]. Note that in all experiments below, iteration stops when the residual error is less than $1 e^{-7}$ or the number of iterations exceeds 10,000 .

TABLE 3. Overview of GPUs

Hardware	GTX1070	TITANXp
Cores	1920	3840
Clock speed (GHz)	1.506	1.480
Memory type	GDDR5	GDDR5X
Memory size (GB)	8	12
Max-bandwidth $(\mathrm{GB} / \mathrm{s})$	256	548
Compute capability	6.1	6.1

A. EFFECTIVENESS ANALYSIS

First of all, we evaluate the effectiveness of MP-SSPAI by comparing it with original static SPAI preconditioning algorithm (SSPAI). The selected test matrices are same as literature [44]. Both of GPUPBICGSTAB with SSPAI and GPUPBICGSTAB with MP-SSPAI are used to solve $A x=b$. Table 5 gives the comparison results of GPUPBICGSTAB with SSPAI and GPUPBICGSTAB with MP-SSPAI on GTX1070, where "Iters", "preTime" and "allTime" represent the number of iterations, preprocessing time (the execution time of

TABLE 4. Descriptions of Test Matrices

Name	Kind	Rows	Nonzeros	PositiveDefinite
cbuckle	structural	13,681	676,515	yes
gyro_m	duplicate model reduction	17,361	340,431	yes
venkat01	CFD sequence	62,424	1,717,792	no
2cubes_sphere	electromagnetics	101,492	1,647,264	yes
imagesensor	semiconductor device	118,758	1,446,396	no
cfd2	CFD	123,440	3,085,406	yes
power9	semiconductor device	155,376	1,887,730	no
majorbasis	optimization	160,000	1,750,416	no
stomach	2D/3D	213,360	3,021,648	no
CurlCurl_1	model reduction	226,451	2,472,071	no
offshore	electromagnetics	259,789	4,242,673	yes
ASIC_320ks	circuit simulation	321,671	1,316,085	no
test1	semiconductor device	392,908	9,447,535	no
msdoor	structural	415,863	19,173,163	yes
CoupCons3D	structural	416,800	17,277,420	no
Fault_639	structural	638,802	27,245,944	yes
apache2	structural	715,176	4,817,870	yes
t2em	electromagnetics	921,632	4,590,832	no
thermal2	thermal	1,228,045	8,580,313	yes
atmosmodd	CFD	1,270,432	8,814,880	no
Geo_1438	structural	1,437,960	60,236,322	yes
G3_circuit	circuit simulation	1,585,478	7,660,826	yes
af23560	CFD	23,560	460,598	no
FEM_3D_thermal2	thermal	147,900	3,489,300	no
cage13	directed weighted graph	445,315	7,479,343	no
af_shell3	subsequent structural	504,855	17,562,051	yes
parabolic_fem	CFD	525,825	3,674,625	yes
ecology2	2D/3D	999,999	4,995,991	yes

preconditioner), and total runtime(the execution time of preconditioner and iterative algorithm), respectively. In addition, $P_{\text {preTime }}$ and $P_{\text {allime }}$ indicate the reduction rate of preprocessing time of MP-SSPAI relative to original SSPAI and total runtime of GPUPBICGSTAB with MP-SSPAI relative to GPUPBICGSTAB with SSPAI, respectively. For all experiments, the minimum value of total runtime is marked in red for all selected sparse matrices.

Observing Table 5, compared to SSPAI, firstly, MPSSPAI has shorter execution time for all test matrices. Then, from the analysis of iterations, for cbuckle, gyro_m, cfd2, CurlCurl_1, ASIC_320ks, msdoor, apache2, t2em, thermal2, Geo_1438, and G3_circuit, GPUPBICGSTAB with MP-SSPAI reduces their number of iterations. In particular, for matrices cfd2, msdoor, and apache2, their number of iterations are significantly reduced. After that, for matrices venkat01, 2 cubes_sphere, power 9 , majorbasis, stomach, offshore, CoupCons3D, Fault_639, and atmosmodd, GPUPBICGSTAB with MP-SSPAI keeps their number of iterations unchanged. Finally, GPUPBICGSTAB with MP-SSPAI also has shorter total execution time for all test matrices except for imagesensor. In addition, compared to SSPAI, for all

TABLE 5. Comparison Results of GPUPBICGSTAB with SSPAI and GPUPBICGSTAB with MP-SSPAI on GTX1070

Matrices	SSPAI			MP-SSPAI			$P_{\text {preTime }}$	$P_{\text {allTime }}$
	Iters	preTime	allTime	Iters	preTime	allTime		
cbuckle	96	8.009	8.395	94	7.802	8.107	2.6\%	3.4\%
gyro_m	180	0.818	1.189	178	0.704	1.153	1.2\%	3.0\%
venkat01	35	1.177	1.440	35	0.969	1.300	1.9\%	9.7\%
2cubes_sphere	4	0.851	1.172	4	0.734	1.029	13.7\%	12.2\%
imagesensor	52	0.343	0.692	976	0.274	1.259	20.1\%	-81.9\%
cfd2	1583	2.209	4.345	1375	1.823	3.822	38.6\%	12.0\%
power9	37	4.524	5.032	37	4.413	5.014	2.5\%	0.4\%
majorbasis	20	0.390	0.721	20	0.326	0.635	16.4\%	12.0\%
stomach	24	0.847	1.183	24	0.705	1.149	16.8\%	2.9\%
CurlCur_1	266	0.425	1.069	245	0.356	0.946	16.2\%	11.5\%
offshore	5	2.216	2.551	5	1.891	2.180	14.7\%	14.5\%
ASIC_320ks	10	4.918	5.269	8	4.629	4.941	5.9\%	6.2\%
test1	14	21.150	21.497	57	19.848	20.817	6.2\%	3.2\%
msdoor	892	61.099	66.456	626	57.854	60.379	5.3\%	9.1\%
CoupCons3D	52	77.494	78.102	52	73.377	73.879	5.3\%	5.4\%
Fault_639	1226	190.716	200.646	1226	183.426	192.767	3.8\%	3.9\%
apache2	1090	0.237	3.697	996	0.155	2.759	34.6\%	25.4\%
t2em	755	0.079	2.793	673	0.064	2.398	19.0\%	14.1\%
thermal2	2086	0.374	11.508	1920	0.281	9.659	24.9\%	16.1\%
atmosmodd	135	0.402	1.408	135	0.244	1.228	39.3\%	12.8\%
Geo_1438	339	148.765	154.977	330	133.783	139.548	10.1\%	10.0\%
G3_circuit	468	0.150	3.032	455	0.118	2.903	21.3\%	4.3\%

matrices, the preprocessing time of MP-SSPAI can be reduced by up to 39.3%, with an average reduction of 14.6%, while the total runtime of GPUPBICGSTAB with MP-SSPAI can be reduced by up to 25.4% relative to GPUPBICGSTAB with SSPAI, with an average reduction of 9.1% (except for imagesensor). To further demonstrate the superiority of MP-SSPAI performance, Fig. 9 shows the ratio of execution time of SSPAI to MP-SSPAI and total runtime of GPUPBICGSTAB with SSPAI to GPUPBICGSTAB with MP-SSPAI. Based on above analysis, MP-SSPAI is effective and widely applicable.

FIGURE 9. Ratio of execution time of SSPAI to MP-SSPAI and total runtime of GPUPBICGSTAB with SSPAI to GPUPBICGSTAB with MP-SSPAI

Then, to test the effectiveness of MP-HeuriSPAI, it was compared with HeuriSPAI [33]. The selected test matrices are same as literature [33]. The comparison results are shown in Table 6, where "Iters", "preTime", "allTime", $P_{\text {preTime }}$, and $P_{\text {allitime }}$ are the same as in Table 5.
Observing Table 6, firstly, we can see that the execution time of MP-HeuriSPAI is shorter than that of HeuriSPAI for all test matrices. Next, compared to GPUPBICGSTAB with HeuriSPAI, for gyro_m, af23560, af_shell3, and parabolic_fem, the number of iterations of GPUPBICGSTAB with

TABLE 6. Comparison Results of the GPUPBICGSTAB with HeuriSPAI and GPUPBICGSTAB with MP-HeuriSPAI on GTX1070

Matrices	HeuriSPAI			MP-HeuriSPAI			$P_{\text {preTime }}$	$P_{\text {allTime }}$
	Iters	preTime	allTime	Iters	preTime	allTime		
gyro_m	96	2.598	2.956	89	1.753	2.078	32.5\%	29.7\%
af23560	291	1.565	1.995	290	0.997	1.414	36.3\%	29.1\%
wenkat01	25	2.323	2.676	25	1.605	1.942	30.9\%	27.4\%
imagesensor	22	0.778	1.122	22	0.638	1.057	19.3\%	5.8\%
FEM_3D_thermal2	9	0.859	1.194	9	0.622	0.924	27.6\%	22.6\%
ASIC_320ks	8	7.675	8.020	8	5.369	5.587	30.0\%	30.3\%
cage 13	8	0.922	1.241	8	0.664	0.951	28.0\%	23.4\%
af_shell3	441	37.873	52.634	421	34.308	48.891	9.4\%	7.1\%
parabolic_fem	288	0.883	2.354	279	0.649	2.085	26.5\%	11.4\%
apache2	694	0.975	3.634	697	0.727	3.320	25.4\%	8.6\%
t2em	574	0.659	3.253	583	0.511	3.216	22.4\%	1.1\%
ecology2	2665	0.701	12.531	2700	0.558	13.001	20.4\%	-3.8\%
thermal2	1449	2.681	12.179	1449	1.954	12.063	27.1\%	1.0\%
atmosmodd	117	0.991	1.976	117	0.722	1.675	27.1\%	15.2\%
G3_circuit	330	1.189	3.791	330	0.917	3.593	22.9\%	5.2\%

MP-HeuriSPAI is smaller, while it keeps unchanged for venkat01, imagesensor, FEM_3D_thermal2, ASIC_320ks, cage 13, thermal2, atmosmodd, and G3_circuit. Moreover, for matrices apache 2 and t2em, although GPUPBICGSTAB with MP-HeuriSPAI increases their number of iterations, it decreases their total execution time. And for all matrices except ecology2, the total execution time of GPUPBICGSTAB with MP-HeuriSPAI is less than that of the GPUPBICGSTAB with HeuriSPAI. In addition, for all matrices, the preprocessing time of MP-HeuriSPAI can be reduced by up to 36.3% relative to HeuriSPAI, with an average reduction of 25.7%, while the total runtime of GPUPBICGSTAB with MP-HeuriSPAI can be reduced by up to 30.3% relative to GPUPBICGSTAB with HeuriSPAI, with an average reduction of 14.5% (except for ecology2). To further prove the superiority of MP-HeuriSPAI performance, Fig. 10 shows the ratio of execution time of HeuriSPAI to MP-HeuriSPAI and total runtime of GPUPBICGSTAB with HeuriSPAI to GPUPBICGSTAB with MPHeuriSPAI. The above analysis shows that MP-HeuriSPAI is effective.

FIGURE 10. Ratio of execution time of HeuriSPAI to MP-HeuriSPAI and total runtime of GPUPBICGSTAB with HeuriSPAI to GPUPBICGSTAB with MP-HeuriSPAI

B. PERFORMANCE EVALUATION

In this subsection, firstly, using SSPAI as the standard, we compare MP-SSPAI with the single-precision version of the
static SPAI preconditioning algorithm (denoted as S-SSPAI), and its extended version(denoted as MP1-SSPAI) shown in Algorithm 4. In addition, this experiment will be performed on both NVIDIA GTX1070 and TITANXp GPUs, and test matrices are same as Table 5 . The results are shown in Tables 7 and 8 . In Tables 7 and 8, for each matrix, the first row is the number of iterations when GPUPBICGSTAB stops, the second row is the execution time of preconditioners, and the third row is the total execution time, which includes the execution time of preconditioner and iterative algorithm. In addition, for all experiments, the minimum value of total execution time is marked in red for all selected sparse matrices.

From Table 7, we can see that on GTX1070 GPU, compared with SSPAI, for all matrices except test1, S-SSPAI can effectively reduce their execution time. However, for cbuckle, inagesensor, cfd2, ASIC_320ks, msdoor etc. 12 matrices, the number of iterations of GPUPBICGSTAB with S-SSPAI is increased, and its total execution time is also increased for matrices inagesensor, cfd2, apache2, t2em, thermal2, atmosmodd, and G3_circuit. In particular, for matrix test1, GPUPBICGSTAB with S-SSPAI does not converge under the iterative stopping condition. For MP1-SSPAI, it effectively reduces the execution time for most matrices. However, for cbuckle, gyro_m, inagesensor, cfd2, CurlCurl_1, etc. 11 test matrices, the number of iterations of GPUPBICGSTAB with MP1-SSPAI is increased, and for inagesensor, cfd2, thermal2, etc. 9 test matrices, the total execution time is also increased. In particular, for test1, it does not converge under the iteration stopping condition. For MP-SSPAI, the analysis of Table 5 shows that it not only has high effectiveness and computational efficiency, but also is more stable and applicable. Further, on TITANXp GPU, analyzing Table 8, we can see that the performance of MP-SSPAI is also better than that of SSPAI, S-SSPAI, and MP1-SSPAI.
Then, using HeuriSPAI as the standard, this subsection compares MP-HeuriSPAI with a single precision version of HeuriSPAI (denoted as S-HeuriSPAI) and its extended version(denoted as MP1-HeuriSPAI) shown in Algorithm 6. Tables 9 and 10 provide their comparison results on GTX1070 and TITANXp, respectively.

From Tables 9 and 10, we can see that on both of GTX1070 and TITANXp, firstly, the execution time of S-HeuriSPAI is shorter than that of HeuriSPAI for all test matrices except imagesensor. However, for af 23560, ASIC_320ks, af_shell3, parabolic_fem, apache2, t2em, ecology2, and thermal2, the number of iterations of GPUPBICGSTAB with S-HeuriSPAI is significantly higher than that of GPUPBICGSTAB with HeuriSPAI, especially for imagesensor, GPUPBICGSTAB with S-HeuriSPAI does not converge under the iteration stopping condition. Considering the total execution time, for parabolic_fem, t2em, ecology2 and thermal2, GPUPBICGSTAB with S-HeuriSPAI has longer total execution time than that of GPUPBICGSTAB with HeuriSPAI. The above analysis shows that S-HeuriSPAI does not improve the performance of HeuriSPAI. For MP1-HeuriSPAI, the analysis shows that overall, its performance is comparable to that of S-
table 7. Comparison Results of the GPUPBICGSTAB with SSPAI, GPUPBICGSTAB with S-SSPAI, GPUPBICGSTAB with MP1-SSPAI, and GPUPBICGSTAB with MP-SSPAI on GTX1070

Matrices	SSPAI	S-SSPAI	MP1-SSPAI	MP-SSPAI
cbuckle	96	98	106	94
	8.009	7.798	7.975	7.802
	8.395	8.137	8.401	8.107
gyro_m	180	180	181	178
	0.818	0.706	0.810	0.704
	1.189	1.161	1.174	1.153
venkat01	35	35	35	35
	1.177	0.982	1.036	0.969
	1.440	1.405	1.470	1.300
2cubes_sphere	4	4	4	4
	0.851	0.735	0.771	0.734
	1.172	1.036	1.067	1.029
imagesensor	52	2709	1304	976
	0.343	0.268	0.319	0.274
	0.692	2.469	1.528	1.259
cfd2	1583	1715	1670	1375
	2.209	1.814	1.897	1.823
	4.345	5.071	4.831	3.822
power9	37	37	37	37
	4.524	4.436	4.530	4.413
	5.032	5.018	5.034	5.014
majorbasis	20	20	20	20
	0.390	0.327	0.410	0.326
	0.721	0.637	0.717	0.635
stomach	24	24	24	24
	0.847	0.705	0.864	0.705
	1.183	1.152	1.174	1.149
CurlCurl_1	266	251	281	245
	0.425	0.353	0.376	0.356
	1.069	0.965	1.024	0.946
offshore	5	5	5	5
	2.216	1.877	1.991	1.891
	2.551	2.178	2.285	2.180
ASIC_320ks	10	33	14	8
	4.918	4.621	4.957	4.629
	5.269	5.049	5.276	4.941
test1	14	>10000	>10000	57
	21.150	1	1	19.848
	21.497	1	1	20.817
msdoor	892	980	775	626
	61.099	57.903	59.887	57.854
	66.456	65.749	64.562	60.379
CoupCons3D	52	52	52	52
	77.494	73.453	75.923	73.377
	78.102	74.054	76.450	73.879
Fault_639	1226	1282	1249	1226
	190.716	182.187	186.141	183.426
	200.646	194.881	196.242	192.767
apache2	1090	1199	1152	996
	0.237	0.151	0.166	0.155
	3.697	3.916	3.796	2.759
t2em	755	775	825	673
	0.079	0.062	1.005	0.064
	2.793	2.837	3.023	2.398
thermal2	2086	2922	2433	1920
	0.374	0.280	0.467	0.281
	11.508	16.529	13.344	9.659
atmosmodd	135	140	135	135
	0.402	0.349	0.288	0.244
	1.408	1.434	1.231	1.228
Geo_1438	339	372	411	330
	148.765	133.779	136.510	133.783
	154.977	140.537	143.933	139.548
G3_circuit	468	470	464	455
	0.150	0.116	0.130	0.118
	3.032	3.172	2.916	2.903

TABLE 8. Comparison Results of the GPUPBICGSTAB with SSPAI, GPUPBICGSTAB with S-SSPAI, GPUPBICGSTAB with MP1-SSPAI, and GPUPBICGSTAB with MP-SSPAI on TITANXP

Matrices	SSPAI	S-SSPAI	MP1-SSPAI	MP-SSPAI
cbuckle	96	100	105	95
	4.886	4.798	4.672	4.341
	5.272	5.014	5.278	4.884
gyro_m	180	180	183	178
	0.577	0.465	0.569	0.457
	0.946	0.917	0.931	0.910
venkat01	35	35	35	35
	1.118	0.923	0.977	0.910
	1.216	1.181	1.246	1.076
2cubes_sphere	4	4	4	4
	0.573	0.457	0.493	0.439
	0.942	0.806	0.837	0.799
imagesensor	52	2531	1130	823
	0.332	0.256	0.318	0.251
	0.571	2.048	1.107	1.038
cfd2	1601	1723	1690	1392
	1.512	1.384	1.577	1.385
	3.647	4.218	4.311	3.462
power9	37	37	37	37
	3.388	3.300	3.394	3.277
	4.107	4.003	4.110	3.916
majorbasis	20	20	20	20
	0.371	0.309	0.396	0.301
	0.683	0.541	0.679	0.524
stomach	24	24	24	24
	0.840	0.699	0.854	0.681
	1.153	1.144	1.167	1.139
CurlCurl_1	266	261	276	225
	0.301	0.229	0.245	0.214
	0.827	0.720	0.813	0.708
offshore	5	5	5	5
	1.752	1.413	1.527	1.414
	2.081	1.700	1.815	1.704
ASIC_320ks	10	35	19	8
	2.791	2.216	2.573	2.203
	4.397	4.192	4.406	3.826
test1	14	>10000	>10000	118
	14.297	/	,	9.741
	16.754	1	1	11.562
msdoor	1029	1183	823	697
	37.801	30.616	33.890	29.946
	41.375	36.102	38.241	34.335
CoupCons3D	52	52	52	52
	48.979	44.938	47.408	44.862
	49.658	45.610	48.006	45.435
Fault_639	1149	1226	1172	1149
	123.937	115.408	119.362	116.647
	129.867	127.102	125.463	121.988
apache2	1190	1223	1198	1030
	0.230	0.144	0.159	0.146
	3.751	3.970	3.853	3.664
t2em	824	844	893	742
	0.057	0.040	0.983	0.041
	1.952	1.996	2.182	1.557
thermal2	2086	2735	2107	1918
	0.363	0.276	0.415	0.268
	9.541	14.211	11.632	7.890
atmosmodd	135	140	135	135
	0.400	0.343	0.267	0.241
	1.403	1.429	1.337	1.205
Geo_1438	339	365	415	334
	101.544	91.925	94.645	91.617
	109.010	97.251	99.323	96.515
G3_circuit	468	489	460	451
	0.148	0.113	0.127	0.109
	3.161	3.167	2.875	2.736

TABLE 9. Comparison Results of the GPUPBICGSTAB with HeuriSPAI, GPUPBICGSTAB with S-HeuriSPAI, GPUPBICGSTAB with MP1-HeuriSPAI, and GPUPBICGSTAB with MP-HeuriSPAI on GTX 1070

Matrices	HeuriSPAI	S-HeuriSPAI	MP1-HeuriSPAI	MP-HeuriSPAI
gyro_m	96	96	99	89
	2.598	2.083	2.428	1.753
	2.956	2.509	2.782	2.078
af23560	291	292	290	290
	1.565	1.030	1.513	0.997
	1.995	1.446	1.941	1.414
venkat01	25	25	25	25
	2.323	1.618	2.041	1.605
	2.676	1.943	2.403	1.942
imagesensor	22	/	2670	22
	0.778	1	0.801	0.638
	1.122	1	2.472	1.057
FEM_3D_thermal2	9	9	9	9
	0.859	0.657	0.778	0.622
	1.194	0.958	1.112	0.924
ASIC_320ks	8	13	8	8
	7.675	5.361	7.454	5.369
	8.020	5.681	7.799	5.587
cage	8	8	8	8
	0.922	0.749	0.952	0.664
	1.241	1.031	1.268	0.951
af_shell3	441	502	449	421
	37.873	34.373	36.446	34.308
	52.634	52.108	53.340	48.891
parabolic_fem	288	301	288	279
	0.883	0.619	0.809	0.649
	2.354	2.422	2.200	2.085
apache2	694	702	714	697
	0.975	0.683	0.897	0.727
	3.634	3.334	3.621	3.320
t2em	574	662	634	583
	0.659	0.439	0.586	0.511
	3.253	3.362	3.418	3.219
ecology2	2665	2717	2910	2700
	0.701	0.509	0.613	0.558
	12.531	13.123	14.206	13.001
thermal2	1449	2012	1635	1449
	2.681	1.835	2.181	1.954
	12.179	14.862	12.855	12.063
atmosmodd	117	117	117	117
	0.991	0.716	0.880	0.722
	1.976	1.672	1.862	1.675
G3_circuit	330	327	332	330
	1.189	0.854	1.067	0.917
	3.791	3.407	3.690	3.593

HeuriSPAI. And for MP-HeuriSPAI, compare to HeuriSPAI, Table 6 shows it effectively improves the validity of preconditioners and the computational efficiency for most matrices on GTX1070. Further, on TITANXp, analysis of Table 10 shows that this conclusion still holds. In summary, MP-HeuriSPAI is effective and superior to HeuriSPAI, S-HeuriSPAI, and MP1HeuriSPAI.

The above experiments show that the proposed MP-SSPAI and MP-HeuriSPAI can improve the computational efficiency without increasing the number of iterations for most test matrices. why does the change in computational accuracy improve the convergence for most test matrices? In the transformation of the coefficient matrix A from double precision to single precision, although each data has only a small change, there is more data for large sparse matrices, and it involves complex calculations in multiple steps in the construction

TABLE 10. Comparison Results of the GPUPBICGSTAB with HeuriSPAI, GPUPBICGSTAB with S-HeuriSPAI, GPUPBICGSTAB with MP1-HeuriSPAI, and GPUPBICGSTAB with MP-HeuriSPAI on TITANXp

Matrices	HeuriSPAI	S-HeuriSPAI	MP1-HeuriSPAI	MP-HeuriSPAI
gyro_m	96	96	99	89
	2.082	1.837	2.016	1.376
	2.384	2.213	2.365	1.716
af23560	291	293	290	290
	1.456	0.921	1.404	0.888
	1.868	1.337	1.814	1.287
venkat01	25	25	25	25
	1.774	1.132	1.492	1.066
	1.629	1.018	1.356	0.903
imagesensor	37	1	1320	37
	0.768	1	0.803	0.627
	1.096	1	2.191	1.024
FEM_3D_thermal2	9	,	9	9
	0.817	0.608	0.765	0.601
	1.1753	0.936	1.101	0.911
ASIC_320ks	8	11	8	8
	5.132	3.418	5.015	3.441
	6.768	4.571	6.307	4.492
cage	8	8	8	8
	0.910	0.741	0.947	0.655
	1.227	1.019	1.254	0.938
af_shell3	441	457	445	438
	26.283	23.778	25.189	23.031
	41.377	38.769	39.162	37.462
parabolic_fem	288	300	288	280
	0.872	0.611	0.802	0.633
	2.217	2.364	2.171	2.026
apache2	641	712	725	655
	0.971	0.680	0.892	0.683
	2.314	2.287	2.769	2.250
t2em	574	663	637	583
	0.632	0.416	0.579	0.418
	2.543	2.736	2.603	2.482
ecology 2	2802	2816	2937	2810
	0.540	0.429	0.537	0.430
	13.312	13.638	14.506	13.277
thermal2	2248	2811	2434	2248
	2.678	1.823	2.185	1.820
	13.168	14.975	14.239	12.766
atmosmodd	103	103	103	103
	0.546	0.314	0.401	0.312
	1.729	1.604	1.656	1.613
G3_circuit	330	327	332	330
	1.079	0.742	1.003	0.945
	3.691	3.378	3.529	3.423

of preconditioners. Therefore, these can cause error accumulation and alter its effectiveness. The experimental results demonstrate that the error accumulation in the proposed two mixed accuracy models improves or maintains the validity of the constructed preconditioners for most test matrices.

VI. CONCLUSIONS AND DISCUSSIONS

Based on the construction method of sparse approximate inverse(SPAI) preconditioners in mixed precision mode from the perspective of single and double precision mixing, two mixed precision sparse approximation inverse preconditioning algorithms, MP-SSPAI and MP-HeuriSPAI, are given in this paper, and their parallel implementations are also given. A series of experiments show that MP-SSPAI and MP-HeuriSPAI are effective and applicable to a wide range of applications. In the future, we will research on the error
analysis of MP-SSPAI and MP-HeuriSPAI in theory to further confirm their high performance.

REFERENCES

[1] NVIDIA, "CUDA C Programming Guide," Version 11.1, 2021. [Online]. Available: http://docs.nvidia.com/cuda/cuda-c-programming-guide
[2] M. Bernaschi, M. Carrozzo, A. Franceschini, and C. Janna, "A dynamic pattern factored sparse approximate inverse preconditioner on graphic processing units," SIAM J. Sci. Comput., vol. 41, no. 3, pp. C139-C160, Jan. 2019.
[3] H. Liu, Z. X. Chen, and B. Yang, "Accelerating preconditioned iterative linear solvers on GPU," Int. J. Numer. Anal. Mod., vol. 5, no. 1-2, pp. 136146, Jan. 2014.
[4] Z. Xiao, T.X. Gu, Y.X. Peng, X.G. Ren, and J. Qi, "Mixed precision in CUDA polynomial precondition for iterative solver," IEEE Int. Conf. Comput. Commun. Eng. Technol., Beijing, China, pp. 186-192, 2018.
[5] K. K. Phoon, F. H. Lee, and S. H. Chan, "Iterative solution of intersecting tunnels using the generalised Jacobi preconditioner," Proc. Int. Conf. Numerical Simulation of Construction Processes in Geotechnical Eng. for Urban Environment - Numerical Modelling of Construction Processes in Geotechnical Eng. for Urban Environment, Luniver Press, UK, 2008.
[6] S. H. Chan, K. K. Phoon, and F. H. Lee, "A modified Jacobi preconditioner for solving ill-conditioned Biot's consolidation equations using symmetric quasi-minimal residual method," Int. J. Numer. Anal. Methods Geomech., vol. 25, no. 10, pp. 1001-1025, Aug. 2001.
[7] H. Anzt et al., "Variable-size batched GaussíCJordan elimination for block-Jacobi preconditioning on graphics processors," Parallel Comput., vol. 81, pp. 131-146, Jan. 2019.
[8] H. Anzt et al., " Batched Gauss-Jordan elimination for Block-Jacobi preconditioner generation on GPUs," International Workshop on Programming Models and Applications for Multicores and Manycores, 2017.
[9] M. Ferronato, C. Janna, and G. Gambolati, "A novel factorized sparse approximate inverse preconditioner with supernodes," presented at the 30th Int. Symp. High Perform. Parallel Distrib. Comput., 2020.
[10] L. Grigori, Q. Niu, and Y. X. Xu, "Stabilized dimensional factorization preconditioner for solving incompressible Navier-Stokes equations," Appl. Numer. Math., vol. 146, pp. 309-327, Dec. 2019.
[11] S. Laut, R. Borrell, and M. Casas, "Cache-aware sparse patterns for the factorized sparse approximate inverse preconditioner," Adv. Eng. Softw., vol. 113, pp. 19-24, Jun. 2017.
[12] L. E. Carr III, C. F. Borges, and F. X. Giraldo, "Matrix-free polynomialbased nonlinear least squares optimized preconditioning and its application to discontinuous Galerkin discretizations of the Euler equations," J. Sci. Comput., vol. 66, pp. 917-940, Jun. 2015.
[13] J. Cerdán, J. Marín, and A. Martínez, "Polynomial preconditioners based on factorized sparse approximate inverses," Appl. Math. Comput., vol. 133, no. 1, pp. 171-186, Nov. 2002.
[14] M. B. van Gijzen, "A polynomial preconditioner for the GMRES algorithm," J. Comput. Appl. Math., vol. 59, no. 1, pp. 91-107, Nov. 1993.
[15] E. Coleman and M. Sosonkina, "Self-stabilizing fine-grained parallel incomplete LU factorization," Sustain. Comput. -Infor., vol. 19, pp. 291-304, Sep. 2018.
[16] M. M monga Made and H. A. van der Vorst, "A generalized domain decomposition paradigm for parallel incomplete LU factorization preconditionings," Future Gener. Comp. Sy., vol. 17, no. 8, pp. 925-932, Jun. 2001.
[17] T. N. Phillips, "On methods of incomplete LU decompositions for solving Poisson's equation in annular regions," Appl. Numer. Math., vol. 8, no. 6, pp. 515-531, Dec. 1991.
[18] J. Gao, Q. Chen, and G. He, "A thread-adaptive sparse approximate inverse preconditioning algorithm on multi-GPUs," Parallel Comput., vol. 101, pp. 102724, Nov. 2021, [Online]. Available: https://doi.org/10.1016/j.parco.2020.102724
[19] L. González and A. Suárez, "Improving approximate inverses based on Frobenius norm minimization," Appl. Math. Comput., vol. 219, no. 17, pp. 9363-9371, May. 2013.
[20] P. Tarazaga and D. Cuellar, "Preconditioners generated by minimizing norms," Comput. Math. Appl., vol. 57, no. 8, pp. 1305-1312, Apr. 2009.
[21] B. Carpentieti, I. S. Duff, and L. Giraud, "Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism," Numer. Linear Algebr., vol. 7, no. 7-8, pp. 667-685, Otc. 2000.
[22] T. Hucle, "Approximate sparsity patterns for the inverse of a matrix and preconditioning," Appl. Numer. Math., vol. 30, no. 2-3. pp. 291-303, Jun. 1999.
[23] G. X. He, R. J. Yin, and J. Q. Gao, "An efficient sparse approximate inverse preconditioning algorithm on GPU," Concurr. Comp. Pract. E., 2019, [Online]. Available: https://doi.org/10.1002/cpe. 5598
[24] E. Chow, "A priori sparsity patterns for parallel sparse approximate inverse preconditioners," SIAM J. Sci. Comput., vol. 21, no. 5, pp. 1804-1822, Apr. 2000.
[25] D. Bertaccini and S. Filippone, "sparse approximate inverse preconditioners on high performance GPU platforms," Comput. Math. Appl., vol. 71, no. 3, pp. 693-711, Feb. 2016.
[26] G. Oyarzun et al., "MPI-CUDA sparse matrix-vector multiplication for the conjugate gradient method with an approximate inverse preconditioner," Comput. Fluids, vol. 92, pp. 244-252, Mar. 2014.
[27] M. M. Dehnavi, D. M. Fernández et al., "Parallel sparse approximate inverse preconditioning on graphic processing untits," IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 9, pp. 1852-1861, Sep. 2013.
[28] M. Lukash, K. Rupp, and S. Selberherr, "Sparse approximate inverse preconditioners for iterative solvers on GPUS," Proc. Symp. High Perform. Comput., Society for Computer Simulation: San Diego, CA, USA, 2012.
[29] Z. X. Jia and Q. Zhang, "Robust dropping criteria for F-norm minimization based sparse approximate inverse preconditioning," BIT Numer. Math., vol. 53, no. 4, pp. 959-985, Jun. 2013.
[30] M. J. Grote and T. Huckle, "Parallel preconditioning with sparse approximate inverses," SIAM J. Sci. Comput., vol. 18, no. 3, pp. 838-853, Jan. 1997.
[31] Z. Jia and B. Zhu, "A power sparse approximate inverse preconditioning procedure for large sparse linear systems," Numer. Linear Algebr., vol. 16, no. 4, pp. 259-299, Jul. 2009.
[32] J. Gao, X. Chu, X. Wu, J. Wang, and G. He, "Parallel dynamic sparse approximate inverse preconditioning algorithm on GPU," IEEE T. Parall. Distr., vol. 33, no. 12, pp. 4723-4737, Dec. 2022.
[33] J. Q. Gao, X. Y. Chu, and Y. Z. Wang, HeuriSPAI: "A heuristic sparse approximate inverse preconditioning algorithm on GPU," CCF Trans. High Perform. Comput., 2023, [Online]. Available: https://doi.org/10.1007/s42514-023-00142-2
[34] M. Baboulin et al., "Accelerating scientific computations with mixed precision algorithms," Comput. Phys. Commun., vol. 180, no. 12, pp. 2526-2533, Dec. 2009.
[35] J. Kurzak and J. Dongarra, "Implementation of mixed precision in solving systems of linear equations on the Cell processor," Concurr. Comp. -Pract. E., vol. 19, no. 10, pp. 1371-1385, Jul. 2010.
[36] H. Anzt, B. Rocker, and V. Heuveline, "Energy efficiency of mixed precision iterative refinement methods using hybrid hardware platforms," Comput. Sci.-Res. Dev., vol. 25, no. 3-4, pp. 141-148, Aug. 2010.
[37] A. Abdelfattah et al., "A survey of numerical linear algebra methods utilizing mixed-precision arithmetic," Int. J. High Perform., vol. 35, no. 4, pp. 344-369, Mar. 2021.
[38] A. R. Khaz'ali, M. R. Rasaei, and J. Moghadasi, "Iterative methods with mixed-precision preconditioning for ill-conditioned linear systems in multiphase CFD simulations," 12th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems(ScalA), pp. 1-8, 2021.
[39] F. Göbel, T. Grützmacher, T. Ribizel, and H. Anzt, "Mixed precision incomplete and factorized sparse approximate inverse preconditioning on GPUs," In Euro-Par 2021: Parallel Processing: 27th International Conference on Parallel and Distributed Computing, Lisbon, Portugal, Proceedings 27, pp. 550-564, 2021.
[40] G. Flegar, H. Anzt, T. Cojean, and E. S. Quintana-Ortí, "Adaptive precision Block-Jacobi for high performance preconditioning in the Ginkgo Linear Algebra Software," ACM Trans. Math. Softw., vol. 47, no. 2, pp. 1-28, Apr. 2021.
[41] D. Kressner, Y. Ma, and M. Shao, "A mixed precision LOBPCG algorithm," Numer. Algorithms pp. 1-19, May 2023.
[42] N. Lindquist, P. Luszczek, and J. Dongarra, "Accelerating restarted GMRES with mixed precision arithmetic," IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 4, pp. 1027-1037, Apr. 2022.
[43] H. Zhang, W. Ma, W. Yuan, J. Zhang, and Z. Lu, " Mixed-precision block incomplete sparse approximate preconditioner on Tensor core," CCF Trans. High Perform. Comput., pp. 1-14, Apr. 2023.
[44] X. Y. Chu, Y. Z. Wang, Q. Chen, and J. Q. Gao, "Optimizing the sparse approximate inverse preconditioning algorithm on GPU," BenchCouncil Transactions on Benchmarks, Standards and Evaluations, vol. 2, no. 4, pp. 100087, Mar. 2023.
[45] NVIDIA, "CUBLAS Library," 2022. [Online]. Available: https://docs.nvidia.com/cuda/cublas/index.html
[46] NVIDIA, "CUSPARSE Library," 2022. [Online]. Available: https://docs.nvidia.com/cuda/cusparse/index.html
[47] T. A. Davis and Y. Hu, "The university of florida sparse matrix collection," ACM T. Math. Software, vol. 38, no. 1, pp. 1-25, Nov. 2011.

XINYUE CHU is currently a PH.D candidate of the School of Computer and Electronic Information at the Nanjing Normal University in Nanjing, China, and her current research interests include high-performance computing (HPC), parallel algorithms.

