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ABSTRACT Nowadays antiretroviral therapy is widely used to cut down the viral burden and cut off a few
infection sources in clinical medicine for Human Immunodeficiency Virus (HIV) infected patients, and a lot
of evidence have shown that a massive coverage with antiretroviral therapy has already acquired a series of
contributions and successes to save life and popularize preventive knowledge. Based on the HIV dynamic
model, this paper designs a feedback controller to adjust the concentration values of CD4+T cell, CD8+T
cell and viral load in HIV dynamic model to a healthy condition asymptotically. The HIV dynamic model is
expressed in the form of a polynomial system and then the control law, as the appropriate drug dosage
usually applied in the medical therapy, is designed to suppress the reproduction of the HIV virus and
improve the production rate of healthy cell in vivo, simultaneously. According to the polynomial Lyapunov
theory and sum of squares (SOS) technique, the conditions for the controller synthesis are proposed. The
simulation experimental results can be testified the availability of the proposed method.

INDEX TERMS Human Immunodeficiency Virus, antiretroviral therapy, polynomial Lyapunov theory,

sum of squares.

I. INTRODUCTION

In the world today, especially in many sub-Saharan African
nations and a number of impoverished nations in Asia and
South America, epidemic diseases are still acting as a dark
role to seriously influence and restrict indigenous social
stability and public hygiene development. Moreover, in the
long run, this is not only a regional problem but also is a
very serious cosmopolitan problem that has been released
by some international organizations, academic reports,
public media or social media all over the world. Acquired
immunodeficiency syndrome (AIDS) is one of the
fulminating infectious diseases that threatens the global
human health so that it may be causing a series of
unpredictable social and public health events. Nowadays
Human Immunodeficiency Virus (HIV) infection issue has
been more or less obstructing global society's stability and
progress to a certain extent. This is the main reason why the
early-stage epidemic prevention and therapeutic measures
are very meaningful [1-3]. Generally speaking, the infection
mechanism of HIV is that virus invades CD4+T cells in the
human immune system, namely, HIV attacks and infects
healthy CD4+T cells to let the healthy CD4+T cells to be
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infected cells. Because of the abovementioned factors, the
population of CD4+ T cells decreases that will result in
healthy situations to slowly slip into the human
immunodeficiency situation, it means that the patient is
tardily losing the protection of the defense shield in the
body. Modern world still exists a few difficulties in the
field of HIV therapy due to the clinical vaccines without
high efficiency to protect humankind. Currently, clinical
medicine employs highly active antiretroviral therapy
(HAART), which wusually includes several different
antiretroviral drugs to be synthetically used, to treat patients.
Reverse transcriptase inhibitors (RTIs) and protease
inhibitors (PIs) are the typical choices for some time
henceforth [4-7]. Although it has an incredible success to
treat HIV infection via clinical therapeutic study, but all
known drugs or techniques cannot eliminate all viruses in
the human body to touch an aim to cure infected patients
yet.

Mathematic dynamic modeling methods based on clinical
experimental data hold many important significances in
clinical therapy and medical study. Mathematic modeling
method for HIV dynamics study can easily reveal the
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variations and phenomena of an integrated infection process
in the human body. Thereby, a suitable HIV dynamic model
can help us to indirectly understand the details of the virus
infection mechanism, evolution, natural death and clearance.
Thereby, on the basis of the previous presentation,
mathematic modeling method can help scientists or
researchers further reveal several new features of the HIV
infection, or supply a new way to evaluate the worth of
some medical study programs.

In the last decades, a lot of time and energy had been
devoted to studying the dynamics of HIV infection model
or other infectious diseases. A compartmental model was
established for HIV infection among men who have sex
with men, which is used to evaluate the efficiency of
antiretroviral therapy (ART) in cutting off the spread of
HIV infection [8]. On account of many developed or
developing therapeutic methods or drugs for HIV/AIDS,
some mathematic models had been formed for the previous
studies such as via exploring three types of CD4+ cells:
uninfected cells, infected cells in the incubation period and
infected cell production to obtain a differential equation
model [9]. Some papers focus on the optimal scheduling
[10] for drug dosage to drive body condition of the patient
to a steady healthy state. Nowadays, there exist many
papers with different control designs to improve their
contributions in the biomedical study field. Some control
methods for the issues of drug dosage scheduling have been
used to treat HIV infection. While most of these studies
desired the completed states for the proposed control, even
more, some of them cannot capture the performances and
changes of the entire dynamic process. In addition, some
papers used linearization or T-S fuzzy approach to build the
original HIV model. It is noted that the nonlinear HIV
system directly represented by the polynomial nonlinear
system is more precise with respect to linearization
approach [11], or T-S fuzzy system [12]. Because using the
method of [11], the linearized system is only similar to the
original nonlinear HIV system that means it cannot
represent the original model completely. Moreover, if we
use T-S fuzzy system to represent the HIV model, the
computational burden will increase due to a number of
fuzzy rules as well. Here, a feedback control approach
based on SOS has been proposed to handle the drug
scheduling of a polynomial HIV model system. On the
other hand, the recent research prefers to resolve certain
questions about the polynomial nonlinear system directly
rather than use linearized approximate model. Therefore,
design and analysis via SOS technique have become the
new tendency. Previously linear matrix inequality (LMI)
has gotten lots of attention. A core characteristic of the
LMI-based approaches owns simple and effective features
as compared with other control approaches. However, the
LMI-based approaches still look into certain design
problems which cannot be represented perfectly in
accordance with LMI [13] or cannot solve solutions
conveniently via LMI. Thus, SOS-based approaches are
considered as a novel road to solve some problems such as
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it can efficiently and directly describe nonlinear polynomial
systems or design nonlinear polynomial controllers in
control theory. It means that the SOS-based approaches can
well express the models without via linearizing or other
approaches to obtain proximate models for solving
approximate results as compared with the original models.
Certainly, it is well-known that the developed SOS-based
approaches [13-17] supplied much more extensive or
relaxed results than the other existing control approaches.
However, there exist few academic papers on SOS-based
feedback control design for directly studying a polynomial
HIV model system. For this purpose, we present this
approach in this paper to explain how it can work to enforce
the states of the patient recovering to the healthy states.

The article structure is shown as follows: In section 2,
some preliminary knowledge about the HIV model is
presented. In section 3, the control problem to be dealt with
is described. Section 3 is the main result and its proof. In
section 4, a numerical experiment and its simulation are
shown in this section. In the last section, the conclusion is
given.

Il. PRELIMINARY AND PROBLEM DESCRIPTION
The model of HIV dynamics to be considered is as follows

x;l =D (xl() _)?1 )_p2)?])?3
X, = p, (xzo—)?z)+p4)?2)73 (D

Xy =X, (ps)?l _psfz)

where X =[X, X, X,]' is the state vector which contains
X, (CD4+T cells), x, (CD8+T cells) and X; (viral load, i.e.,
it corresponds to 107 times measurement for the viral load
in copies/ml ). Moreover, p, , p, , ... , and p, are some

positive constants whose description and values are listed in
Table 1.

TABLE 1
DESCRIPTION OF PARAMETERS AND STATE VARIABLES
Variable and Description Value
parameter
%, CD4+T cells population N/A
%, CDB8+T cells population N/A
%, HIV viral load N/A
n CDA4+T cells death rate 0.25
P CD4+T cells infection rate 50
Py CD8+T cells death rate 0.25
P CD8+T cells growth rate in response to 10
viral load growth rate
p Viral load growth rate 0.01
5
Pe Viral load clearance rate 0.006

CD4+T cell’s unperturbed equilibrium value 1000
CD8+T cell’s unperturbed equilibrium value 550
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It is known that the system (1) has two equilibrium points,
one is

X, £x,=1000, X, 2x,,=550,and X, =0  (2)

and the other is

* +
= P1P4PsXio * PrP3PsXp0 _ 442
P1PsPs + Py P3Ps
« +
X = P1P4PsXio + PrP3PsXa0 _ 736 3)
PiPsPs T P2P3Ds
x P\Ps3 (prIO _p6x20)

X, = = 0.006.
P1D4PsXg T P P3Ps¥o

Let the right-hand side of (1) be denoted by f, where

b (xlo _fl)_p2flf3
f=|ps (xzo _fz)"' DX | “4)
X, (ps)_cl _p6f2)

In order to analyse the local stability of the equilibrium
points, let us consider the eigenvalues of the Jacobian
matrix F = 0df /ox , where

=P~ D% 0 -DP,X
F = 0 —ps+ DX PiX, . (5)
DsX; —PeX; DsX, — DeX,

With the aid of parameter values in Table 1, at the
equilibrium point (2), (8f / 6)_6)| ) has the eigenvalues (-

0.25, -0.25, 6.7). It means that (2) is an unstable
equilibrium point. At the equilibrium point (3),
(8f/8)_c)|z.:(3) has the eigenvalues (-0.2498+1.2616i, -

0.2498-1.2616i, -0.2531) which is a stable equilibrium
point. It is noted that (2) is corresponding to a healthy
individual and (3) is for an infected individual [18].

The point (2) represents the equilibrium of the healthy
condition which is the desired state of the system to be
approached. Now we have changed the state variables as
the form (6)

xl xl xlO
X=X, [=| X=Xy (6)
x3 3

so that the new model will be presented as (7)
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X, =—pX — P, (xl +X, )x3
X, =—pX, +p, (x2 + Xy )x3 7

X, =X, [ps ('xl +X, )_pé (x2 + Xy ):|

where x, +x,=%>0, x,+x,, =X, >0 and x, =X, 20.
The state trajectories of HIV model simulation without

any control for the system (7) with initial conditions

X, (O) =1000 cells/mm3 , X, (0) =550 cells/mm3 and

%,(0)=0.0001 (corresponding to 1000 copies/ml ) are

shown in Fig. 1. It is seen that if an infected person has not
any drug  treatment, the  equilibrium  point

[442 736 0.006]T is the final state of the infected patient.

On the other hand, if a person’s state is staying at the
unstable equilibrium point (2) continuously, the person
keeps being healthy. However, if any state is disturbed to be
away from the equilibrium point (2) a little, then the
person's health will be deteriorated if no drug treatment. It
is known that a patient with HIV can live with no apparent
symptom for a long time, even if there is not any drug
treatment. But, unfortunately, this condition is just an
asymptotic stability with the HIV virus, hence the patient is
still going to death finally. Therefore, we need to apply a
drug treatment (or say, design a control law) to make the
infected patient's states approach the healthy equilibrium
point (2) and keep there forever.

Solution

00 I —x1(CD4+Tcells)
—x2(CD8+T-cells)
400 - —x3(Viral Load)

Cells/mm® & (Copies/ml)/1000

5 10 15
Time t(Year)

Figure 1. The state responses of the system without control u .

In general, the drug therapy u is added in the third
equation of (7), then the system becomes

X, ==pX —p, (xl + X )x3
X, ==pX, +p, (xz + Xy )xa (®

Xy =X [ps (xl +x10)_p6 (xz + X5 ):|_u

Based on the above exposition and analysis, the main
concern in this study is how to design a controller u (so-
called drug dosage) for the system (8) such that the infected
condition can be adjusted to the healthy condition
asymptotically. Or it is said that the control will make the
state vector x in (8) approach zero asymptotically.
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lll. MAIN RESULT
Let (8) be rewritten as

X —D 0 —P2Xi — Py || K 0
X =] 0 —P; PaX, + Py || %, [+ 0 |u, (9)
X, DPsXs  —PeXs  PsXig — PeXy || X3 -1

then, (9) can be represented in a polynomial nonlinear
S y S t € m

)'c:A(x)x+B(x)u (10)

where x e R™, ueR™, 4(x) and B(x) are polynomial
matrices as follows

b 0 DX T PyXy 0
A(x)=| 0 =p;  px,+px, |, B(x)=| 0 |.(11)
PsXy  —De¢X;  PsXig ~ PeXao -1

Now the main task is to design the feedback controller u
u=K (x) X (12)

where K (x)e®R"™ is a polynomial gain matrix such that

the closed loop system with (8) and (12) will be
asymptotically stable. Or it is said that we proceed to design
a suitable drug therapy treatment as (12) such that the
healthy equilibrium point is achieved asymptotically.
Before starting the design work, some definitions and
lemmas need to be stated first since they will be used in the
proof of the main theorem.
Definition 1 [19, 20]: A multivariable polynomial

p(x)=f(x,....,x,) , where xeR" , is an SOS if there
exist polynomials f, (x),..., f, (x) , such that

> fA(x). (13)

Lemma 1 [12, 19, 20]: Let p(x) be a polynomial in
xeR" of degree 2d . In addition, let Z(x) be a column

vector whose entries are all monomials in x with a degree
no greater than d . Then p(x) is a sum of squares (SOS) if

and only if there exists a positive semidefinite matrix Q
such that

p(x)=Z"(x)0Z(x). (14)

For any polynomial matrix A(x),let A, (x) be defined
as the k-th row of A(x) . Now the following theorem is
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given to provide the conditions for the feedback control (13)
design.

Theorem 1: For the HIV dynamic system (8) with the
control (12), the states will approach zero asymptomatically
if there exist a polynomial matrix M (x)eR"™ and a

symmetric polynomial matrix P(x)e R>*, such that

v (P(x)-¢ (x)I)v isan SOS, (15)

- [P()E)AT (x)+MT (x)BT (x)+A (x)P (* )+B (x)M (x)

oP(x)
_,ZFWAIC (x)x+e, (x)]}v
is an SOS, (16)

and
K(x)=M(x)P"(X) (17)
where X is a vector composed of elements x, , kel ,

r= {k|Bk (x)=0,xe EHM} and the polynomials & (x) >0

and &,(x)>0 for x#0 . veR™ is a vector that is

independent of x .
Proof: Consider a candidate of polynomial Lyapunov
function for the closed-loop system (8) and (12) as

V(x)z)cTP’l ()Nc)x, (18)

where P'(X) is a polynomial matrix. Substituting (17) and
(12) into (10), we have

x=A(x)x+B(x)M (x) P (%)x. (19)
The derivative of ¥ (x) is
V(x)=%"P"(%)x+x P (F)x+x" P (¥)x.  (20)

Meanwhile, P! (%) can be rewritten as follows

dP(F) P (F)ar P (%),
= = . 21
dr o X o, e GV

Substituting (19) into (21) yields
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oP™ (%) (22)

where x, =4, (x)x+(B (x)M ()C)P’1 (f))kx that is
obtained from (19). Based on Definition 2, in the system (9),
keT={1,2} , it means that X=(x,x,) . If kel , then

k=3 . Therefore, it is easy to see that 6P (%)/x, =0 .
B (x)=0,k=1,2 , then
(B(x)M(x)P’l ()Z))k is a zero vector for k=12 .

Furthermore, since

Therefore, it is obvious that

3.0P7' (%
> ax(x) (B(x)M (x) P (), x=0 (23)
and
P () -3 (o))
oP™' (%) 24
:; ax, |:Ak (x)x]
Hence, from (23) and (24), we have
L oP™' (%)
P(x)=> — [ 4, (x)x] (25)

and (20) becomes

V(x) =x"p! ()E)x +x'P! (JE )x
+x" {;ap—(x)[,qk (x)x:|]x. 20

Substituting (19) into (26) obtains
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+P (X)(A(x)+B (x)M (x )P (%) (27

It is known that the
asymptotically stable if V(x) is negative. From (27), if let

system (9) will be

the following equation hold, then 7 (x) will be negative.

—[AT (x) P (%)+ P (F)M" (x)B" (x) P (¥)+

P (%) A(x)+ P (%) B(x)M (x) P (%) (28)
{; aP(;xfx) 4 (x)x]ﬂ >0.

Pre and post multiplying (28) with P(X) obtains

+A4(x)P(%)+B(x)M (x) (29)
(

Because  P(x) is an invertible

P™'(X)=1 . Here, differentiating both sides of

polynomial

matrix, P ( X

P(x)P'(X)=1 withrespect to x,, it yields
~ 1 [~
P"(i)aP(X)P"(fc)z—aP (%) (30)
Ox, ox,
Then
OP(x oP' (%
() __p() 2D psy. (31)
ox, Ox,
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From (31), (29) can be rewritten as

—[P(x)4" (x)+ M7 (x)B" (x)
+A(x)P(x)+B(x)M (x) (32)
oP(x

_Z GXX) [Ak (x)x]} > 0.

kel k

It is known that if the condition (15) holds with
& (x)>0 for x#0, because v' (P(%)-¢ (x)I)v isan
SOS, it is clear that P(x)—¢& (x)/>0 that results in
P(x)>0. This P"'(X) is the invertible matrix of P(X)
and P(x)>0 so that P"'(X)>0 . Therefore, V' (x)>0

can be achieved when P~'(X)> 0. From (32), it is obvious

that the condition (32) is equivalent to the condition (16) of
Theorem 1. It means that if the condition (16) holds with

& (x)>0 for x#0, it leads to V(x) <0 . Therefore, the

system (8) is asymptotically stable at the zero equilibrium.
The proof is certainly completed.

Theorem 1 gives an SOS-based solution for the controller
design. Generally, equation (17) gives an appropriate
controller gain K (x) if P(X) and M (x) can be found.

Subsequently, we attempt to solve the conditions of
Theorem 1 for the HIV model (8) and its parameters in
Table 1 using the Sum of Squares Optimization Toolbox
(SOSTOOLS) in Matlab. Unfortunately, the feasible

solutions for P(x) and M (x) to satisfy those conditions

cannot be found. In order to resolve the infeasible solutions
problem, the conditions in Theorem 1 must be relaxed. Let
us define

®(x)= P(2) 4 (x)+ M" (x)B" (x)+ 4 (x)P (%)

OP(% (33)
+8(x)M ()~ £, 1]
and if —®(x)> 0, that means
xrq)(x)x <0. (34)

According to the Finsler’s Theorem ([21] and [22]), (34)

holds with a polynomial matrix U(x)  satisfying
U(x)x=0 forall x#0 is equivalent to
d)(x)+GT (x)U(x)+UT (x)G(x)<0 (35)

for a certain matrix G(x).From (16) and (35), it yields
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T (P(#) A7 (x)+ M7 (x)B" (x)+ 4 (x)P (%)

+B(x)M (x)-2,

+G’ (x)U(x)+ U’ (x)G(x)+ &, (x)] )v

[4, (x)x] (36)

is an SOS.

Remark 1: Note that the polynomial matrix inequality (35)
holds, (16) can be relaxed to be the condition (36) which
will help us much easier to design the controller (12) for the
HIV model (8). Only according to the conditions (15) and

(16) are infeasible to solve directly the solutions of P(X)
and M (x), thereby, we have to hold a new condition (36)
to upgrade the original theoretical basis of this paper to
supply certain auxiliary calculation assistances. Since it
may be much easier to find the polynomial matrices P(X)
and M (x) if we have chosen the appropriate polynomial
matrices U(x) and G(x). In other words, because there are
free variables U(x) and G(x) to be chosen such that we
have more chance to find the feasible solution for P(X)
and M (x) . The details are shown in the next design
procedure.

Now, it is ready to summarize the following
procedure to design the controller (12).
Step 1: Firstly, on the basis of the Finsler’s Theorem [21] to
select the matrix U (x) such that U(x)x=0 and choose a
certain polynomial matrix G(x).
Step 2: Solve the condition (36) to find the matrices P(X)
and M (x).If P(X) and M (x) are infeasible, return to
Step 1 to find another U (x) and G(x), and try again.

Step 3: Find K (x) from (17) and then the controller (12) is
synthesized.

IV. EXPERIMENTAL SIMULATION

To simulate the dynamics of CD4+T cells, CD8+T cells
and viral load of the system with the model (8). The
physical descriptions of the parameters are shown in detail
in Table 1. Note that 0 <X, <x,,, X, >x,, and X, >0. The

final target is to construct a controller for drug dosage in the
antiretroviral therapy. Suppose we choose

U(x)=10" [2x]xzzx32 X7 x,x; —xlzxij , (37)
G(x) =[2x1x22x32 —x7x,X; —xfxfo . (38)

Then, solve (36) by using the Toolbox (SOSTOOLS), we
have
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by Pn Pi
M(x)z[m“ m, m13]’ P()NC): Py Pn Px| (39
Py Py Py

where

my, =-7.531e”x] +5.163¢*x,x, +0.1862x,x,
+1.797¢7x, —0.6939x; —0.1853x, x,
+2.053¢7x, —6.608¢x] +1.695¢ " x, —1.087,

my, =8.313¢x —5.709¢ " x,x, —2.062¢ " x,x,
—1.167e7x,+7.634e7°x; +2.092¢ " x,x,
+0.1639x, +1.276€7°x; +1.8¢ x, +0.1196,

m, = 0.8655x] +2.671e"x,x, +0.2602x,x,
+4.136e7x, +0.6324x; —0.1002x,x,

+1.454e’4x2 +O.5219x32 +2.938e’3x3 +0.4791.
and

Py, =3.83¢7x] +6.379¢ " x,x, —6.333¢"x,
+2.952¢7x] —5.758¢ 7 x, +0.8558,

Py =1.382¢7°x7 +1.476e 7 x,x, —1.041e”x,
+7.569¢°x; —9.467¢x, +2.131,

Dy =5.819¢°x —2.898¢7"x,x, +1.669¢ " x,
+2.173¢7x; +1.362¢ ' x, +3.0¢”,

P = Dy = —4.115¢°x7 —6.957¢ 7 x,x, +5.646¢'x,
321267 +5.133¢x, +0.181,

Dps = Psy =2.074e°x] +1.142¢°x,x, +2.863¢ 7 x,
+2.614e7x] +4.141e7x, +1.784¢”,

Dy = Dy, =—2.288¢7x} —1.22¢ "x,x, +2.147¢ ' x,
—-2.878¢°x; —4.195¢°x, —2.31e™°.

From (39), we can obtain the controller parameter
K (x)=M (x)P'(x) based on step 3.

Meanwhile, for real medical practice, the blood sample is
extracted from the patient to measure antibody and virus on
a weekly. Choose a suitable sampling time for the
calculation and simulation. We shall set an initial condition
as the long-term infected situation for the HIV model (8).
Let the sampling time 7, = 0.02 be set in this simulation to

stand for a week. From Fig. 1, it is seen that an infected
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person has not any drug therapy. Suppose at £ =10 in Fig.
1, we start to give the drug to the patient that means the
designed controller is activated. In other words, the initial
condition for the therapy initialization is set in the states of
t=10 in Fig. 1 where x, .. =[-524 176 0.005]" .

initial

In the practical therapeutic procedure, the adjustments of
drug dosage are always dependent on the changes of viral
load concentration in plasma of the patient. Especially, if
the patient has accepted enough appropriate medical
treatment, the count of viral load will drop to the
undetectable level in a certain point-in-time of the entire
clinical therapeutic process. With the aids of our designed
controller, the simulation results are shown in the following
figures.

Figure 2 shows that when the therapy starts x, ascends

and finally reaches to zero asymptotically, x, also
converges to zero finally. However, it is seen that both x,
and x, need a long time-span to converge to zero when the
proposed control (drug therapy) is applied. It is
comprehensible because x, is always retained in the body,
even with drug therapy in the rest of the life of the patient.
In Fig. 3, the viral load x, descends rapidly to near zero
state and finally remains in very little level, but it does not
mean the patient is cured to be healthy since x, and x, are
still not in healthy states. Additionally, the count of viral
load x, is actually only reduced to an undetectable level, it
means that the patient needs to accept drug therapy
continuously along with the remaining life so that viral load
x, will not recover to any detectable level.

Frankly speaking, in Fig. 4, it shows that the control u
works efficiently in the entire therapy period. According to a
universal awareness, if a patient accepts correct treatment
after being infected for a period, the state of illness can be
well controlled and approaches to health state asymptotically.
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Figure 2. The state trajectories of x, and x, .
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V. CONCLUSION

In this article, we use the proposed method to stabilize a
model system of HIV infection. By exploiting the model
properties, the original model system (1) is transformed into
a new model system (7) via a simple mathematic
transformation that will make us study it easily in the next
stage. A high effective control law is designed based on the
Lyapunov design and SOS technique, this is the most
important section in this case because this proposed control
design can help the state of the model system return to the
desired values. By the control design to regulate and suppress
HIV, the results also show the stability of the system.
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