
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Mixed-Precision Sparse Approximate Inverse
Preconditioning Algorithm on GPU
XINYUE CHU
School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China

Corresponding author: Xinyue Chu (e-mail: 2316607219@qq.com).

ABSTRACT In this study, in order to further improve the construction efficiency of sparse approximate
inverse (SPAI) preconditioners, we attempt to explore the construction method of SPAI preconditioners in
mixed-precision mode from the perspective of single and double precision mixing, and thus propose two
mixed-precision SPAI preconditioning algorithms on GPU, abbreviated as MP-SSPAI and MP-HeuriSPAI,
respectively. In MP-SSPAI, with original static SPAI preconditioning algorithm as the research object, we
mainly consider the following factors to construct its preconditioner in mixed-precision mode: 1) use single
precision as much as possible to improve computational efficiency of the preconditioner while ensuring
its validity; 2) store certain components in single precision after they have been determined to require
single-precision computation to improve read efficiency; and 3) maintain the high-precision output of the
preconditioner to ensure that it is computed with high precision when applied to the iterative algorithm. In
MP-HeuriSPAI, a mixed-precision heuristic dynamic SPAI preconditioning algorithm on GPU is presented
based on the above factors, using HeuriSPAI as the object of study. The experimental results demonstrate
the effectiveness and high performance of the proposed MP-SSPAI and MP-HeuriSPAI by comparing them
with their respective double-precision versions, single-precision versions, and extended versions.

INDEX TERMS GPU, mixed precision, preconditioning algorithm, sparse approximate inverse.

I. INTRODUCTION

IN general, the large sparse linear systems can be interpret-
ed as follows:

Ax = b, x, b ∈ Rn,A ∈ Rn×n. (1)

Here coefficient matrix A is large, sparse, and nonsingular,
and x and b are given vector and unknown one, respectively.
To address above problem better, preconditioning Krylov
iterative methods come into view, which can accelerate con-
vergence and have higher robustness compared with Krylov
iterative methods. Using preconditioning techniques, equa-
tion (1) can be further transformed into a more tractable form
as:

MAx = Mb or AMy = b, x = My. (2)

Here M is referred to as left (right) preconditioner. A better
preconditioner M should satisfy the following three condi-
tions:

1) its operation should be simple and cheap.
2) it is supposed to accelerate convergence of iterative

methods.
3) it is effectively computed in parallel.
However, the construction of preconditioners is time-

consuming, leading to a significant increase of time cost of

seeking the approximate solution (x̂). Programmable graphics
processing units(GPUs) have the feature of multiple core
structures, which makes them powerful for scientific comput-
ing and big data processing. And due to easiness of learning
and using, and needless of graphics knowledge for devel-
opers, the compute united device architecture(CUDA) [1]
introduced by NVIDIA is much popular, which supports
joint CPU/GPU execution of applications and designs a C-
based programming language CUDA C for GPU computing.
Therefore, it is utilized in much work [2]–[4] to accelerate the
construction of preconditioners.
At present, there are various preconditioners, such as Jaco-

bi preconditioner [5], [6], block−Jacobi preconditioner [7],
[8], factorized sparse approximate inverse preconditioner [9]–
[11], polynomial preconditioner [12]–[14], incomplete LU
decompositions [15]–[17], and sparse approximate inverse
(SPAI) preconditioner based on F-norm minimization [18]–
[22]. Because of high parallelism and simplicity, the SPAI
preconditioner has received widespread attention. And ac-
cording to the constructionmethod, it is usually classified into
static SPAI preconditioning algorithm [23]–[28] and dynamic
SPAI preconditioning algorithm [29]–[33].
In addition, with the advancement of technology, GPUs un-

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3338443

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

der the CUDA architecture not only support double-precision
floating-point operations but also single-precision floating-
point operations and even half-precision floating-point op-
erations. Theoretically, single-precision floating-point oper-
ations are twice as fast as double-precision floating-point
operations and require relatively less memory. As a result,
mixed-precision floating-point computations based on single
and double precision have been used in multiple research
areas [34]–[37]. Inspired by this, in order to further improve
the computational efficiency of preconditioning algorithm-
s without losing their effectiveness, some researchers have
attempted to construct preconditioners in mixed-precision
mode [4], [38]–[43]. However, research on mixed-precision
SPAI preconditioning algorithms is scarce.

Therefore, on the basis of precision consideration, we
present two mixed-precision SPAI preconditioning algo-
rithms on GPU, abbreviated as MP-SSPAI and MP-
HeuriSPAI, respectively. For the construction of the mixed-
precision SPAI preconditioner, the following factors are con-
sidered: 1) use single precision as much as possible to im-
prove computational efficiency of the preconditioner while
ensuring its validity; 2) store certain components in single
precision after they have been determined to require single
precision computation to improve read efficiency; and 3)
maintain the high-precision output of the preconditioner to
ensure that it is computed with high precision when applied
to the iterative algorithm.

The main contributions in this work are summarized as
follows.

• Mixed-precision static SPAI preconditioning algorithm
and mixed-precision heuristic SPAI preconditioning al-
gorithm are presented;

• The parallel versions of proposed two mixed-precision
SPAI preconditioning algorithms, abbreviated as MP-
SSPAI andMP-HeuriSPAI, respectively, are implement-
ed;

• The extended versions of MP-SSPAI and MP-
HeuriSPAI are given, abbreviated as MP1-SSPAI and
MP1-HeuriSPAI, respectively. Then, a series of exper-
iments demonstrate the effectiveness and high perfor-
mance of the proposed MP-SSPAI and MP-HeuriSPAI
by comparing them with their respective double-
precision versions, single-precision versions, and ex-
tended versions.

The rest of the paper is organized as follows. In Section 2,
sparse approximate inverse (SPAI) preconditioner based on
F-norm minimization is summarized. Mixed-precision static
SPAI preconditioning algorithm and mixed-precision heuris-
tic SPAI preconditioning algorithm are presented in Section
3. And their parallel implementations on GPU are given in
Section 4. Section 5 gives effectiveness analysis and perfor-
mance evaluation. Finally, Section 6 concludes conclusions
and discussions.

II. SPARSE APPROXIMATE INVERSE (SPAI) PRECONDITI-
ONER BASED ON F-NORM MINIMIZATION
The preconditioner M of SPAI preconditioning algorithm is
the approximation of A−1. For static SPAI preconditioning
algorithm, the sparse pattern of preconditionerM is predeter-
mined, which generally consistents with the sparse pattern of
coefficient matrix A or identity matrix E . As shown in [24],
preconditioner M is computed by following equation:

min ‖AM − I‖2F , I ∈ Rn×n. (3)

Here forM , its columns are independent with each other, thus,
equation (3) can be expressed as the following equation:

min

n∑
k=1

‖ Amk − ek ‖22=
n∑

k=1

min ‖ Amk − ek ‖22, (4)

where mk and ek represent the kth column of preconditioner
M and identity matrix E , respectively. Obviously, it can be
further decoupled as n least squares problems:

min ‖Amk − ek‖22, k = 1, 2, . . . , n. (5)

Observing that, for smaller n, all columns of the precondition-
erM can be solved concurrently. This indicates that the SPAI
preconditioning algorithm has high degree of parallelism.

In order to solve the preconditioner M easily, its each col-
umn will be computed by dimensionality reduction. Taking
the kth column of M (mk) as an example, first, find its row
indices of nonzero entries of mk and save them in set Jk .
Second, delete zero rows inmatrixA(., Jk) and save its indices
of nonzero rows in set Ik , then we can obtain the submatrix
Âk , where Âk = A(Ik , Jk). Based on this, equation (5) can be
transformed into the following equation:

min ‖ Âkm̂k − êk ‖22, k = 1, 2, . . . , n, (6)

where m̂k and êk are the reduced mk and ek , respectively.
Third, perform QR decomposition on matrix Âk with the
modified Gram-Schmidt method. Finally, solve the above
equation.

The detailed procedure of static SPAI preconditioning al-
gorithm based on double precision (SSPAI for short) is shown
as following:

Algorithm 1: Static SPAI preconditioning algorithm (SSPAI)
For each column mk , k = 1, 2, · · · , n of M :
1) Set Jk = {j|mk(j) 6= 0}, and set its length as n2;
2) Construct Ik , where its any element(i) makes A(i, Jk) not

all 0, and set its length as n1;
3) Construct submatrix Âk where Âk = A(Ik , Jk) and Âk ∈

Rn1×n2; (double precision)
4) Perform QR decomposition on matrix Âk , then, the or-

thogonal matrix Qk ∈ Rn1×n2 and the upper triangular
matrix Rk ∈ Rn2×n2 are obtained; (double precision)

5) Set Âk = QkRk , and then solve m̂k by (6); (double
precision)

6) Scatter m̂k to mk ; (double precision)

For dynamic SPAI preconditioning algorithm, its sparse
pattern of preconditionerM is acquired dynamicallywithout a

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3338443

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

pre-given. Taking HeuriSPAI [33] as an example, first, solve
initial mk according to Algorithm 1, and then compute initial
residual rk = ek − Amk . Second, it uses

C l
k = (E + |A|)C l−1

k , l = 1, 2, · · · , lmax (7)

to iteratively generate the candidate indices that might be
added to J l−1k , where l is the internal loop variable, lmax is
the maximum iterative number of the heuristic computation,
E is identity matrix, and J l−1k represents the sparse pattern of
the kth column of the preconditionerM at the l−1st iteration.
C0
k is equal to initial sparse pattern of the kth column of the

preconditioner M (J0k). Third, save the indices that appear
in C l

k but not in J l−1k into set J̃ lk . Fourth, to avoid excessive
computation, the elements in J̃ lk need to be reduced. In detail,
for each candidate index j (j ∈ J̃ lk), consider the following
one-dimensional minimization problem:

min
µj∈R
‖rk + µjAej‖ =: ρj. (8)

Then, ρ2j can be presented by

ρ2j = ‖rk‖22 −
(
rTk Aej
‖Aej‖2

)2

. (9)

For each j ∈ J̃ lk , if its corresponding ρj is smaller, then it
will be considered the most profitable index and retained,
otherwise it will be deleted. Fifth, utilize the deleted set J̃ lk , the
new row indices set Ĩ lk is determined, and then execute the QR
decomposition of the new submatrix A(I l−1k ∪ Ĩ lk , J

l−1
k ∪ J̃ lk).

Finally, compute new mk (mk(J
l−1
k ∪ J̃ lk)), rk , and ||rk ||2. If

rk satisfies the loop-stopping condition, the algorithm stops;
otherwise, set l = l +1 and then the loop continues. Further-
more, to maintain the sparsity of preconditioner, it sets the
filling threshold for each column of M (uk) by the following
equation

uk = α · xk , (10)

where α is a small real number and xk is the nonzero number
of the kth column of A. Algorithm 2 shows its detailed pro-
cedure of Heuristic SPAI preconditioning algorithm based on
double precision (HeuriSPAI for short), where |J l−1k | denotes
the length of set J l−1k .

Algorithm 2: Heuristic SPAI preconditioning algorithm
(HeuriSPAI)
For every column mk , k = 1, 2, · · · , n of M :

1) Choose an initial sparsity J0k = {k}, set l = 1, C0
k = J0k ,

a suitable tolerance ε, lmax, and compute uk by (10);
2) Solve initial mk by Algorithm 1 and compute rk with

double precision;
While ‖rk‖2 > ε and l < lmax and |J l−1k | < uk :

3) Compute C l
k by (7);

4) Save the indices that belong to C l
k but not in J

l−1
k into

set J̃ lk ;
5) For every j ∈ J̃ lk , compute ρ2j by (9), and delete from J̃ lk

all but the most profitable indices; (double precision)

6) Determine the new row indices Ĩ lk and then execute
the QR decomposition of the new submatrix A(I l−1k ∪
Ĩ lk , J

l−1
k ∪ J̃ lk); (double precision)

7) Compute newmk , rk , and ||rk ||2, then set J lk = J l−1k ∪ J̃ lk ,
I lk = I l−1k ∪ Ĩ lk , C l

k = J lk , and l = l + 1; (double
precision)

III. MIXED-PRECISION SPARSE APPROXIMATE INVERSE
PRECONDITIONING ALGORITHM
A. MIXED-PRECISION STATIC SPARSE APPROXIMATE
INVERSE PRECONDITIONING ALGORITHM
First, with original double-precision static SPAI precondi-
tioning algorithm shown in Algorithm 1 as the research objec-
t, we describe the detailed procedure of the mixed-precision
static SPAI preconditioning algorithm (see Algorithm 3).
Analyzing Algorithm 3, when constructing the submatrix
in the third step, it only involves the assignment of values
and does not require inter-valued calculations, thus, single-
precision floating-point calculations are used to improve the
read efficiency. In the fifth step, the single-precision floating-
point computation is still used due to the complexity and time-
consuming of QR decomposition. In the sixth and seventh
steps, the double-precision floating-point calculation is used
to keep the output of the preconditioner with high accuracy,
so that when it is applied to the iterative algorithm, the high
precision computation is maintained and the accuracy of the
solution is not lost.

Algorithm 3: Mixed-precision static SPAI preconditioning
algorithm
For every column mk , k = 1, 2, · · · , n of M :
1) Set Jk = {j|mk(j) 6= 0}, and set its length as n2;
2) Construct Ik , where its any element(i) makes A(i, Jk) not

all 0, and set its length as n1;
3) Construct submatrix Âk where Âk = A(Ik , Jk) and Âk ∈

Rn1×n2; (single precision)
4) Perform QR decomposition on matrix Âk , then, the or-

thogonal matrix Qk ∈ Rn1×n2 and the upper triangular
matrix Rk ∈ Rn2×n2 are obtained; (single precision)

5) Set Âk = QkRk , and then solve m̂k by (6); (double
precision)

6) Scatter m̂k to mk ; (double precision)

Then, observing that, in Algorithm 3, coefficient matrix
A requires single-precision input, while the double-precision
coefficient matrix will still be used in iterative solving stage
to ensure the robustness and convergence of the iterative
algorithm. Therefore, the double-precision coefficient matrix
A needs to be converted to a single-precision one on GPU
and stored in the array A1 before constructing the precondi-
tioner. In addition, the conversion from high precision to low
precision may result in numerical overflow, thus, to avoid the
situation, we set those numerical overflow values uniformly
to half of themaximumvalue that can be represented by single
precision.
In summary, the complete procedure of mixed-precision

static SPAI preconditioner applied to the Krylov iterative

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3338443

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

algorithm for solving linear systems in (1) will be given
below.

FIGURE 1. Main procedure of Krylov iterative algorithm with
mixed-precision static SPAI preconditioner

Finally, based on proposed mixed-precision static SPAI
preconditioning algorithm (see Algorithm 3), we give its
extended version shown in Algorithm 4 to confirm its high
performance. Compare to Algorithm 3, in Algorithm 4, the
QR decomposition is performed in double precision, which
improves orthogonality but increases time cost. Moreover, it
employs single-precision computation in solving mk , thereby
reducing the effectiveness of the preconditioner M .

Algorithm 4: The extended version of mixed-precision static
SPAI preconditioning algorithm
For every column mk , k = 1, 2, · · · , n of M :
1) Set Jk = {j|mk(j) 6= 0}, and set its length as n2;
2) Construct Ik , where its any element(i) makes A(i, Jk) not

all 0, and set its length as n1;
3) Construct submatrix Âk where Âk = A(Ik , Jk) and Âk ∈

Rn1×n2; (single precision)
4) Perform QR decomposition on matrix Âk , then, the or-

thogonal matrix Qk ∈ Rn1×n2 and the upper triangular
matrix Rk ∈ Rn2×n2 are obtained; (double precision)

5) Set Âk = QkRk , and then solve m̂k by (6); (single
precision)

6) Scatter m̂k to mk ; (single precision)

B. MIXED-PRECISION HEURISTIC SPARSE APPROXIMATE
INVERSE PRECONDITIONING ALGORITHM
First, with original double-precision heuristic SPAI precon-
ditioning algorithm shown in Algorithm 2 as the research
object, we give the computational procedure of the mixed-
precision heuristic sparse approximate inverse precondition-
ing algorithm, which is given below:

Algorithm 5: Mixed-precision heuristic sparse approximate
inverse preconditioning algorithm
For every column mk , k = 1, 2, · · · , n of M :
1) Choose an initial sparsity J0k = {k}, set l = 1, C0

k = J0k ,
a suitable tolerance ε, lmax, and compute uk by (10);

2) Solve initialmk usingAlgorithm 3 and compute rk with
double precision;
While ‖rk‖2 > ε and l < lmax and |J l−1k | < uk :

3) Compute C l
k by (7);

4) Save the indices that belong to C l
k but not in J

l−1
k into

set J̃ lk ;
5) For every j ∈ J̃ lk , compute ρ2j by (9), and delete from J̃ lk

all but the most profitable indices; (single precision)

6) Determine the new row indices Ĩ lk and then execute
the QR decomposition of the new submatrix A(I l−1k ∪
Ĩ lk , J

l−1
k ∪ J̃ lk); (single precision)

7) Compute newmk , rk , and ||rk ||2, then set J lk = J l−1k ∪ J̃ lk ,
I lk = I l−1k ∪ Ĩ lk , C l

k = J lk , and l = l + 1; (double
precision)

Then, observing Algorithm 5, in the initial stage, it com-
putes initial mk , k = 1, 2, · · · , n with Algorithm 3, and
utilizes double precision to compute rk and ||rk ||2. In the
loop finding filling indices stage, it is experimentally found
that for different j, their corresponding ρ values are generally
different, so that single-precision computing does not affect
the final choice of the potential filling indices. In addition, as
in Algorithm 3, single precision is used in step 6, while double
precision is used in step 7.
In summary, the complete procedure of mixed-precision

heuristic SPAI preconditioner applied to the Krylov iterative
algorithm for solving linear systems is likewise given below:

FIGURE 2. Main procedure of Krylov iterative algorithm with
mixed-precision heuristic SPAI preconditioner

Finally, in order to prove the high performance of proposed
mixed-precision heuristic sparse approximate inverse precon-
ditioning algorithm (seeAlgorithm 5), we also give its extend-
ed version shown in Algorithm 6. Different fromAlgorithm 5,
in Algorithm 6, the extended version ofmixed-precision static
SPAI preconditioning algorithm (see Algorithm 4) is used
to solve initial mk . The QR decomposition is performed in
double precision, which improves orthogonality but increases
time cost. Besides that, single precision is utilized to solvemk ,
thereby reducing the effectiveness of the preconditioner M .

Algorithm 6: The extended version of of mixed-precision
heuristic sparse approximate inverse preconditioning algo-
rithm
For every column mk , k = 1, 2, · · · , n of M :
1) Choose an initial sparsity J0k = {k}, set l = 1, C0

k = J0k ,
a suitable tolerance ε, lmax, and compute uk by (10);

2) Solve initialmk usingAlgorithm 4 and compute rk with
double precision;
While ‖rk‖2 > ε and l < lmax and |J l−1k | < uk :

3) Compute C l
k by (7);

4) Save the indices that belong to C l
k but not in J

l−1
k into

set J̃ lk ;
5) For every j ∈ J̃ lk , compute ρ2j by (9), and delete from J̃ lk

all but the most profitable indices; (single precision)
6) Determine the new row indices Ĩ lk and then execute

the QR decomposition of the new submatrix A(I l−1k ∪
Ĩ lk , J

l−1
k ∪ J̃ lk); (double precision)

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3338443

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

7) Compute newmk , rk , and ||rk ||2, then set J lk = J l−1k ∪ J̃ lk ,
I lk = I l−1k ∪ Ĩ lk , C l

k = J lk , and l = l + 1; (single
precision)

IV. PARALLEL IMPLEMENTATION OF MIXED PRECISION
SPARSE APPROXIMATE INVERSE PRECONDITIONING
ALGORITHM ON GPU
First, the parallel version of mixed-precision static SPAI pre-
conditioning algorithm, called MP-SSPAI, is given as below,
which includes three stages:
Pre-MP-SSPAI stage

First, allocate global memory to A on GPU. Second, as
mentioned early, preconditioner M is computed in paral-
lel by column, thus, all of A, A1 and M are stored in
CSC(Compressed Sparse Column) format, which includes
three arrays: A_cData, A_cIndex and A_cPtr . Third, to fa-
cilitate the calculation of matrix-vector product in iterative
process, convert the storage format of A and M into C-
SR(Compressed Sparse Row), which also includes three ar-
rays: A_rData, A_rIndex and A_rPtr . Fourth, to simplify the
accesses of data in memory and enhance the coalescence, the
dimensions of all local submatrices (e.g., Âk (n1k , n2k)) are u-
niformly defined as (maxI ,maxJ), wheremaxI = max

k
{n1k}

and maxJ = max
k
{n2k}. Finally, allocate global memory to

these arrays used in MP-SSPAI shown in Table 1, where I =
{I1, I2, · · · , Ik , · · · , In} and J = {J1, J2, · · · , Jk , · · · , Jn}.

TABLE 1. Arrays Used in MP-SSPAI

Arrays Size Type Arrays Size Type
A_cData nonzeros single jPTR n1a integer
A_cIndex nonzeros integer J n1 × maxJb integer
A_cPtr n+ 1 integer iPTR n1 integer
A1_rData nonzeros double I n1 × maxIc integer
A1_rIndex nonzeros integer m̂ n1 × maxJ double
A1_rPtr n+ 1 integer Â(Q) n1 × maxI × maxJ single
atom n integer R n1 × maxJ × maxJ single
a
The number of columns executed in parallel at one time.

b
The maximum of padding toplimits of all columns of M .

c
The maximum number of row indices of M .

Compute-MP-SSPAI stage
In this stage, a thread group consisted of z threads is

used to compute one column of M (e.g., mk). Thus, it can
compute 512/z columns in parallel when a block is assigned
512 threads. And further columns of M can be computed
simultaneously by multiple blocks. For z, assume that the
number of theads in a block is set to 256, it varies with the
value of maxJ of sparse matrix. Its principal thought is: if
maxJ is less than or equal to 2, we set z to 2; if maxJ belongs
to the right closed interval 2 to 4, z is set to 4; and so on until
maxJ exceeds upper bound 256, z is set to 256. In addition,
one mk is computed in parallel by z threads. Taking mk as an
example, its specific process is shown below:

1) Determine Jk : Threads within a thread group are as-
signed to write its row indices of nonzero entries of M
into Jk in parallel.

2) Determine Ik : Firstly, for c, the first element of Jk ,
threads in the thread group load row indices of A(:, c)

into Ik in parallel. Then, for other elements of Jk ,
namely, the corresponding columns of A, row indices
of them are compared successively with elements in Ik .
Those indices not in Ik will be appended into Ik using
the atomic operations. Finally, these elements in Ik are
sorted in ascending order in parallel.

3) Construct Âk : After determining Jk and Ik , a thread
group is assigned to construct submatrix Âk =
A(Ik , Jk). And it includes two steps: firstly, load row
indices of Ik in parallel, then, determine the elements
of Â according to column indices of Jk . The Figs. 3 and
4 show the kernel and main procedure of constructing
submatrix Âk , respectively.

4) Decompose Âk to QkRk : A thread group is assigned to
perform oneQkRk decomposition. To bemore efficient,
shared memory is utilized in this stage. The kernel
and main procedure of QR decomposition are shown
in Figs. 5 and 6, respectively. As shown in Fig. 6, for
each loop i, firstly, read the ith column of Âk into Qk

in parallel. Second, compute Rk(i, i : AN) and save
them into shared memory R_s in parallel. Third, nor-
malize column i of Qk and compute projection factors
Rk(i, i : AN) and the corresponding R_s in parallel.
Finally, update Qk using shared memory R_s.

5) Compute m̂k : As mentioned in Algorithm 1, m̂k =
R−1k QT

k êk . Thus, inside a thread group, firstly, we com-
puteQT

k êk in parallel. And then a upper triangular linear
system(Rkm̂k = QT

k êk) is solved to gain m̂k in parallel.
Similarly, we give its kernel and main procedure in
Figs. 7 and 8.

FIGURE 3. Kernel of constructing submatrix Â

Post-MP-SSPAI stage

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3338443

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

FIGURE 4. Main procedure of constructing submatrix Â

FIGURE 5. Kernel of QR decomposition

FIGURE 6. Main procedure of QR decomposition

FIGURE 7. Kernel of solving upper triangular linear systems

FIGURE 8. Main procedure of solving upper triangular linear systems

This stage is to assembleM in the CSC storage format, and
store it to the MPtr , MIndex, and MData arrays. it includes
the following steps:
1) On the GPU, we assemble MPtr using JPTR;
2) Utilizing m̂k and Jk to assemble MData and MIndex.

Each warp is responsible for assembling one m̂k to
MData and one Jk to MIndex in parallel.

Obviously,MPtr ,MIndex, andMData arrays are generated
on the GPU memory and do not need to be transferred to the
CPU.
Then, the parallel version of mixed-precision heuristic

SPAI preconditioning algorithm, called MP-HeuriSPAI, is
given. It also consists of the following three phases:
Initial-MP-HeuriSPAI stage
In this phase, first, allocate memory for coefficient matrix

A on GPU. Second, the upper bounds of the filling non-
zero elements in each column are computed in parallel. Then,
appropriatememory is allocated for themain arrays (as shown
in Table 2). Finally, the parallel implementation ofMP-SSPAI
is used to compute the initial mk and rk .
Compute–MP-HeuriSPAI stage
This stage is basically the same as the computing stage of

HeuriSPAI in literature [33], except that single precision com-

6 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3338443

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

TABLE 2. Arrays Used in MP-HeuriSPAI

Arrays Size Type Arrays Size Type
AData nonzeros double JPTR n integer
AIndex nonzeros integer J n× maxJ integer
APtr n + 1 integer IPTR n integer
CData n× maxI double I n× maxI integer
CIndex n× maxI integer Ĵ n× maxJ integer
CPtr n integer J̃PTR n integer
Â n× maxI × maxJ single Ĩ n× maxI integer
Q n× maxI × maxJ single ĨPTR n integer
R n× maxJ × maxJ single m̂ n× maxJ double
atom n integer r̂ n× maxI double

putation will be used in the computation of ρ, the construction
of the submatrix A(Ik∪ Ĩk , Jk∪ J̃k), and its QR decomposition,
as detailed in literature [33].
Post-MP-SSPAI stage

This stage is also to assembleM in the CSC storage format.

V. EFFECTIVENESS ANALYSIS AND PERFORMANCE
EVALUATION
In this section, we evaluate the performance of MP-SSPAI
and MP-HeuriSPAI. Table 3 shows the overview of NVIDI-
A GPUs that are used in the performance evaluation. The
test matrices are selected from the SuiteSparse Matrix Col-
lection [47], and have been widely used in some previous
work [18], [32], [33], [44]. Table 4 gives the information
of the sparse matrices, including the name, kind, number of
rows, total number of nonzeros, and positive definiteness. In
addition, the constructed preconditioner is applied to GPUP-
BICGSTAB (a parallel implementation of the preconditioned
BICGSTAB on GPU using the CUBLAS [45] and CUS-
PARSE [46] libraries). And the source codes are compiled
and executed using the CUDA toolkit 11.0 [1]. Note that in
all experiments below, iteration stops when the residual error
is less than 1e−7 or the number of iterations exceeds 10,000.

TABLE 3. Overview of GPUs

Hardware GTX1070 TITANXp

Cores 1920 3840
Clock speed (GHz) 1.506 1.480
Memory type GDDR5 GDDR5X
Memory size (GB) 8 12
Max-bandwidth (GB/s) 256 548
Compute capability 6.1 6.1

A. EFFECTIVENESS ANALYSIS
First of all, we evaluate the effectiveness of MP-SSPAI by
comparing it with original static SPAI preconditioning algo-
rithm (SSPAI). The selected test matrices are same as litera-
ture [44]. Both of GPUPBICGSTABwith SSPAI and GPUP-
BICGSTAB with MP-SSPAI are used to solve Ax = b. Ta-
ble 5 gives the comparison results of GPUPBICGSTAB with
SSPAI and GPUPBICGSTAB with MP-SSPAI on GTX1070,
where "Iters", "preTime" and "allTime" represent the num-
ber of iterations, preprocessing time (the execution time of

TABLE 4. Descriptions of Test Matrices

Name Kind Rows Nonzeros Positive-
Definite

cbuckle structural 13,681 676,515 yes
gyro_m duplicate model

reduction
17,361 340,431 yes

venkat01 CFD sequence 62,424 1,717,792 no
2cubes_sphere electromagnetics 101,492 1,647,264 yes
imagesensor semiconductor

device
118,758 1,446,396 no

cfd2 CFD 123,440 3,085,406 yes
power9 semiconductor

device
155,376 1,887,730 no

majorbasis optimization 160,000 1,750,416 no
stomach 2D/3D 213,360 3,021,648 no
CurlCurl_1 model

reduction
226,451 2,472,071 no

offshore electromagnetics 259,789 4,242,673 yes
ASIC_320ks circuit

simulation
321,671 1,316,085 no

test1 semiconductor
device

392,908 9,447,535 no

msdoor structural 415,863 19,173,163 yes
CoupCons3D structural 416,800 17,277,420 no
Fault_639 structural 638,802 27,245,944 yes
apache2 structural 715,176 4,817,870 yes
t2em electromagnetics 921,632 4,590,832 no
thermal2 thermal 1,228,045 8,580,313 yes
atmosmodd CFD 1,270,432 8,814,880 no
Geo_1438 structural 1,437,960 60,236,322 yes
G3_circuit circuit

simulation
1,585,478 7,660,826 yes

af23560 CFD 23,560 460,598 no
FEM_3D_thermal2 thermal 147,900 3,489,300 no
cage13 directed

weighted graph
445,315 7,479,343 no

af_shell3 subsequent
structural

504,855 17,562,051 yes

parabolic_fem CFD 525,825 3,674,625 yes
ecology2 2D/3D 999,999 4,995,991 yes

preconditioner), and total runtime(the execution time of pre-
conditioner and iterative algorithm), respectively. In addition,
PpreTime and PallTime indicate the reduction rate of prepro-
cessing time of MP-SSPAI relative to original SSPAI and
total runtime of GPUPBICGSTAB with MP-SSPAI relative
to GPUPBICGSTAB with SSPAI, respectively. For all exper-
iments, the minimum value of total runtime is marked in red
for all selected sparse matrices.
Observing Table 5, compared to SSPAI, firstly, MP-

SSPAI has shorter execution time for all test matrices.
Then, from the analysis of iterations, for cbuckle, gyro_m,
cfd2, CurlCurl_1, ASIC_320ks, msdoor, apache2, t2em, ther-
mal2, Geo_1438, and G3_circuit, GPUPBICGSTAB with
MP-SSPAI reduces their number of iterations. In particu-
lar, for matrices cfd2, msdoor, and apache2, their number
of iterations are significantly reduced. After that, for matri-
ces venkat01, 2cubes_sphere, power9, majorbasis, stomach,
offshore, CoupCons3D, Fault_639, and atmosmodd, GPUP-
BICGSTAB with MP-SSPAI keeps their number of iterations
unchanged. Finally, GPUPBICGSTAB with MP-SSPAI also
has shorter total execution time for all test matrices except
for imagesensor. In addition, compared to SSPAI, for all

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3338443

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

TABLE 5. Comparison Results of GPUPBICGSTAB with SSPAI and
GPUPBICGSTAB with MP-SSPAI on GTX1070

Matrices SSPAI MP-SSPAI PpreTime PallTime
Iters preTime allTime Iters preTime allTime

cbuckle 96 8.009 8.395 94 7.802 8.107 2.6% 3.4%
gyro_m 180 0.818 1.189 178 0.704 1.153 1.2% 3.0%
venkat01 35 1.177 1.440 35 0.969 1.300 1.9% 9.7%
2cubes_sphere 4 0.851 1.172 4 0.734 1.029 13.7% 12.2%
imagesensor 52 0.343 0.692 976 0.274 1.259 20.1% -81.9%
cfd2 1583 2.209 4.345 1375 1.823 3.822 38.6% 12.0%
power9 37 4.524 5.032 37 4.413 5.014 2.5% 0.4%
majorbasis 20 0.390 0.721 20 0.326 0.635 16.4% 12.0%
stomach 24 0.847 1.183 24 0.705 1.149 16.8% 2.9%
CurlCur_1 266 0.425 1.069 245 0.356 0.946 16.2% 11.5%
offshore 5 2.216 2.551 5 1.891 2.180 14.7% 14.5%
ASIC_320ks 10 4.918 5.269 8 4.629 4.941 5.9% 6.2%
test1 14 21.150 21.497 57 19.848 20.817 6.2% 3.2%
msdoor 892 61.099 66.456 626 57.854 60.379 5.3% 9.1%
CoupCons3D 52 77.494 78.102 52 73.377 73.879 5.3% 5.4%
Fault_639 1226 190.716 200.646 1226 183.426 192.767 3.8% 3.9%
apache2 1090 0.237 3.697 996 0.155 2.759 34.6% 25.4%
t2em 755 0.079 2.793 673 0.064 2.398 19.0% 14.1%
thermal2 2086 0.374 11.508 1920 0.281 9.659 24.9% 16.1%
atmosmodd 135 0.402 1.408 135 0.244 1.228 39.3% 12.8%
Geo_1438 339 148.765 154.977 330 133.783 139.548 10.1% 10.0%
G3_circuit 468 0.150 3.032 455 0.118 2.903 21.3% 4.3%

matrices, the preprocessing time ofMP-SSPAI can be reduced
by up to 39.3%, with an average reduction of 14.6%, while
the total runtime of GPUPBICGSTAB with MP-SSPAI can
be reduced by up to 25.4% relative to GPUPBICGSTABwith
SSPAI, with an average reduction of 9.1% (except for image-
sensor). To further demonstrate the superiority of MP-SSPAI
performance, Fig. 9 shows the ratio of execution time of
SSPAI to MP-SSPAI and total runtime of GPUPBICGSTAB
with SSPAI to GPUPBICGSTAB with MP-SSPAI. Based on
above analysis, MP-SSPAI is effective and widely applicable.

FIGURE 9. Ratio of execution time of SSPAI to MP-SSPAI and total
runtime of GPUPBICGSTAB with SSPAI to GPUPBICGSTAB with
MP-SSPAI

Then, to test the effectiveness of MP-HeuriSPAI, it was
compared with HeuriSPAI [33]. The selected test matrices
are same as literature [33]. The comparison results are shown
in Table 6, where "Iters", "preTime", "allTime", PpreTime, and
PallTime are the same as in Table 5.

Observing Table 6, firstly, we can see that the execution
time of MP-HeuriSPAI is shorter than that of HeuriSPAI for
all test matrices. Next, compared to GPUPBICGSTAB with
HeuriSPAI, for gyro_m, af23560, af_shell3, and parabol-
ic_fem, the number of iterations of GPUPBICGSTAB with

TABLE 6. Comparison Results of the GPUPBICGSTAB with HeuriSPAI
and GPUPBICGSTAB with MP-HeuriSPAI on GTX1070

Matrices HeuriSPAI MP-HeuriSPAI PpreTime PallTime
Iters preTime allTime Iters preTime allTime

gyro_m 96 2.598 2.956 89 1.753 2.078 32.5% 29.7%
af23560 291 1.565 1.995 290 0.997 1.414 36.3% 29.1%
wenkat01 25 2.323 2.676 25 1.605 1.942 30.9% 27.4%
imagesensor 22 0.778 1.122 22 0.638 1.057 19.3% 5.8%
FEM_3D_thermal2 9 0.859 1.194 9 0.622 0.924 27.6% 22.6%
ASIC_320ks 8 7.675 8.020 8 5.369 5.587 30.0% 30.3%
cage13 8 0.922 1.241 8 0.664 0.951 28.0% 23.4%
af_shell3 441 37.873 52.634 421 34.308 48.891 9.4% 7.1%
parabolic_fem 288 0.883 2.354 279 0.649 2.085 26.5% 11.4%
apache2 694 0.975 3.634 697 0.727 3.320 25.4% 8.6%
t2em 574 0.659 3.253 583 0.511 3.216 22.4% 1.1%
ecology2 2665 0.701 12.531 2700 0.558 13.001 20.4% -3.8%
thermal2 1449 2.681 12.179 1449 1.954 12.063 27.1% 1.0%
atmosmodd 117 0.991 1.976 117 0.722 1.675 27.1% 15.2%
G3_circuit 330 1.189 3.791 330 0.917 3.593 22.9% 5.2%

MP-HeuriSPAI is smaller, while it keeps unchanged for
venkat01, imagesensor, FEM_3D_thermal2, ASIC_320ks,
cage13, thermal2, atmosmodd, and G3_circuit. Moreover, for
matrices apache2 and t2em, although GPUPBICGSTABwith
MP-HeuriSPAI increases their number of iterations, it de-
creases their total execution time. And for all matrices except
ecology2, the total execution time of GPUPBICGSTAB with
MP-HeuriSPAI is less than that of the GPUPBICGSTABwith
HeuriSPAI. In addition, for all matrices, the preprocessing
time ofMP-HeuriSPAI can be reduced by up to 36.3% relative
to HeuriSPAI, with an average reduction of 25.7%, while the
total runtime of GPUPBICGSTAB with MP-HeuriSPAI can
be reduced by up to 30.3% relative to GPUPBICGSTABwith
HeuriSPAI, with an average reduction of 14.5% (except for
ecology2). To further prove the superiority of MP-HeuriSPAI
performance, Fig. 10 shows the ratio of execution time of
HeuriSPAI to MP-HeuriSPAI and total runtime of GPUP-
BICGSTAB with HeuriSPAI to GPUPBICGSTAB with MP-
HeuriSPAI. The above analysis shows that MP-HeuriSPAI is
effective.

FIGURE 10. Ratio of execution time of HeuriSPAI to MP-HeuriSPAI and
total runtime of GPUPBICGSTAB with HeuriSPAI to GPUPBICGSTAB with
MP-HeuriSPAI

B. PERFORMANCE EVALUATION
In this subsection, firstly, using SSPAI as the standard, we
compare MP-SSPAI with the single-precision version of the

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3338443

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

static SPAI preconditioning algorithm (denoted as S-SSPAI),
and its extended version(denoted as MP1-SSPAI) shown in
Algorithm 4. In addition, this experiment will be performed
on both NVIDIA GTX1070 and TITANXp GPUs, and test
matrices are same as Table 5. The results are shown in Ta-
bles 7 and 8. In Tables 7 and 8, for each matrix, the first
row is the number of iterationswhenGPUPBICGSTAB stops,
the second row is the execution time of preconditioners, and
the third row is the total execution time, which includes the
execution time of preconditioner and iterative algorithm. In
addition, for all experiments, the minimum value of total ex-
ecution time is marked in red for all selected sparse matrices.

From Table 7, we can see that on GTX1070 GPU, com-
pared with SSPAI, for all matrices except test1, S-SSPAI can
effectively reduce their execution time. However, for cbuckle,
inagesensor, cfd2, ASIC_320ks, msdoor etc. 12 matrices,
the number of iterations of GPUPBICGSTAB with S-SSPAI
is increased, and its total execution time is also increased
for matrices inagesensor, cfd2, apache2, t2em, thermal2, at-
mosmodd, and G3_circuit. In particular, for matrix test1,
GPUPBICGSTABwith S-SSPAI does not converge under the
iterative stopping condition. For MP1-SSPAI, it effectively
reduces the execution time for most matrices. However, for
cbuckle, gyro_m, inagesensor, cfd2, CurlCurl_1, etc. 11 test
matrices, the number of iterations of GPUPBICGSTAB with
MP1-SSPAI is increased, and for inagesensor, cfd2, thermal2,
etc. 9 test matrices, the total execution time is also increased.
In particular, for test1, it does not converge under the iteration
stopping condition. For MP-SSPAI, the analysis of Table 5
shows that it not only has high effectiveness and computation-
al efficiency, but also is more stable and applicable. Further,
on TITANXp GPU, analyzing Table 8, we can see that the
performance of MP-SSPAI is also better than that of SSPAI,
S-SSPAI, and MP1-SSPAI.

Then, using HeuriSPAI as the standard, this subsection
compares MP-HeuriSPAI with a single precision version of
HeuriSPAI (denoted as S-HeuriSPAI) and its extended ver-
sion(denoted as MP1-HeuriSPAI) shown in Algorithm 6. Ta-
bles 9 and 10 provide their comparison results on GTX1070
and TITANXp, respectively.

From Tables 9 and 10, we can see that on both of GTX1070
and TITANXp, firstly, the execution time of S-HeuriSPAI is
shorter than that of HeuriSPAI for all test matrices except
imagesensor. However, for af23560, ASIC_320ks, af_shell3,
parabolic_fem, apache2, t2em, ecology2, and thermal2, the
number of iterations of GPUPBICGSTAB with S-HeuriSPAI
is significantly higher than that of GPUPBICGSTAB with
HeuriSPAI, especially for imagesensor, GPUPBICGSTAB
with S-HeuriSPAI does not converge under the iteration
stopping condition. Considering the total execution time,
for parabolic_fem, t2em, ecology2 and thermal2, GPUP-
BICGSTAB with S-HeuriSPAI has longer total execution
time than that of GPUPBICGSTAB with HeuriSPAI. The
above analysis shows that S-HeuriSPAI does not improve the
performance of HeuriSPAI. ForMP1-HeuriSPAI, the analysis
shows that overall, its performance is comparable to that of S-

TABLE 7. Comparison Results of the GPUPBICGSTAB with
SSPAI, GPUPBICGSTAB with S-SSPAI, GPUPBICGSTAB with
MP1-SSPAI, and GPUPBICGSTAB with MP-SSPAI on
GTX1070

Matrices SSPAI S-SSPAI MP1-SSPAI MP-SSPAI

cbuckle
96 98 106 94
8.009 7.798 7.975 7.802
8.395 8.137 8.401 8.107

gyro_m
180 180 181 178
0.818 0.706 0.810 0.704
1.189 1.161 1.174 1.153

venkat01
35 35 35 35
1.177 0.982 1.036 0.969
1.440 1.405 1.470 1.300

2cubes_sphere
4 4 4 4
0.851 0.735 0.771 0.734
1.172 1.036 1.067 1.029

imagesensor
52 2709 1304 976
0.343 0.268 0.319 0.274
0.692 2.469 1.528 1.259

cfd2
1583 1715 1670 1375
2.209 1.814 1.897 1.823
4.345 5.071 4.831 3.822

power9
37 37 37 37
4.524 4.436 4.530 4.413
5.032 5.018 5.034 5.014

majorbasis
20 20 20 20
0.390 0.327 0.410 0.326
0.721 0.637 0.717 0.635

stomach
24 24 24 24
0.847 0.705 0.864 0.705
1.183 1.152 1.174 1.149

CurlCurl_1
266 251 281 245
0.425 0.353 0.376 0.356
1.069 0.965 1.024 0.946

offshore
5 5 5 5
2.216 1.877 1.991 1.891
2.551 2.178 2.285 2.180

ASIC_320ks
10 33 14 8
4.918 4.621 4.957 4.629
5.269 5.049 5.276 4.941

test1
14 >10000 >10000 57
21.150 / / 19.848
21.497 / / 20.817

msdoor
892 980 775 626
61.099 57.903 59.887 57.854
66.456 65.749 64.562 60.379

CoupCons3D
52 52 52 52
77.494 73.453 75.923 73.377
78.102 74.054 76.450 73.879

Fault_639
1226 1282 1249 1226
190.716 182.187 186.141 183.426
200.646 194.881 196.242 192.767

apache2
1090 1199 1152 996
0.237 0.151 0.166 0.155
3.697 3.916 3.796 2.759

t2em
755 775 825 673
0.079 0.062 1.005 0.064
2.793 2.837 3.023 2.398

thermal2
2086 2922 2433 1920
0.374 0.280 0.467 0.281
11.508 16.529 13.344 9.659

atmosmodd
135 140 135 135
0.402 0.349 0.288 0.244
1.408 1.434 1.231 1.228

Geo_1438
339 372 411 330
148.765 133.779 136.510 133.783
154.977 140.537 143.933 139.548

G3_circuit
468 470 464 455
0.150 0.116 0.130 0.118
3.032 3.172 2.916 2.903

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3338443

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

TABLE 8. Comparison Results of the GPUPBICGSTAB with
SSPAI, GPUPBICGSTAB with S-SSPAI, GPUPBICGSTAB with
MP1-SSPAI, and GPUPBICGSTAB with MP-SSPAI on
TITANXp

Matrices SSPAI S-SSPAI MP1-SSPAI MP-SSPAI

cbuckle
96 100 105 95
4.886 4.798 4.672 4.341
5.272 5.014 5.278 4.884

gyro_m
180 180 183 178
0.577 0.465 0.569 0.457
0.946 0.917 0.931 0.910

venkat01
35 35 35 35
1.118 0.923 0.977 0.910
1.216 1.181 1.246 1.076

2cubes_sphere
4 4 4 4
0.573 0.457 0.493 0.439
0.942 0.806 0.837 0.799

imagesensor
52 2531 1130 823
0.332 0.256 0.318 0.251
0.571 2.048 1.107 1.038

cfd2
1601 1723 1690 1392
1.512 1.384 1.577 1.385
3.647 4.218 4.311 3.462

power9
37 37 37 37
3.388 3.300 3.394 3.277
4.107 4.003 4.110 3.916

majorbasis
20 20 20 20
0.371 0.309 0.396 0.301
0.683 0.541 0.679 0.524

stomach
24 24 24 24
0.840 0.699 0.854 0.681
1.153 1.144 1.167 1.139

CurlCurl_1
266 261 276 225
0.301 0.229 0.245 0.214
0.827 0.720 0.813 0.708

offshore
5 5 5 5
1.752 1.413 1.527 1.414
2.081 1.700 1.815 1.704

ASIC_320ks
10 35 19 8
2.791 2.216 2.573 2.203
4.397 4.192 4.406 3.826

test1
14 >10000 >10000 118
14.297 / / 9.741
16.754 / / 11.562

msdoor
1029 1183 823 697
37.801 30.616 33.890 29.946
41.375 36.102 38.241 34.335

CoupCons3D
52 52 52 52
48.979 44.938 47.408 44.862
49.658 45.610 48.006 45.435

Fault_639
1149 1226 1172 1149
123.937 115.408 119.362 116.647
129.867 127.102 125.463 121.988

apache2
1190 1223 1198 1030
0.230 0.144 0.159 0.146
3.751 3.970 3.853 3.664

t2em
824 844 893 742
0.057 0.040 0.983 0.041
1.952 1.996 2.182 1.557

thermal2
2086 2735 2107 1918
0.363 0.276 0.415 0.268
9.541 14.211 11.632 7.890

atmosmodd
135 140 135 135
0.400 0.343 0.267 0.241
1.403 1.429 1.337 1.205

Geo_1438
339 365 415 334
101.544 91.925 94.645 91.617
109.010 97.251 99.323 96.515

G3_circuit
468 489 460 451
0.148 0.113 0.127 0.109
3.161 3.167 2.875 2.736

TABLE 9. Comparison Results of the GPUPBICGSTAB with
HeuriSPAI, GPUPBICGSTAB with S-HeuriSPAI,
GPUPBICGSTAB with MP1-HeuriSPAI, and GPUPBICGSTAB
with MP-HeuriSPAI on GTX1070

Matrices HeuriSPAI S-HeuriSPAI MP1-HeuriSPAI MP-HeuriSPAI

gyro_m
96 96 99 89
2.598 2.083 2.428 1.753
2.956 2.509 2.782 2.078

af23560
291 292 290 290
1.565 1.030 1.513 0.997
1.995 1.446 1.941 1.414

venkat01
25 25 25 25
2.323 1.618 2.041 1.605
2.676 1.943 2.403 1.942

imagesensor
22 / 2670 22
0.778 / 0.801 0.638
1.122 / 2.472 1.057

FEM_3D_thermal2
9 9 9 9
0.859 0.657 0.778 0.622
1.194 0.958 1.112 0.924

ASIC_320ks
8 13 8 8
7.675 5.361 7.454 5.369
8.020 5.681 7.799 5.587

cage
8 8 8 8
0.922 0.749 0.952 0.664
1.241 1.031 1.268 0.951

af_shell3
441 502 449 421
37.873 34.373 36.446 34.308
52.634 52.108 53.340 48.891

parabolic_fem
288 301 288 279
0.883 0.619 0.809 0.649
2.354 2.422 2.200 2.085

apache2
694 702 714 697
0.975 0.683 0.897 0.727
3.634 3.334 3.621 3.320

t2em
574 662 634 583
0.659 0.439 0.586 0.511
3.253 3.362 3.418 3.219

ecology2
2665 2717 2910 2700
0.701 0.509 0.613 0.558
12.531 13.123 14.206 13.001

thermal2
1449 2012 1635 1449
2.681 1.835 2.181 1.954
12.179 14.862 12.855 12.063

atmosmodd
117 117 117 117
0.991 0.716 0.880 0.722
1.976 1.672 1.862 1.675

G3_circuit
330 327 332 330
1.189 0.854 1.067 0.917
3.791 3.407 3.690 3.593

HeuriSPAI. And for MP-HeuriSPAI, compare to HeuriSPAI,
Table 6 shows it effectively improves the validity of precondi-
tioners and the computational efficiency for most matrices on
GTX1070. Further, on TITANXp, analysis of Table 10 shows
that this conclusion still holds. In summary, MP-HeuriSPAI is
effective and superior to HeuriSPAI, S-HeuriSPAI, and MP1-
HeuriSPAI.

The above experiments show that the proposed MP-SSPAI
andMP-HeuriSPAI can improve the computational efficiency
without increasing the number of iterations for most test
matrices. why does the change in computational accuracy
improve the convergence for most test matrices? In the trans-
formation of the coefficient matrix A from double precision to
single precision, although each data has only a small change,
there is more data for large sparse matrices, and it involves
complex calculations in multiple steps in the construction

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3338443

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

TABLE 10. Comparison Results of the GPUPBICGSTAB with
HeuriSPAI, GPUPBICGSTAB with S-HeuriSPAI,
GPUPBICGSTAB with MP1-HeuriSPAI, and GPUPBICGSTAB
with MP-HeuriSPAI on TITANXp

Matrices HeuriSPAI S-HeuriSPAI MP1-HeuriSPAI MP-HeuriSPAI

gyro_m
96 96 99 89
2.082 1.837 2.016 1.376
2.384 2.213 2.365 1.716

af23560
291 293 290 290
1.456 0.921 1.404 0.888
1.868 1.337 1.814 1.287

venkat01
25 25 25 25
1.774 1.132 1.492 1.066
1.629 1.018 1.356 0.903

imagesensor
37 / 1320 37
0.768 / 0.803 0.627
1.096 / 2.191 1.024

FEM_3D_thermal2
9 9 9 9
0.817 0.608 0.765 0.601
1.1753 0.936 1.101 0.911

ASIC_320ks
8 11 8 8
5.132 3.418 5.015 3.441
6.768 4.571 6.307 4.492

cage
8 8 8 8
0.910 0.741 0.947 0.655
1.227 1.019 1.254 0.938

af_shell3
441 457 445 438
26.283 23.778 25.189 23.031
41.377 38.769 39.162 37.462

parabolic_fem
288 300 288 280
0.872 0.611 0.802 0.633
2.217 2.364 2.171 2.026

apache2
641 712 725 655
0.971 0.680 0.892 0.683
2.314 2.287 2.769 2.250

t2em
574 663 637 583
0.632 0.416 0.579 0.418
2.543 2.736 2.603 2.482

ecology2
2802 2816 2937 2810
0.540 0.429 0.537 0.430
13.312 13.638 14.506 13.277

thermal2
2248 2811 2434 2248
2.678 1.823 2.185 1.820
13.168 14.975 14.239 12.766

atmosmodd
103 103 103 103
0.546 0.314 0.401 0.312
1.729 1.604 1.656 1.613

G3_circuit
330 327 332 330
1.079 0.742 1.003 0.945
3.691 3.378 3.529 3.423

of preconditioners. Therefore, these can cause error accu-
mulation and alter its effectiveness. The experimental results
demonstrate that the error accumulation in the proposed two
mixed accuracy models improves or maintains the validity of
the constructed preconditioners for most test matrices.

VI. CONCLUSIONS AND DISCUSSIONS
Based on the construction method of sparse approximate
inverse(SPAI) preconditioners in mixed precision mode from
the perspective of single and double precision mixing, two
mixed precision sparse approximation inverse precondition-
ing algorithms, MP-SSPAI and MP-HeuriSPAI, are given
in this paper, and their parallel implementations are also
given. A series of experiments show that MP-SSPAI and
MP-HeuriSPAI are effective and applicable to a wide range
of applications. In the future, we will research on the error

analysis ofMP-SSPAI andMP-HeuriSPAI in theory to further
confirm their high performance.

REFERENCES
[1] NVIDIA, ‘‘CUDA C Programming Guide,’’ Version 11.1, 2021. [Online].

Available: http://docs.nvidia.com/cuda/cuda-c-programming-guide
[2] M. Bernaschi, M. Carrozzo, A. Franceschini, and C. Janna, ‘‘A dynamic

pattern factored sparse approximate inverse preconditioner on graphic
processing units,’’ SIAM J. Sci. Comput., vol. 41, no. 3, pp. C139–C160,
Jan. 2019.

[3] H. Liu, Z. X. Chen, and B. Yang, ‘‘Accelerating preconditioned iterative
linear solvers on GPU,’’ Int. J. Numer. Anal. Mod., vol. 5, no. 1-2, pp. 136–
146, Jan. 2014.

[4] Z. Xiao, T.X. Gu, Y.X. Peng, X.G. Ren, and J. Qi, ‘‘Mixed precision
in CUDA polynomial precondition for iterative solver,’’ IEEE Int. Conf.
Comput. Commun. Eng. Technol., Beijing, China, pp. 186–192, 2018.

[5] K. K. Phoon, F. H. Lee, and S. H. Chan, ‘‘Iterative solution of intersecting
tunnels using the generalised Jacobi preconditioner,’’ Proc. Int. Conf.
Numerical Simulation of Construction Processes in Geotechnical Eng. for
Urban Environment - Numerical Modelling of Construction Processes in
Geotechnical Eng. for Urban Environment, Luniver Press, UK, 2008.

[6] S. H. Chan, K. K. Phoon, and F. H. Lee, ‘‘A modified Jacobi preconditioner
for solving ill-conditioned Biot’s consolidation equations using symmetric
quasi-minimal residual method,’’ Int. J. Numer. Anal. Methods Geomech.,
vol. 25, no. 10, pp. 1001–1025, Aug. 2001.

[7] H. Anzt et al., ‘‘Variable-size batched GaussĺCJordan elimination for
block-Jacobi preconditioning on graphics processors,’’ Parallel Comput.,
vol. 81, pp. 131–146, Jan. 2019.

[8] H. Anzt et al.,‘‘ Batched Gauss-Jordan elimination for Block-Jacobi pre-
conditioner generation on GPUs,’’ International Workshop on Program-
ming Models and Applications for Multicores and Manycores, 2017.

[9] M. Ferronato, C. Janna, and G. Gambolati, ‘‘A novel factorized sparse
approximate inverse preconditioner with supernodes,’’ presented at the
30th Int. Symp. High Perform. Parallel Distrib. Comput., 2020.

[10] L. Grigori, Q. Niu, and Y. X. Xu, ‘‘Stabilized dimensional factorization
preconditioner for solving incompressible Navier-Stokes equations,’’ Appl.
Numer. Math., vol. 146, pp. 309–327, Dec. 2019.

[11] S. Laut, R. Borrell, and M. Casas, ‘‘Cache-aware sparse patterns for the
factorized sparse approximate inverse preconditioner,’’ Adv. Eng. Softw.,
vol. 113, pp. 19–24, Jun. 2017.

[12] L. E. Carr III, C. F. Borges, and F. X. Giraldo, ‘‘Matrix-free polynomial-
based nonlinear least squares optimized preconditioning and its application
to discontinuous Galerkin discretizations of the Euler equations,’’ J. Sci.
Comput., vol. 66, pp. 917–940, Jun. 2015.

[13] J. Cerdán, J. Maŕin, and A. Mart́inez, ‘‘Polynomial preconditioners based
on factorized sparse approximate inverses,’’ Appl. Math. Comput., vol. 133,
no. 1, pp. 171–186, Nov. 2002.

[14] M. B. van Gijzen, ‘‘A polynomial preconditioner for the GMRES algorith-
m,’’ J. Comput. Appl. Math., vol. 59, no. 1, pp. 91–107, Nov. 1993.

[15] E. Coleman and M. Sosonkina, ‘‘Self-stabilizing fine-grained parallel in-
complete LU factorization,’’ Sustain. Comput. -Infor., vol. 19, pp. 291–304,
Sep. 2018.

[16] M. M monga Made and H. A. van der Vorst, ‘‘A generalized domain
decomposition paradigm for parallel incomplete LU factorization precon-
ditionings,’’ Future Gener. Comp. Sy., vol. 17, no. 8, pp. 925–932, Jun.
2001.

[17] T. N. Phillips, ‘‘On methods of incomplete LU decompositions for solving
Poisson’s equation in annular regions,’’ Appl. Numer. Math., vol. 8, no. 6,
pp. 515–531, Dec. 1991.

[18] J. Gao, Q. Chen, and G. He, ‘‘A thread-adaptive sparse approx-
imate inverse preconditioning algorithm on multi-GPUs,’’ Parallel
Comput., vol. 101, pp. 102724, Nov. 2021, [Online]. Available:
https://doi.org/10.1016/j.parco.2020.102724

[19] L. González and A. Suárez, ‘‘Improving approximate inverses based on
Frobenius norm minimization,’’ Appl. Math. Comput., vol. 219, no. 17, pp.
9363–9371, May. 2013.

[20] P. Tarazaga and D. Cuellar, ‘‘Preconditioners generated by minimizing
norms,’’ Comput. Math. Appl., vol. 57, no. 8, pp. 1305–1312, Apr. 2009.

[21] B. Carpentieti, I. S. Duff, and L. Giraud, ‘‘Sparse pattern selection strate-
gies for robust Frobenius-norm minimization preconditioners in electro-
magnetism,’’ Numer. Linear Algebr., vol. 7, no. 7-8, pp. 667–685, Otc.
2000.

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3338443

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

[22] T. Hucle, ‘‘Approximate sparsity patterns for the inverse of a matrix and
preconditioning,’’ Appl. Numer. Math., vol. 30, no. 2-3. pp. 291–303, Jun.
1999.

[23] G. X. He, R. J. Yin, and J. Q. Gao, ‘‘An efficient sparse approximate
inverse preconditioning algorithm on GPU,’’ Concurr. Comp. Pract. E.,
2019, [Online]. Available: https://doi.org/10.1002/cpe.5598

[24] E. Chow, ‘‘A priori sparsity patterns for parallel sparse approximate inverse
preconditioners,’’ SIAM J. Sci. Comput., vol. 21, no. 5, pp. 1804–1822, Apr.
2000.

[25] D. Bertaccini and S. Filippone, ‘‘sparse approximate inverse precondition-
ers on high performance GPU platforms,’’ Comput. Math. Appl., vol. 71,
no. 3, pp. 693–711, Feb. 2016.

[26] G. Oyarzun et al., ‘‘MPI-CUDA sparse matrix-vector multiplication for the
conjugate gradient method with an approximate inverse preconditioner,’’
Comput. Fluids, vol. 92, pp. 244–252, Mar. 2014.

[27] M. M. Dehnavi, D. M. Fernández et al., ‘‘Parallel sparse approximate in-
verse preconditioning on graphic processing untits,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 9, pp. 1852–1861, Sep. 2013.

[28] M. Lukash, K. Rupp, and S. Selberherr, ‘‘Sparse approximate inverse
preconditioners for iterative solvers on GPUS,’’ Proc. Symp. High Perform.
Comput., Society for Computer Simulation: San Diego, CA, USA, 2012.

[29] Z. X. Jia and Q. Zhang, ‘‘Robust dropping criteria for F-normminimization
based sparse approximate inverse preconditioning,’’BITNumer.Math., vol.
53, no. 4, pp. 959–985, Jun. 2013.

[30] M. J. Grote and T. Huckle, ‘‘Parallel preconditioning with sparse approx-
imate inverses,’’ SIAM J. Sci. Comput., vol. 18, no. 3, pp. 838–853, Jan.
1997.

[31] Z. Jia and B. Zhu, ‘‘A power sparse approximate inverse preconditioning
procedure for large sparse linear systems,’’ Numer. Linear Algebr., vol. 16,
no. 4, pp. 259–299, Jul. 2009.

[32] J. Gao, X. Chu, X. Wu, J. Wang, and G. He, ‘‘Parallel dynamic sparse
approximate inverse preconditioning algorithm on GPU,’’ IEEE T. Parall.
Distr., vol. 33, no. 12, pp. 4723–4737, Dec. 2022.

[33] J. Q. Gao, X. Y. Chu, and Y. Z. Wang, HeuriSPAI: ‘‘A heuristic
sparse approximate inverse preconditioning algorithm on GPU,’’
CCF Trans. High Perform. Comput., 2023, [Online]. Available:
https://doi.org/10.1007/s42514-023-00142-2

[34] M. Baboulin et al., ‘‘Accelerating scientific computations with mixed
precision algorithms,’’ Comput. Phys. Commun., vol. 180, no. 12, pp.
2526–2533, Dec. 2009.

[35] J. Kurzak and J. Dongarra, ‘‘Implementation of mixed precision in solving
systems of linear equations on the Cell processor,’’ Concurr. Comp. -Pract.
E., vol. 19, no. 10, pp. 1371–1385, Jul. 2010.

[36] H. Anzt, B. Rocker, and V. Heuveline, ‘‘Energy efficiency of mixed
precision iterative refinement methods using hybrid hardware platforms,’’
Comput. Sci.-Res. Dev., vol. 25, no. 3-4, pp. 141–148, Aug. 2010.

[37] A. Abdelfattah et al., ‘‘A survey of numerical linear algebra methods
utilizing mixed-precision arithmetic,’’ Int. J. High Perform., vol. 35, no.
4, pp. 344–369, Mar. 2021.

[38] A. R. Khaz’ali, M. R. Rasaei, and J. Moghadasi, ‘‘Iterative methods with
mixed-precision preconditioning for ill-conditioned linear systems in mul-
tiphase CFD simulations,’’ 12th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems(ScalA), pp. 1–8, 2021.

[39] F. Göbel, T. Grützmacher, T. Ribizel, and H. Anzt, ‘‘Mixed precision
incomplete and factorized sparse approximate inverse preconditioning on
GPUs,’’ In Euro-Par 2021: Parallel Processing: 27th International Confer-
ence on Parallel and Distributed Computing, Lisbon, Portugal, Proceedings
27, pp. 550–564, 2021.

[40] G. Flegar, H. Anzt, T. Cojean, and E. S. Quintana-Ortí, ‘‘Adaptive precision
Block-Jacobi for high performance preconditioning in the Ginkgo Linear
Algebra Software,’’ ACMTrans. Math. Softw., vol. 47, no. 2, pp. 1–28, Apr.
2021.

[41] D. Kressner, Y. Ma, and M. Shao, ‘‘A mixed precision LOBPCG algorith-
m,’’ Numer. Algorithms pp. 1–19, May 2023.

[42] N. Lindquist, P. Luszczek, and J. Dongarra, ‘‘Accelerating restarted GM-
RES with mixed precision arithmetic,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 4, pp. 1027–1037, Apr. 2022.

[43] H. Zhang, W. Ma, W. Yuan, J. Zhang, and Z. Lu, ‘‘ Mixed-precision
block incomplete sparse approximate preconditioner on Tensor core,’’CCF
Trans. High Perform. Comput., pp. 1–14, Apr. 2023.

[44] X. Y. Chu, Y. Z. Wang, Q. Chen, and J. Q. Gao, ‘‘Optimizing the sparse
approximate inverse preconditioning algorithm on GPU,’’ BenchCouncil
Transactions on Benchmarks, Standards and Evaluations, vol. 2, no. 4, pp.
100087, Mar. 2023.

[45] NVIDIA, ‘‘CUBLAS Library,’’ 2022. [Online]. Available:
https://docs.nvidia.com/cuda/cublas/index.html

[46] NVIDIA, ‘‘CUSPARSE Library,’’ 2022. [Online]. Available:
https://docs.nvidia.com/cuda/cusparse/index.html

[47] T. A. Davis and Y. Hu, ‘‘The university of florida sparse matrix collection,’’
ACM T. Math. Software, vol. 38, no. 1, pp. 1–25, Nov. 2011.

XINYUE CHU is currently a PH.D candidate of
the School of Computer and Electronic Informa-
tion at the Nanjing Normal University in Nanjing,
China, and her current research interests include
high-performance computing (HPC), parallel algo-
rithms.

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3338443

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

