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ABSTRACT Ventricular fibrillation (VF) is one of the most serious cardiovascular diseases that must be 

detected reliably and dealt with in a timely manner to improve the chance of patient survival from heart 

attacks. Early research focused on developing effective algorithms for VF detection; while most of the 

evaluations have been conducted offline with prefiltered data sets, practical application requires these tests 

to be performed in real time. Because there are many factors that may impact detection effectiveness, it is 

important to understand the impact of factors that improve detection accuracy. In this study, we developed 

an integrated simulated environment using IAR Embedded Workbench software to build an embedded system 

using a MSP430 microcontroller and Visual studio tool for S/W build; we then used this system to conduct 

real-time experiments for evaluating five lightweight VF detection algorithms and to examine factors that 

may impact their performance in terms of sensitivity, specificity, positive-predictivity, accuracy and 

computational time. The results were cross-validated using a prototype of a wearable Electrocardiogram 

(ECG) system developed by this study. The study showed that 1) the chosen detection algorithm, data 

filtering, and window size all have a significant impact on the performance of real-time VF detection; among 

these, the detection algorithm had the greatest impact so it must be carefully selected; 2) it is important to 

select the proper threshold value that affects tradeoffs in performance metrics. Among the five algorithms 

that this study evaluated, the Time Delay (TD) algorithm outperformed the others independent of window 

size or filtering method. This paper analyzed seven factors and examined the impacts of three of them on 

real-time VF detection. Based on analysis, the scaling process is very important, and a good detection method 

will reduce the degree of impact to a minimum level; otherwise, a filtering method should be considered. 

Considering the tradeoff between robustness and efficiency, TD is preferable because detection accuracy and 

robustness are more critical. 

INDEX TERMS Heart attack; ventricular fibrillation (VF); factor analysis; real time; VF detection;  

I. INTRODUCTION 

According to the World Health Organization (WHO), 

cardiovascular diseases (CVDs) are the number one cause of 

death worldwide [1], and among CVDs, Ventricular 

Fibrillation (VF) is one of the most critical life-threatening 

cardiac arrhythmia diseases. Once a patient has suffered a VF 

attack, accurate detection and quick first aid are essential for 

improving the chance of survival.  

Previous research on VF detection primarily has focused on 

two main topics: 1) developing and evaluating the relative 

performance of detection algorithms [2–19], and 2) 

developing handheld devices for real-time monitoring [20–

23]. Most previous performance studies have been conducted 

offline using prefiltered data sets, fixed threshold values, and 

a single time-window size (often 8 s); recently machine/deep 

learning-based methods have been proposed [10-19]. 

However, practical application requires these tasks to be 

performed in real time, and while there are several important 

factors that may affect detection accuracy, existing research 

has not fully examined the potential impact of such factors or 
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system parameters (e.g., threshold values). (See our summary 

of related work in Section 2.) 

Handheld or wearable electrocardiogram (ECG) devices 

have been introduced as a major solution for next-generation 

healthcare [21,25]. Most available handheld devices can  

be used to instantly capture and display only heart signals and 

basic information (e.g., heartbeat); they normally have limited 

domain intelligence built in for timely and accurate detection 

[12,26]. The data must be sent via mobile phone or offline to 

central computers to be analyzed by an intelligent system or a 

domain expert, resulting in a major time delay in providing 

feedback and substantial consumption of battery power. There 

has been a recent effort using intelligent methods based on a 

tiny machine learning approach to detect ventricular 

arrhythmia using a microcontroller [27]. This means that new 

testing environments and methodologies in the wearable or 

embedded-system-based health-monitoring area will be 

required for real-time VF detection.  

The main purposes of this study are fourfold: 1) to identify 

factors critical to real-time VF detection, 2) to examine and 

select easily-adaptable algorithms with the best performance 

for handheld devices, 3) to propose an objective approach to 

determination of system parameters, and 4) to develop an 

integrated environment using public databases for emulating 

real-time monitoring and detection processes. Five 

lightweight VF detection algorithms have been evaluated: 

Threshold Crossing Interval (TCI) [28], Threshold Crossing 

Sample Count (TCSC) [6], Time Delay (TD) [5], VF filter 

(VFF) [29], and Pan & Tompkins (TOMP) [30]. Methods of 

real-time filtering, data-scaling, and determining the optimal 

threshold value have been proposed and tested as part of the 

integrated environment.  

This study used complete data sets from the Creighton 

University (CU) ventricular tachyarrhythmia database [31] 

to generate a real-time ECG signal and feed it into proposed 

virtual patients. The performance results were measured in 

terms of the most popular quality parameters [e.g., sensitivity 

(Sn), selectivity (Sp), positive predictivity (Pp), and accuracy 

(Ac)], computational time (Ct), the receiver operating 

characteristic (ROC) curve, and the Area under the Curve 

(AUC) [32]. Statistical methods such as the analysis of 

variance (ANOVA) and paired-t tests were then applied to 

assess their significance in computational efficiency. 

The contributions of this research are threefold: 

 

(1) We have conducted a factor analysis based on the 

variance of detection algorithms, data filtering and 

window sizes that affects the performance of real-

time VF detection using a low-powered 

microcontroller. 

(2) We have concluded that the TD algorithm 

outperformed the other algorithms regardless of 

window size or filtering method. 

(3) We proposed a new real-time VF detection testing 

environment based on the available dataset for a 

low-powered microcontroller. 

 

This article is an extended work based on Chapter 4 of the 

author's PhD thesis [33]. It focuses more on statistical analysis 

of five lightweight VF algorithms used in a real-time 

environment and discusses various factors involved in real-

time VF detection. 

 
II. RELATED WORK 

There have been many studies focused on evaluating 

effectiveness of VF detection algorithms. Table 1 summarizes 

selected related work and highlights relevant factors. This 

study reviewed related works according to six factors: the 

filtering method (used to reduce unnecessary signal (noise) 

when detecting VF from the raw data), window size (used to 

segment the signals for processing), detection algorithm 

(algorithm or classifier for generating feature values), 

threshold value (decision value for separating the normal 

signal from VF), the data set used, and performance measures 

used. 

References [7,8] proposed a neural network approach for 

VF detection and compared its performance with four other 

conventional algorithms. Study [3] proposed a new algorithm, 

the Signal Comparison Algorithm (SCA), and compared its 

performance with five well-known VF and two QRS detection 

algorithms. Those researchers found that QRS detection 

algorithms are not suitable for VF detection even if the 

threshold values are carefully selected. In a follow-up study, 

Amann et al. developed two new VF detection algorithms, 

Hilbert transform (HILB) [4] and Time Delay (TD) [5], based 

on phase space reconstruction (PSR), and evaluated them 

against four extant algorithms. They concluded that TD is 

1.1% more accurate than HILB. Ismail et al. compared five 

VF detection algorithms and three sets of combined pairs of 

these VF detection algorithms [9] and concluded that 

combining VF algorithms with the fine-tuning of critical 

thresholds can improve accuracy. 

Reference [2] proposed a sequential detection algorithm 

using empirical mode decomposition (EMD), and compared 

its performance with five other VF detection algorithms. The 

researchers showed that EMD performed the best, followed by 

TCSC, TD, HILB, SPEC, and TCI. However, the results may 

be biased as they aggregated results from three databases, each 

producing quite different results. Study [6] adapted a time-

domain algorithm TCSC from TCI, and compared its 

performance with seven other VF detection algorithms. The 

researchers showed that TCSC performed the best, followed 

by TD and HILB. They also showed that TD performed better 

than SPEC. Moreover, TCSC performed much better than TCI 

with a positive threshold. Recently, many machine/deep 

learning-based methods have been proposed for detecting life 

threatening ventricular arrhythmia, and these methods 

exhibited  high performance [10-19].  
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From the above analyses, we can see that 1) there are 

conflicting results regarding algorithmic performance such as 

TD, TCSC, and EMD; 2) all these evaluations were conducted 

offline in a stable environment, using prefiltered data sets, 

fixed and fine-tuned threshold values, and fixed window size 

TABLE I 

SUMMARY OF RELATED WORK 

Ref. Filtering Method Window Size Detection Algorithms Threshold Value Data Set Performance Measures 

[7,8] 

(1993,1994) 
- 4 sec. 

TCI, ACF, VFF, SPEC, 

Neural network* 

105 (TCI); A1 > 0.19, 

A2 > 0.45, A3 > 0.09 

(SPEC); 0.625 (VFF) 

Freeman Hospital 

CCU  
Sn, Sp 

[3] 

(2005) 
filtering.m (pre-filtered) 

3 sec. (TCI); 

4 sec. (VF); 

8 sec. (all) 

ACF, CPLX, LI, MEA, 

SCA*, SPEC, STE, TCI, 

TOMP, VFF, WVL 

400 (TCI); 6.61 (ACF); 

0.406 - 0.625 (VFF); 

0.173 - 0.426 (CPLX); 

250 - 180 (STE, MEA); 

2 - 32 (TOMP) 

BIH-MIT; CU; 

AHA (7001-8210) 
Sn, Sp, Pp, Ac, ROC, Ct 

[4] 

(2005) 
filtering.m (pre-filtered) 8 sec. 

CPLX, SPEC, TCI, 

HILB*, VFF 
- 

BIH-MIT; CU; 

AHA (7001-8210) 
Sn, Sp, Pp, Ac, ROC, Ct 

[5] 

(2007) 
filtering.m (pre-filtered) 8 sec. 

CPLX, SPEC, TCI, TD*, 

VFF 
- 

BIH-MIT; CU; 

AHA (7001-8210) 
Sn, Sp, Pp, Ac, ROC, Ct 

[9] 
(2008) 

filtering.m (pre-filtered) 8 sec. 
CPLX, MEA, TCI, TD, 

VFF, Combining 2 

algorithms* 

400 (TCI); 0.406 - 0.625 

(VFF); 0.125 (CPLX); 
225 (MEA); 0.15 (TD); 

2 - 32 (TOMP) 

CU; File I (2276); 
File II (1501) 

Sn, Sp, ROC 

[2] 

(2010) 

filtering.m (pre-

filtered); HPF (1Hz); 

LPF (20Hz) 

8 sec. 

10 sec. 

HILB, PSR, SPEC, TCI, 

Count, MAV & EMD* 

Count < 250 for 10 sec. 

(Le); Count <200 for 8 

sec. (Le) 

BIH-MIT; CU; 

VFDB 
Sn, Sp, Pp, Ac 

[6] 
(2009) 

filtering.m (pre-filtered) 8 sec. 
CPLX, HILB, MEA, STE, 

TCI, TCSC*, TD  

400 (TCI); 250 (STE); 

230 (MEA); 0.426 

(CPLX); A2,0 = 0.45 
(SPEC); 0.15 (HILB, 

TD) 

BIH-MIT; CU Sn, Sp, Pp, Ac, ROC 

[11] 

 (2017) 

HPF (1Hz); LPF 

(45Hz) 

Window reference 

mark between 0.5 

sec. and 1.2 sec. 

Wigner Ville distribution; 

Machine Learning 

Classifiers 

- AHA; MIT-BIH Sn, Sp 

[12] 

 (2018) 

HPF (0.5Hz); LPF 

(45Hz) 
4 sec.; 5 sec.; 8 sec. 

DTFT; SVM; Radial Basis 

Function (RBF) 
- 

CU; VFDB; MIT-

BIH 
Sn, Sp, Ac 

[13] 

 (2018) 

HPF (1Hz); LPF 

(30Hz) 
5 sec. SVM; C4.5 - CU; VFDB Sn, Sp, Ac 

[14] 

 (2018) 

HPF (0.5Hz); LPF 

(35Hz) 

1.091  0.012 sec.; 

2.843  0.337 sec. 

Mode Energy Variance; 

Mode Sample Entropy; 

Boosted-CART 

- 
CU; VFDB; MIT-

BIH; 
Sn, Sp, Ac 

[15] 

 (2019) 
Wavelet-based filtering 2 sec.  FE; Renyi entropy (RenE)  

CU; VFDB; MIT-

BIH 
Sn, Sp, Ac 

[16] 

 (2020) 

HPF (1Hz); 

 FFREWT; Filter-bank 

2 sec.; 4 sec.; 5 sec.; 

8sec. 
Deep CNN - CU; VFDB Sn, Sp, Ac, F1 

[17] 

 (2021) 
NLM 2 sec.;5 sec. SVM; AdaBoost; DE - CU; BIT-BIH Sn, Sp, Ac 

[18] 

 (2023) 
- 2.5 sec. VANet - 

MIT-BIH 

Supraventricular 

Arrhythmia DB 

Ac 

*Support Vector Machine (SVM);  Digital Taylor-Fourier Transform (DTFT);  Fuzzy entropy (FE); Convolutional Neural Network;  Adaptive boosting 

(AdaBoost); Differential Evolution (DE);  Fixed frequency range empirical wavelet transform (FFREWT);  Non-local Means Denoising (NLM) 
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(often 8 s); 3) the studies commonly used annotated databases 

including Boston's Beth-Israel Hospital and MIT arrhythmia 

database (BIH-MIT), the Creighton University ventricular 

tachyarrhythmia database (CU), and the American Heart 

Association database (AHA); and 4) most studies, except [3–

5], did not evaluate computational efficiency.  

Clearly, the performance of the various algorithms is highly 

dependent on several factors such as data filtering, window 

size, and threshold value used. These factors must be carefully 

selected or managed to obtain a good performance. 

Determining the best threshold value and window size, often 

through extensive trial and error is critical for obtaining good 

results. This study intends to bridge these gaps in existing 

research, especially those related to a real-time testing 

environment. 

 
III.  FACTORS THAT IMPACT VF DETECTION 

The process of detecting VF abnormalities often entails six 

major steps. Figure 1 shows the information flow along with 

potential research issues associated with each step. Most of 

these issues are common to any VF detection, whether 

performed offline or in real time. Meanwhile, although the VF 

detection process may appear simple and straightforward, 

various external factors can affect its overall performance. 

When VF detection process is conducted and evaluated using 

a low power microcontroller, it is necessary to check not only 

the appropriateness of such VF detection processing, but also 

the computational time that will be related to power 

consumption. Features for evaluation of potential and 

technical usability of wearables and mobile solutions for heart 

heath using statistical analysis were therefore extracted, 

including analysis of variance (ANOVA) and paired-T tests. 

 

 

 

FIGURE 1. Information flow of VF detection with research issues. 

A. SIGNAL CAPTURING AND DATA TRANSMISSION 

In real-time health monitoring, an ECG signal is captured by 

connecting electrodes with the human body to a handheld or 

wearable ECG device. With the number of leads and electrode 

positioning affecting the quality of ECG capture [34]. The 

capture frequency provides the number of data values, 

resulting in a data-quantity-vs.-quality issue. While these 

issues are essential and must be determined for all VF 

detections, they are not the focus of our experiment. 

There are three issues associated with data transmission: a) 

where (e.g., main computer, mobile, or microcontroller) to 

process and detect events, b) how to transmit data or events, 

and c) the impact on energy consumption. Among these, 

energy consumption is a major concern. Energy consumption 

in a wireless sensing device can be divided into four 

categories: scheduling of transitions, dynamic voltage scaling, 

memory, and radio transceivers [35]. While energy 

consumption depends on the types of microprocessors and 

radio transceivers used, in general, data transmission or 

computation in a microprocessor consumes most of the energy 

resource in the battery [36]. In this study, we propose to 

process data in an embedded microcontroller and to send only 

detected events to mobile phones the follow-up response. This 

study does not focus on a technical analysis of energy 

consumption, since it is beyond the scope of this paper. 

B. FILTERING METHODS AND SCALING MECHANISMS 

During real-time monitoring, several aspects (e.g., electrode 

location and the device itself) may generate errors and 

unexpected noise such as low- or high-frequency noises and 

baseline waves. This means that selecting and using the proper 

filtering method is important for accurate detection. Most 

early studies filtered the entire data set in advance using a well-

known filtering process called filtering.m (available online 

[37]) that consists of four successive steps: 1) mean value 

subtraction, 2) 5th-order moving average filtering, 3) drift 

suppression using a high-pass filter (1-Hz cutoff frequency), 

and 4) high-frequency suppression using a low-pass 

Butterworth filter (30-Hz cutoff frequency) [6].  

However, this approach cannot be used for real-time 

monitoring in which the signals are captured at fixed-time 

intervals (the window size), followed by filtering and scaling 

processes performed for each window size. To fit real-time 

needs, we removed the first two subprocesses of filtering.m 

and applied a common Kalman filter for tracking the baseline 

of an ECG signal in the testbed. In this study, we compared 

the potential effect of using conventional filtering.m 

(prefiltered) and real-time filtering methods with the results 

obtained when not using a filtering method.  

Although a filtering method can help to remove outliers and 

noise, the amplitude of the ECG signal may still vary 

depending on sinus VF signals. In real-time detection, if the 

minimum and maximum peak values of a signal change in 

segment blocks, causing VF detection algorithms  misinterpret 

the signal and leading to selection of an incorrect threshold 

value. Moreover, if the period of segmentation for the scale is 

too short, it is possible to lose the detection of QRS complexes.  

On the other hand, if the period is too long, short portions 

of sequential VF events with small peaks can be falsely 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337273

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017  5 

detected as a sinus rhythm, so a scaling mechanism should be 

applied to gain better results. No previous study has noted or 

addressed this important factor To address this problem we 

propose a real-time scaling method applied in each window 

segment for all detection algorithms; this can be considered a 

control factor. 

Figure 2 illustrates the proposed scaling process. Let St be 

the value of the raw ECG data at time t, Vt is the scaled value 

at time t, Lmax is the max-limitation of the entire ECG signal, 

Lmin is the min-limitation of the entire ECG signal, Tmax is the 

max-peak value of the ECG signal in the window segment, 

and Tmin is the min-peak value of the ECG signal in the 

window segment. In real time, we set Lmin as 0 and Lmax as 255. 

These are the limitations of the values obtained from the 

analog-to-digital converter. Vmul, the multiplier variable, and 

Vadd, the addition variable, can be computed as 

 

(1) 

 

(2) 

The scaled value Vt can be calculated as 

𝑉𝑡 = 𝑆𝑡𝑉𝑀𝑢𝑙 − 𝑉𝐴𝑑𝑑                           (3)   

 

 

FIGURE 2.  Sketch of scaling process figure number, followed by two 
spaces. It is good practice to explain the significance of the figure in the 
caption. 

C. FEATURE EXTRACTION AND DETECTION 

Extracting a sensor signal for VF detection often involves 

dividing sequential data into window segments (in seconds), 

followed by calculating the data features from each segment. 

The sequential data is filtered using different filtering 

methods. In most studies, the VF detection algorithm uses 8 s 

as the length for window segmentation [3–6]. Although 

Amann et al. [3] empirically selected an optimal window 

length of 8 s as the best result, this study explored and 

compared the impact of using a shorter window size such as 4 

s. Based on the filtering methods and window sizes, extracted 

feature values are generated by the detection algorithms.  

Many algorithms have been proposed and evaluated in the 

literature of VF detection. In real-time monitoring, it is likely 

that detection algorithms must be deployed in mobile devices 

or even in a microcontroller chip. Questions such as whether 

existing algorithms would work without modification (owing 

to limited available resources) and which algorithm performs 

better in a real-time environment remain unanswered. In this 

study, we selected five lightweight algorithms (TCI, TCSC, 

TD, VFF, and TOMP) for evaluation for the following 

reasons: 1) these algorithms performed well compared with 

other methods used in previous studies, and 2) they are simpler 

yet effective to be implemented in microcontrollers or mobile 

devices. 

The TCI algorithm [28] checks the number of crossing 

points (C) of the ECG signal above or below a given threshold 

(T) within 1-s time intervals (I). It then applies three 

consecutive segments to calculate a TCI value. If the 

prescribed threshold value TCI0 is greater than the TCI value, 

VF is declared. The main advantages of the TCI algorithm are 

that (1) the algorithm can be used to detect both QRS 

complexes and VF events with acceptable results, (2) the 

algorithm can be easily implemented in a single 

microprocessor without concern for resource constraints, and 

(3) it is quite energy-efficient owing to its simplicity.  

The main drawback of the algorithm lies in its use of 1-s 

segments for analysis, because if the patient’s heart rate is 

lower than 60 bpm, the algorithm may trigger an incorrect 

alarm. In addition, because the threshold line is fixed in 1-s 

segments, any sudden baseline noise may affect the value of 

the crossing threshold. Moreover, the accuracy of the 

algorithm depends significantly on the threshold value TCI, 

set as 400, and the threshold line, set as 20% of the maximum 

peak. If the threshold value is set close to the baseline P or the 

T wave of the ECG signal, many crossing values will be 

generated in a normal operation, so to obtain a good 

performance it is essential to use a good filtering process to 

remove high-frequency and baseline wander noises. Baseline 

tracking is also important when setting reasonable threshold 

values.  

TCI may also encounter another problem because it uses 

only a positive threshold, and if only negative QRS complexes 

appear, the positive threshold is unable to detect the QRS. 

Moreover, if the VF wave crosses both the positive and 

negative thresholds, the number of crossing threshold 

impulses may become much higher than TCI, so TCSC [6] is 

proposed to improve the weaknesses of the TCI algorithm in 

three aspects: 

 

1. TCSC uses a 3-s (instead of 1-s) time segment to check 

the number of crossing lines so that the misdetection 

problem for patients with a low heart rate (below 60 bpm) 

can be prevented. 

2. TCSC uses both positive and negative thresholds to count 

the number of crossing signals. Since the number of 

samples that cross thresholds can be correctly computed, 

TCSC prevents possible misdetection.   

3. The ECG counts signals above thresholds instead of 

counting the pulses (crossing above and below thresholds).  

 

Since the VF signal is similar to a sine-wave form that 

oscillates up and down from the center baseline, the two 

thresholds cause the TCI value to increase by about twice as 

much as the TCI value obtained using only one threshold. 

Therefore, TCSC improves VF detection accuracy and 
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stability over TCI. However, the performance of the algorithm 

also depends significantly on the threshold values used, so 

choosing the filtering process is an essential factor for 

obtaining high performance. In the proposed implementation, 

to save battery power, this study further eliminates the 

multiplication of the cosine window. 

The TD algorithm [5] uses a 40 × 40 square grid of a two-

dimensional phase space diagram to analyze ECG signals for 

identifying dynamic low or random behavior. By plotting the 

signal data X(t) on the x-axis against τ time delay data X(t + τ) 

on the y-axis (where τ = 0.5 s), the result is a plot showing the 

number of visited boxes. The patterns of the filled boxes 

differentiate the VF signal from a normal SR signal. In the 

cases of a normal signal, the plot shows two lines in the phase 

space plot. In the VF signal case, the boxes visited are shown 

as uniformly distributed boxes over the phase space plot. To 

objectively distinguish the QRS complex from the VF cases, 

TD counts the density of boxes visited (NB) and compares it 

with a threshold value (NTH). If NB < NTH, the ECG signal is 

considered to be a normal QRS; otherwise, it will be classified 

as a VF case.  

In general, while the TD algorithm exhibits high 

performance in detecting VF patterns, when a VF event with 

variable peak-to-peak values occurs, differences in the peak-

to-peak values in a window block can generate errors. 

Moreover, TD must check 1600 boxes at every window 

segment, so it is more computationally time-intensive. 

The VFF algorithm [29] uses a narrow-band elimination 

filter to reject a specific range of frequencies, with the mean 

period of a fixed length of data computed using a discrete Fast 

Fourier Transform. Once the VF event occurs, the data 

segment is shifted by half a period. If, like VF, the data is 

similar to that of a periodic signal, the algorithm cancels it so 

that the output value of the VF-filter leakage becomes small. 

The signal amplitude of QRS complexes affects the threshold 

of the VFF algorithm. If the signal is higher than the peak of 

the QRS complex from the previous window segment, the 

threshold is set as 0.406. Otherwise, the threshold is set as 

0.625.  

One major weakness of the VFF algorithm is that it can only 

focus on VF rhythms that are similar to sine or cosine waves. 

Since this algorithm does not include any QRS or sinus rhythm 

detection methods, the algorithm requires help from another 

detection algorithm to identify whether there is a sinus rhythm. 

Although the VFF algorithm requires only little computational 

power, the detection performance is overall lower than for 

other VF methods for the reason mentioned. 

TOMP [30] applies a squaring function and moving-

window integration in a window segment to detect QRS 

complexes. Specifically, the sliding integration window sums 

the absolute values of the difference between the current data 

at i and the previous data at i - 1 in a width of 150 ms. The 

short period of the moving window therefore captures the 

high-peak QRS complexes and sudden changes in the ECG 

data. 

Using this method, even positive or negative QRS 

complexes can be easily detected by this sliding integration 

window. The TOMP algorithm sets two thresholds for the 

number of QRS complexes, such as l0 = 2 and l1 = 32. If the 

number of the QRS is smaller than l0 or higher than l1, the 

diagnosis is for VF. This algorithm is robust at baseline noise 

and expends relatively low computational power compared 

with other algorithms. Since in the TOMP algorithm, the 

actual detection does not focus on QRS complexes but on VF 

waveforms, it is very important to set the offset value for 

determining a VF wave. Unfortunately, since the threshold 

value for the sliding window varies from data set to data set, it 

is difficult to set the appropriate threshold value for VF 

detection. 

D. PERFORMANCE EVALUATION 

Traditionally, the relative performance of detection is 

measured by the accuracy rate (Ac). To address the class 

imbalance problem of VF data sets where there exist 

significantly more normal QRS signals than VF signals [32], 

this study used three additional metrics for proper evaluation: 

sensitivity (Sn), specificity (Sp), and positive predictivity (Pp). 

These measures have been proposed and are commonly used 

in evaluating VF detection research. To calculate them, four 

types of values are collected: false positives (FP), false 

negatives (FN), true positives (TP), and true negatives (TN). 

Using these values, various performance measures can be 

derived. The metrics (Sn, Sp, Pp, and Ac) can be calculated as 

follows: 

 

1. Sn = TP / (TP + FN), (4) 

2. Sp = TN / (TN + FP), (5) 

3. Pp = TP / (TP + FP), (6) 

4. Ac = (TP + TN) / (TP + FP + TN + FN). (7) 

 

Sn is the fraction of the VF signal being correctly detected, 

Sp is the fraction of the No-VF signal being correctly detected 

that can be used to assess the capability of detecting the Sinus 

Rhythm (SR),  and Pp measures the fraction of detecting VF 

signals based on classified VF cases. Therefore, even if the 

sensitivity is near 100%, if Pp is below 30%, the VF detection 

algorithm classifies VF cases that are actually SR signals.  

Ac is the probability of capturing all correct decisions. It 

would seem that Ac represents the effectiveness of VF 

detection, but since a VF database often consists mostly of SR 

(about 80%) and less of VF (about 20%), if an algorithm 

classifies every ECG signal as SR, then Ac becomes simply 

80% of Ac with 0% of Sn. We should refer therefore to all four 

metrics when evaluating the relative performance of the VF 

algorithms; this could be a major challenge for real-world 

cases as there is a tradeoff between different measures for 

different threshold values used. 
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One way of aggregating these measures is to use an ROC 

curve, obtained by plotting sensitivity value against the (1 - 

specificity) value at various threshold settings. Each point on 

the ROC curve represents a pair of sensitivity and (1 - 

specificity) values corresponding to a particular decision 

threshold. Figure 3 shows the ROC curves of two detection 

results (R1 and R2) vs. a random guessing result (R3). The 

closer the ROC curve is to the upper left corner, the higher the 

overall accuracy of the detection [32], so the R3 curve exhibits 

the worst results, and the results for the R1 curve are better 

than those for the R2 curve. 

FIGURE 3. ROC curves of two classification models. 

 

Computational time Ct is measured in milliseconds to 

assess computational efficiency. The area under the ROC 

curve (AUC) is a single objective value reflecting the 

performance of the detection algorithms. AUC is the 

probability of identifying which of two stimuli is noise and 

which is a signal plus noise [32]. AUC can be calculated as 

 

1. AUC = (1 + (TP/(TP + FN)) – (FP/(FP + TN))/2. (8) 

E. THRESHOLD VALUE 

Determining the best threshold value for a detection algorithm 

is a challenging task because changing threshold values will 

have a tradeoff impact on sensitivity and specificity measures. 

This study proposed use to the ROC curve to obtain the 

optimal threshold value. Referring to Figure 3, we determined 

the optimal threshold value based on the smallest Euclidian 

distance between the upper-left corner point (0, 1) and a point 

on the ROC curve. The distance value Dth can be calculated as 

 

(9) 

 

where i is the index of class variables, and u is the unit value 

of the index. If the ROC curve is closer to point (0, 1), then the 

overall performance of the threshold value is better than for 

the other threshold value. Using Equation (4), we can calculate 

the distance between the points of ROC curves and the point 

of the top left (0, 1) and identify the point with the shortest 

distance.  

 
IV. EXPERIMENTS 

To conduct the experiments, three main factors were 

considered: filtering methods (F), window size (W) of data 

extraction, and detection algorithm (D). We controlled four 

other factors common to all monitoring: data capture, data 

transformation, data scaling, and threshold values. Because it 

must be specially optimized, we also controlled the threshold 

value.  

A. TESTING DATA SETS 

To evaluate the potential impacts of these factors, this study 

conducted a thorough evaluation using the Creighton 

University (CU) ventricular tachyarrhythmia database [31], a 

database has been widely used for evaluating almost all VF 

detection algorithms (see Section 2). The CU database 

contains data for 35 patients who have had VF attacks 

recorded with normal ECG signals. The description of CUDB 

indicates that they record one ECG signal, meaning  ECG 

capture by at least 3 leads at a gain of 400 adu/mV. Second, 

since the sampling frequency of ECG in CUDB is 250Hz,  in 

this study, we converted the sampling from 250Hz to 60Hz for 

efficient data processing using resampling. Third, ECG signal 

capture in the CUDB uses 12 bits of ADC, so we converted 12 

bits to 8 bits to minimize computational time. For comparative 

analysis, experienced cardiologists carefully annotated these 

data sets. Compared with other databases such as BIH-MIT 

and AHA, the CU database provides a clearer annotation of 

VF, and since almost every normal beat is also annotated in 

each QRS complex, this study used only the CU database for 

testing. 

B. EXPERIMENTAL DESIGN 

We developed a comprehensive 3 × 2 × 5 factorial experiment 

to examine the impact and relative performance of 1) without 

(F1) and with filtering.m (F2) or real-time filtering (F3) 

methods, 2) window sizes of 4 s (W1) and 8 s (W2), and 3) 

detection algorithms TCI (D1), TCSC (D2), TD (D3), VFF 

(D4), and TOMP (D5). Hence, an experimental design with 30 

cells (3 × 2 × 5) was used to represent the combinations of all 

factors. For each cell, 35 data sets were used. In total, this 

study used 1050 data points for the experiment (30 cells with 

35 data points in each cell). 

The following null hypotheses were formulated for the 

proposed experiment: 

 

• H1: The mean value of a) Sn, b) Sp, c) Pp, d) Ac, and e) 

Ct is the same for the five detection methods. 

• H2: The mean value of a) Sn, b) Sp, c) Pp, d) Ac, and e) 

Ct is the same for the two window sizes. 

• H3: The mean value of a) Sn, b) Sp, c) Pp, d) Ac, and e) 

Ct is the same for the three filtering situations. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337273

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017  8 

C. SYSTEM IMPLEMENTATION AND VALIDATION 

We developed an integrated simulated environment to emulate 

real-time monitoring and detection, using the CU database as 

inputs to a virtual patient. This environment transforms a VF 

data set into electrical ECG signals representing a virtual 

patient, using them as real-time data for detection processing 

in a microcontroller, and analyzes the extracted features from 

the real-time detection system in the evaluation simulator. 

Figure 4 depicts the framework of the research environment 

that consists of three major modules: 1) a data bank, that hosts 

the VF database and annotated results as a ground truth; 2) an 

evaluation simulator, that includes virtual patients that 

generate ECG signals and performs evaluations comparing the 

detection results from the detection system with the annotated 

results from the data bank; and 3) a real-time detection system, 

that emulates real-time monitoring and VF detection. The 

module includes several key processes: filtering, scaling, 

extraction, threshold optimization, and detection. All these 

processes are performed online. 

FIGURE 4. Real-time VF detection simulated environment. 

 
TABLE II 

THRESHOLD VALUES FOR EXPERIMENT 

Detection 

Algorithm 

Window 

Size 

Filtering Method 

No 

Filtering 

filtering.m 

[36] 
Real time 

TCI 
4s 385 285 290 

8s 185 190 145 

TCSC 
4s 7 9 8 

8s 15 15 17 

TD 
4s 132 123 132 

8s 218 200 214 

VFF 
4s 0.88 0.71 0.615 

8s 0.86 0.72 0.61 

TOMP 
4s 12 12 12 

8s 20 21 20 

 

The simulator that provides ECG signal data to the 

connected microcontroller was programmed in Visual C# 

2008 and ran on a Windows 7 operating system with a 1.6-

GHz CPU and a real-time detection system based on the 

MSP430-f2274 microcontroller that processes the ECG 

signal, generates the features of VF detection, and sends the 

features to a simulator through a serial communication link. 

We generated and optimized the thresholds for each possible 

combination (see Table 2). The General Linear Model of 

ANOVA running in MINITAB was used to analyze the 

significance of the factor effects and their interactions.  

Because VF detection has a known tradeoff problem in 

which the sensitivity and specificity values may have a 

tradeoff for the particular threshold value used, we can only 

apply paired t-tests to compare the computational times. To 

compensate, this study used the ROC curve to assess the 

relative solution quality of different pairs of levels for each 

factor. 

 
V. COMPUTATIONAL RESULTS AND ANALYSIS 

A. OVERALL AND RELATIVE IMPACT 

The results from the experiment are summarized in Table 3 in 

which the columns present the measured results for various 

combinations of the experimental factors and the rows show 

the performance of each combination of factors. The values in 

each cell are the average values for the 35 data sets 

corresponding to that cell. The cells highlighted in boldface 

represent factor combinations where all four quality metrics 

perform better than average. The cells marked in italics (or in 

red color) are those combinations that have a quality 

performance below 50%. The algorithm combinations with 

the shortest computational times are highlighted in boldface, 

and the cells marked in italics (or in red) are those algorithm 

combinations exhibiting the worst time performance. 

 
TABLE III 

PERFORMANCE FOR COMBINATIONS OF DETECTION ALGORITHM, WINDOW 

SIZE AND FILTERING METHOD 

 Factors  Sn (%) Sp (%) Pp (%) Ac (%) Ct (ms) 

TCI 

D1W1F1 67.44 53.76 45.40 57.73 151.88 
D1W1F2 53.94 74.96 59.85 68.10 738.73 

D1W1F3 91.50 22.36 32.27 43.07 191.80 

D1W2F1 55.95 67.79 50.68 65.18 75.31 
D1W2F2 48.45 74.73 59.41 67.57 688.99 

D1W2F3 79.53 43.91 41.46 57.15 122.27 

TCSC 

D2W1F1 71.17 54.13 42.74 57.70 98.94 

D2W1F2 66.29 64.30 52.53 65.59 752.77 
D2W1F3 31.27 89.07 53.97 73.36 235.00 

D2W2F1 60.12 67.34 53.09 66.55 58.68 

D2W2F2 70.24 58.04 52.03 62.22 675.18 
D2W2F3 20.84 95.89 57.19 75.48 110.92 

TD 

D3W1F1 75.29 83.49 68.97 81.97 453.24 

D3W1F2 76.86 82.09 64.30 81.21 1458.75 

D3W1F3 74.30 82.42 65.74 81.34 668.25 
D3W2F1 69.82 82.53 68.59 80.29 273.77 

D3W2F2 72.78 81.83 65.71 79.89 1294.53 

D3W2F3 69.18 82.96 65.14 80.00 447.70 

VFF 

D4W1F1 79.50 31.46 34.50 44.37 244.24 
D4W1F2 47.58 79.36 52.47 71.20 978.87 

D4W1F3 66.50 83.70 66.12 79.39 337.59 
D4W2F1 76.94 35.70 37.84 47.63 126.58 

D4W2F2 47.65 78.03 54.55 70.12 867.33 

D4W2F3 59.32 86.13 68.97 80.08 214.50 

TOMP 

D5W1F1 67.81 66.50 53.40 67.13 491.57 
D5W1F2 69.56 71.95 58.74 69.59 1388.23 

D5W1F3 62.72 69.74 55.38 68.46 516.96 

D5W2F1 52.13 87.85 66.30 79.52 139.47 
D5W2F2 47.10 92.81 73.78 80.68 1174.13 

D5W2F3 46.41 90.82 70.33 79.96 319.90 

Average 62.61 71.19 56.38 69.42  
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In terms of solution quality, note that the TD algorithm 

performed the best overall in all factor combinations; they 

have relatively high values in all quality measures, followed 

by the TCSC and TOMP algorithms. VFF and TCI did not 

perform well; about 30% of their cell values perform below 

50%. However, in terms of computational efficiency, TCSC 

and TCI are the most computationally-efficient algorithms, 

while TD is the worst in that respect. In general, the filtering.m 

method takes a much longer time to perform than the average.  

Table 4 depicts the impact results in terms of AUC values 

from a combination of window sizes, filtering methods, and 

detection algorithms. As shown, the type of detection 

algorithm had an obvious impact on the AUC results, while 

filtering methods and window sizes had only a slight impact. 

Among the detection methods, the TD algorithm is the clear 

winner with the highest and most consistent AUC values 

ranging from 0.82 to 0.83 with a minimum standard deviation 

(0.69). TCSC is the next-best algorithm (values ranging from 

0.62 to 0.68), followed by VFF (values ranging from 0.61 to 

0.69), and then TOMP (values ranging from 0.44 to 0.68). The 

performance of TCI is unacceptably low (below 0.41) despite 

its small standard deviation (1.62). 

 
TABLE IV 

AUC RESULTS: IMPACT OF WINDOW SIZE, FILTERING METHOD AND 

DETECTION ALGORITHM BASED ON THRESHOLD VALUES. 

Detection 

Algorithms 
TD VFF TCI TCSC TOMP 

Filtering 
Methods 

8s 4s 8s 4s 8s 4s 8s 4s 8s 4s 

Without 
Filtering 

0.82 0.82 0.61 0.69 0.39 0.41 0.65 0.62 0.67 0.44 

Filtering.m 0.82 0.83 0.68 0.61 0.39 0.39 0.66 0.68 0.64 0.68 

Real-time 

Filtering 
0.82 0.83 0.62 0.61 0.36 0.38 0.68 0.65 0.65 0.67 

Standard 

Deviation 
0. 69 3.83 1.62 2.39 9.26 

 

Table 5 presents the results of the analysis of variance 

(ANOVA) using the three main factors: detection methods, 

window lengths, and filtering methods. The results indicate 

that 1) all three factors are significant at P < 0.001 for 

sensitivity, specificity, and computational time measures, 

thereby rejecting the null hypotheses H1 a) b) d), H2 a) b) d), 

and H3 a) b) d); 2) the detection method is significant at P < 

0.001 for positive predictivity and accuracy measures, thereby 

rejecting the null hypotheses H1 c) and H1 d); and 3) the 

filtering factor is significant at P < 0.001 for the accuracy 

measurement, thereby rejecting the null hypothesis H3 d).  

This study also evaluated two-way interactions between 

factors. The interaction between the detection algorithm and 

filtering method was significant for all measures. The 

interaction between the window size and filtering method was 

significant only for the computational time measure. The other 

interactions were relatively small. 

 

 

TABLE V 

ANOVA – IMPACT OF WINDOW SIZE, FILTERING METHOD AND DETECTION 

ALGORITHM 

(a) Sensitivity      

Factor DF Adj SS Adj MS F Value P (Sig) 

Detection Algorithm 

(D) 
4 48815 12204 17.76 0.000 

Window Size (W) 1 18310 18310 26.65 0.000 

Filtering Method (F) 2 13181 6591 9.59 0.000 

2-way Interactions:      

D*W 4 7470 1868 2.72 0.029 

D*F 8 142628 17829 25.95 0.000 

W*F 2 1031 516 0.75 0.472 

Error 1028 706297 687   

Total 1049 937734    

 

(b) Specificity 
     

Factor DF Adj SS Adj MS F Value P (Sig) 

Detection Algorithm 
(D) 4 96344 24086 25.91 0.000 

Window Size (W) 1 15991 15991 17.20 0.000 

Filtering Method (F) 2 34940 17470 18.79 0.000 

2-way Interactions:      

D*W 4 15942 3985 4.29 0.002 

D*F 8 185361 23170 24.92 0.000 

W*F 2 3619 1809 1.95 0.143 

Error 1028 955757 930 
  

Total 1049 1307954  
  

 

(c) Positive Predictivity     

Factor DF Adj SS Adj MS F Value P (Sig) 

Detection Algorithm 

(D) 4 51894 12973 10.58 0.000 

Window Size (W) 1 7225 7225 5.89 0.015 

Filtering Method (F) 2 9891 4945 4.03 0.018 

2-way Interactions:      

D*W 4 6052 1513 1.23 0.295 

D*F 8 46928 5866 4.79 0.000 

W*F 2 397 199 0.16 0.850 

Error 1028 1260210 1226 
  

Total 1049 1382597  
  

 

(d) Accuracy      

Factor DF Adj SS Adj MS F Value P (Sig) 

Detection Algorithm 
(D) 4 56105.2 14026.3 26.46 0.000 
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Window Size (W) 1 4501 4501 8.49 0.004 

Filtering Method (F) 2 11168.4 5584.2 10.53 0.000 

2-way Interactions:      

D*W 4 5702.1 1425.5 2.69 0.030 

D*F 8 49087.8 6136 11.58 0.000 

W*F 2 1347.5 673.7 1.27 0.281 

Error 1028 544934.7 530.1 
  

Total 1049 672846.6   
  

 

(e) Computational Time(ms)    

Factor DF Adj SS Adj MS F Value P (Sig) 

Detection 
Algorithm (D) 4 34124070 8531017 5005.89 0.000 

Window Size (W) 1 5231464 5231464 3069.75   0.000 

Filtering Method 
(F) 2 128957105 64478553 37835.14   0.000 

2-way Interactions:      

D*W 4 1313248 328312 192.65   0.000 

D*F 8 5682625 710328 416.81 0.000 

W*F 2 43032 21516 12.63   0.000 

Error 1028 1751915 1704 
  

Total 1049 177103459   
  

 

In summary, among the three factors examined, the 

detection algorithm had the strongest impact, followed by the 

filtering method (except for the sensitivity measure, for which 

the window size had a higher impact).  

Choosing the right algorithm and filtering method is 

critical. In general, a good algorithm exhibits more robust 

behaviour, experiencing less impact by other factors. Each 

detection algorithm has unique characteristics that may also 

have an impact on the selection of the filtering method. For 

example, using a shorter window segment is important for 

mobile devices because of resource constraints. However, this 

may affect solution quality and increase the computational 

time. 

While the ANOVA results generally indicate which factors 

have a significant impact on performance, they do not indicate 

at which level each of these factors exhibits better 

performance. A careful examination of the mean values in 

Table 3 indicates that three combinations, D3W1F1, 

D3W1F2, and D3W1F3, are close to being tied for best 

performance. Since it is less efficient to apply a filtering 

method, we can infer that using the TD algorithm with a 4-s 

data extraction window and without using a filtering method 

generates the best solution quality and requires less time to 

detect a heart attack. 

B. COMPARISON OF DETECTION METHODS 

According to the results shown in Table 3, TD, TCSC, and 

TOMP have higher detection rates for all four (or most) 

metrics. Because VFF shows a higher accuracy rate but has a 

very low sensitivity rate, it cannot be considered as a good 

method. Therefore, the overall results indicate that TD, TCSC, 

and TOMP are more suitable algorithms for VF detection. 

(a) 

 

(b) 

 

(c) 

FIGURE 5. ROC curves of detection algorithms (a) without filtering, 
(b) with filtering.m, and (c) with real-time filtering. 

 

Figure 5(a) shows ROC curves for all algorithms, using 

both 4- and 8-s window sizes but without using a filtering 

method (raw ECG data). Corresponding sets of ROC curves 

using either filtering.m or the real-time filtering method are 

depicted in Figure 5(b) and 5(c), respectively. Figure 5 
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indicates that 1) the TD algorithm outperforms the other four 

algorithms, and its performance also has less impact in terms 

of  different window sizes; 2) the performances of the other 

four algorithms are unacceptable due to the shape of ROC 

curves, and their performances are significantly impacted by 

the window size; 3) without using a filtering method, TOMP 

performs slightly better than TCSC, but when using either 

filtering method, the performances of TOMP and TCSC are 

closer; and 4) the performance of TCI is among the worst, 

while VFF performs slightly better than TCI. 

    Table 6 depicts the results of a paired t-test among different 

detection algorithms in terms of computation time. Table 6(a) 

shows the average results with a 4-s window segment (W1) 

under three different filtering strategies. Table 6(b) shows the 

average results with an 8-s window segment (W2) under three 

different filtering strategies.  

The results show the following: 1) An 8-s window segment 

is obviously more computationally-efficient than a 4-s 

window segment because it cuts the number of times to extract 

segment signals in half, but it also takes 4 s longer to provide 

warnings; in an emergency situation where every second 

matters, this could be a disadvantage. In addition, it will be 

more difficult to implement 8-s windows within devices that 

have limited memory resources. 2) Among the five algorithms 

this study evaluated, TCSC and TCI were computationally 

more efficient (highlighted in boldface), followed by VFF and 

then TOMP. 3) The TCSC algorithm performed significantly 

faster than the other algorithms, except that in two cases 

(W1F2 and W1F3) its performance is slightly slower than that 

of TCI. This indicates that TCI performs better than TCSC 

when filtering methods with 4-s window segments are used. 

4) In general, TD performed much more slowly than the other 

algorithms, with the differences being statistically significant. 

 
TABLE VI 

PAIRED-T TEST: THE EFFECT OF DETECTION ALGORITHM ON 

COMPUTATIONAL TIME (MS) 
(a) Window size 4 seconds 

Filtering Algorithm Mean STDEV Sample TCI TCSC TD VFF TOMP 

F1 

TCI 151.88   32.99      35 - 9.68 -28.27   -12.03 -37.93 

TCSC 98.94   13.50      35 0.000 - -40.01 -25.89   -68.66   

TD 453.24   52.13      35 0.000 0.000 - 17.44   -3.96   

VFF 244.23   32.02      35 0.000 0.000 0.000 - -32.63   

TOMP 491.57   29.34      35 0.000 0.000 0.000 0.000 - 

F2 

TCI 738.73   20.21      35 - -2.51   -80.47   -15.20   -130.02   

TCSC 752.76   27.29      35 0.017 - -77.36   -13.14   -113.64   

TD 1458.75   46.55      35 0.000 0.000 - 25.63   8.05   

VFF 978.9    94.5      35 0.000 0.000 0.000 - -23.68   

TOMP 1388.23   25.76      35 0.000 0.000 0.000 0.000 - 

F3 

TCI 191.80   30.44      35 - -6.05  -38.49   -24.47   -44.75   

TCSC 235.00   29.14      35 0.000 - -37.82   -16.11 -34.73 

TD 668.3    60.6      35 0.000 0.000 - 32.33   12.94 

VFF 337.59   19.99      35 0.000 0.000 0.000 - -25.03   

TOMP 516.96   36.53      35 0.000 0.000 0.000 0.000 - 

 
(b) Window size 8 seconds 

Filtering Algorithm Mean STDEV Sample TCI TCSC TD VFF TOMP 

F1 

TCI 75.31   10.26      35 - 6.87   -27.31   -16.04   -6.01   

TCSC 58.68   11.23      35 0.000 - -27.77   -19.59   -6.94   

TD 273.77   42.26      35 0.000 0.000 - 18.42   9.37   

VFF 126.58   16.26      35 0.000 0.000 0.000 - -1.11   

TOMP 139.5    66.2      35 0.000 0.000 0.000 0.277 - 

F2 TCI 688.99   11.55      35 - 5.72   -68.41   -55.91   -109.37   

TCSC 675.19   10.37      35 0.000 - -69.29   -59.74   -112.92   

TD 1294.53   55.40      35 0.000 0.000 - 43.26   12.02   

VFF 867.33   17.08      35 0.000 0.000 0.000 - -64. 81   

TOMP 1174.13   23.38      35 0.000 0.000 0.000 0.000 - 

F3 

TCI 122.27   10.93      35 - 3.61   -33.43   -33.79   -29.61   

TCSC 110.92   15.33      35 0.001 - -34.05   -34.15   -26.92   

TD 447.69   57.21      35 0.000 0.000 - 24.15   12.23   

VFF 214.50   13.93      35 0.000 0.000 0.000 - -14.93   

TOMP 319.90   42.65      35 0.000 0.000 0.000 0.000 - 

C. IMPACT OF FILTERING METHOD AND WINDOW 
SIZE 

From (Figure 5), based on this investigation, we can see that 

TD is overall the best method while TCI is the worst in terms 

of solution quality, but the situation reverses when they are 

considered in terms of computational efficiency. We will now 

explore their relative performance and impact of various 

factors by focusing on the best and worst cases. Figures 6(a) 

and (b) show the ROC curves for the TD and TCI algorithms, 

respectively, for different combinations of window sizes and 

filtering methods. 

(a) 

(b) 

FIGURE 6.  ROC curves of (a) TD algorithm and (b) TCI algorithm. 

 

Clearly, the TD algorithm performed better than the TCI 

algorithm in term of aggregated quality performance, since all 

ROC curves of the different factor combinations are almost 

the same shape and close to to the left-top corner overall, 

indicating that TD is quite robust and achieves high accuracy. 

From Figure 6(a), we can see that the performance of TD was 

not impacted much by the filtering method, and by contrast, as 

shown in Figure 6(b), the performance of TCI improved when 

filtering methods were used. However, it is difficult to 
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compare the relative performances of the two filtering 

methods when they are close to one another. From Figure 6(a), 

we can also see that the performance of TD was not impacted 

significantly by the window size. In contrast, as shown in 

Figure 6(b), the performance of TCI using 8-s window 

segments was better than when using 4-s window segments.  

D. TRAINING AND TESTING OF DATA SETS 

Although the detailed factor analysis in this study uses all 35 

patient data sets from CUDB, generalizability is somewhat 

lacking. To ensure repeatability, this study trained the 

threshold values based on 80% of the entire data set, and tested 

the algorithm based on 20% of the data set. Since comparison 

and analysis showed that the TD algorithm outperformed the 

other four algorithms, we conducted a training and testing 

experiment using TD only. Table 7 shows the impact results 

in terms of sensitivity, specificity, and AUC values from a 

combination of window sizes and filtering methods. As 

shown, the overall results for the AUC values based on a 

testing data set of 20% are slightly lower than when testing all 

data sets in Table 7 (82–83%). 

 
TABLE VII 

SENSITIVITY, SPECIFICITY, AND AUC RESULTS: IMPACT OF WINDOW SIZE 

AND FILTERING METHOD BASED ON THE TRAINED THRESHOLD VALUES 

USING 80% OF CU DATA SET. 

  Window Size Sn (%) Sp (%) AUC (%) 

Without Filtering 
4s 86.65 71.66 79.155 

8s 81.14 68.75 74.945 

Filtering.m 
4s 84.99 74.73 79.86 

8s 82.89 73.69 78.29 

Real-time Filtering 
4s 82.46 73.66 78.06 

8s 83.89 64.22 74.055 

 

Table 7 Sensitivity, specificity, and AUC results: Impact of 

window size and filtering method based on the trained 

threshold values using 80% of CU data set. 

E. CROSS-VALIDATION 

To validate greater presence of generalizability, this study 

applied 10-fold cross-validation. The comparison and analysis 

showed that the TD algorithm outperformed the other four 

algorithms in terms of the balance between Sn and Sp. Table 

8 shows the impact results in terms of sensitivity, specificity, 

positive-predictivity and accuracy values from a combination 

of algorithms, window sizes and filtering methods. The 

number of data points is 3,897 for the window size of 4 

seconds and 1,968 for 8 seconds and we used the logistic 

regression for selecting the optimal threshold of a 

classification. This study excluded the TCI algorithm since the 

TCSC is an improvement of TCI.  

 
TABLE VIII  

PERFORMANCE FOR COMBINATIONS OF DETECTION ALGORITHM, WINDOW 

SIZE AND FILTERING METHOD BASED ON 10-FOLD CROSS VALIDATION 
   Factors   Sn (%)  Sp (%)  Pp (%)  Ac (%)  

TCSC  
D2  W1  F1  35.30  96.60  76.50  81.96  

D2  W1  F2  17.30  96.10  57.90  77.23  

D2  W1  F3  32.80  95.10  67.60  80.18  

D2  W2  F1  33.20  97.70  81.80  82.16  

D2  W2  F2  15.00  96.20  55.50  76.67  

D2  W2  F3  28.10  95.70  67.50  79.46  

TD  

D3  W1  F1  67.60  94.00  77.80  87.65  

D3  W1  F2  66.60  94.10  78.00  87.53  

D3  W1  F3  67.20  92.40  73.50  86.37  

D3  W2  F1  62.40  94.20  77.40  86.58  

D3  W2  F2  64.10  93.60  76.10  86.53  

D3  W2  F3  61.90  93.20  74.20  85.66  

VFF  

D4  W1  F1  31.80  98.60  87.60  82.62  

D4  W1  F2  57.60  98.10  90.50  88.42  

D4  W1  F3  51.20  97.90  88.70  86.78  

D4  W2  F1  32.10  98.80  89.40  82.77  

D4  W2  F2  56.90  98.20  90.90  88.26  

D4  W2  F3  53.10  97.70  87.80  86.93  

TOMP  

D5  W1  F1  39.70  95.70  74.30  82.32  

D5  W1  F2  63.16  48.74  27.89  52.18  

D5  W1  F3  32.70  96.80  76.20  81.47  

D5  W2  F1  42.70  95.90  76.50  83.07  

D5  W2  F2  20.30  97.80  74.40  79.16  

D5  W2  F3  40.80  95.90  76.00  82.66  

 

 
VI. DISCUSSION 

Real-time monitoring and evaluation are essential for practical 

VF detection, and since previous performance evaluations on 

VF detection were mainly conducted offline with prefiltered 

data sets and focused on the effectiveness of the detection 

algorithms, such performance results may not be applicable to 

real-world cases. In general, it is difficult (or impossible) to 

use real cases for experimentation when studying the 

algorithms and the impact of various factors. To address this 

challenge, this study developed a simulation environment for 

evaluation. Using a public VF database as inputs, we 

generated real-time signals for validating real-time VF 

detection processes such as data filtering, scaling, 

segmentation, and detection analysis.  

While millisecond differences in computational time may 

not act an important role in the VF detection itself, in real-time 

wearable-device VF detection, computational time can play an 

important role in enabling the device to be operated for a long 

time using a small-capacity battery. Thus, along with VF 

detection, this study evaluated computational time that is also 

important in real-time VF detection. Table 8 lists the average 

computational times when running CU data sets in a prototype 

of a wearable ECG system. As shown, Table 8 depicts similar 

trends and relative performance (Table 3) among the detection 

algorithms. TCI and TCSC are still rated the most efficient 

algorithms in an embedded microcontroller, with TCI 

performing slightly better than TCSC. Basically, these 

algorithms share similar computational logic because TCSC 

reflects an improvement of TCI, and the differences could be 

a result of processing and architectural differences between 

the laptop-based simulator (1.6 GHz) and the microcontroller-

based wearable sensor (16 MHz). The quality performance 

ranking results obtained from the microcontroller and 

simulator were identical,  validating the reliability of using the 

proposed simulator for experimental analyses. 

 
TABLE VIII  
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SUMMARY OF AVERAGE COMPUTATIONAL TIME (MS) RUNNING IN THE 

EMBEDDED MICROCONTROLLER 

Factors TCI TCSC TD VFF TOMP 

W1 F1 28.28 30.23 102.24 53.34 97.79 

W1 F2 28.45* 29.89* 99.47* 53.13* 98.47* 

W1 F3 460.16 462.38 534.39 485.50 529.95 

W2 F1 14.00 15.11 51.12 26.67 48.90 

W2 F2 14.21* 14.95* 51.88* 27.47* 49.38* 

W2 F3 447.81 448.11 484.11 459.66 481.89 

* filtering.m cannot be run in microcontroller, so we use pre-filtered data and 

cannot count the time for running filtering.m 

 

Consistent with the recent trend of using mobile devices for 

health monitoring, a wearable ECG module could be useful in 

daily life because of its quick response to users. The proposed 

ECG devices will collect data including noise directly and 

process VF detection. In this case, the suggested integration of 

preprocessing (filtering and scaling) and data extraction into 

the devices would play an important role in practical VF 

detection. 

In general, because it requires the use of the entire signal to 

perform the first two subprocesses, it is difficult to implement 

the filtering.m method in a real-time environment, and this 

study adopted and modified it as a real-time filter. The real-

time filtering method we have proposed exhibits an overall 

better performance in TD and TCSC than when applying the 

filtering.m method (prefiltered). While the best performance 

of all possible factor combinations used an 8-s window of TD 

with the filtering.m method, when no filtered data was used, a 

4-s window of TD exhibited the best performance among all 

results.  

Although nonfiltered data contains various noises that can 

interfere with accurate VF detection, our proposed scaling 

method mitigates the noise effects. Moreover, a shorter 

window size (4 s) can improve scaling accuracy without 

filtering. The phase-space reconstruction of the TD algorithm 

also makes the difference between SR and VF signals much 

larger than the original signals. In the SR signal, reconstructed 

boxes mostly overlapped as a baseline or a part of a QRS 

complex. On the other hand, the VF signal was distributed 

widely over the entire phase space. This characteristic of TD 

makes the adaptation of such detection robust from the point 

of view of various factor impacts.  

Basically, the TOMP algorithm is designed for detecting 

QRS complexes. Although it is relatively effective at finding 

QRS complexes, the length of the integration window is not 

adjusted for VF signals similar to sinusoidal waves. Since the 

VF signal has a slope that is not as sharp as that of QRS 

complexes, although TOMP showed good performance in 

some test cases, it also showed weaknesses in many selected 

data sets. 

VFF is a weak algorithm regarding its impact on adjusting 

the threshold values. If a normal signal (SR) is not detected by 

other QRS detection algorithms, the VFF algorithm selects the 

SR signal as being randomly-distributed. In this study, since 

this study analyzed the factor impacts for each algorithm, no 

QRS detector was applied to the VFF algorithm. TCI is a basic 

algorithm that uses the threshold line to check the R-peak 

signal. Although previous studies have evaluated TCI with 

reasonable results, since proposed experiments showed that 

the TCI results reflect large differences between SR and VF 

decisions, optimizing the thresholds does not impact the 

performance of the TCI algorithm. 

This study applied 1 Hz (HPF) and 30 Hz (LPF) as real-

time filtering. According to a survey paper [38], fifteen studies 

applied bandpass filters as preprocessing steps between 0.05 

Hz and 120 Hz. Among those studies, two applied the 

bandpass filter at a filtering frequency between 1Hz and 30 Hz 

and their detection performance achieved accuracies greater 

than 99%. The applied frequencies of high-pass and low-pass 

filters were 0.1 Hz and 30 Hz, respectively, and, based on the 

previous studies, these frequencies are reasonable frequencies 

for ECG analysis, so as a real-time filter for ECG signal 

analysis, the proposed implementation is appropriate for VF 

detection. 

There have recently been multiple attempts to implement a 

machine-learning algorithm on embedded microcontrollers 

for detecting ventricular arrhythmia. Chen et al. have proposed 

a lightweight deep-learning method on a microcontroller with 

a millisecond-scale inference [17]. Although the 

microcontroller used there is of higher performance compared 

to ours, it is shown that deep-learning approaches may soon 

be implemented into low-power microcontrollers for detecting 

VF in real-time. Since Tiny machine-learning approaches are 

also focused on this research area, our proposed methodology 

could be a good testing environment. 

 
VII. CONCLUSION 

There are several factors in real-world applications that affect 

the overall performance of real-time VF detection. This paper 

discussed seven such factors and examined the impacts of 

three of them on VF detection. Because they are critical and 

should be strategically considered in all experiments Four 

other factors were considered as control factors. This study 

evaluated the performance and impact using the complete 

Creighton University (CU) ventricular tachyarrhythmia 

database.  

The proposed study concluded the following: 1) The scaling 

process is very important and required for successful VF 

detection. 2) All three factors evaluated (detection method, 

window size, and filtering method) have significant impact on 

VF detection, with the detection method requiring careful 

selection to reduce its degree of impact to a minimum level; 

otherwise, a filtering method should be considered. 3) TD and 

TCSC are two lightweight algorithms that outperform the 

other three methods evaluated. TD in particular is more robust 

in reducing the impact of other factors to insignificance, while 

TCSC is more computationally efficient. Considering this 

tradeoff, we conclude that using TD would be preferable 

because detection accuracy and robust are particularly critical. 
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4) The threshold value is an important parameter for any 

detection algorithm, and its value needs to be properly 

determined to achieve good performance.  

This study contributes to the field in the following aspects: 

First, it proposes an integrated simulated environment 

enabling researchers to use existing databases for emulating 

real-time detection processes, identifying critical factors, and 

evaluating performance. Second, it proposes a simple scaling 

method for improving overall data quality. Third, it examined 

and empirically tested factors that may affect VF detection, 

and provided guidelines for detection-method selection. 

Finally, it describes a method for helping optimize 

determination of threshold values for detection methods using 

the ROC curve. It also identified the range of threshold values 

for the algorithms studied, and since these values were derived 

from 35 data sets, they can be used in general.  

In this study, we used the entire data set from a database to 

conduct the analysis, and noticed clear and obvious variations 

among different data sets (patients) in terms of SR patterns, 

signal strengths, etc. Personalization of VF detection and its 

overall impact is a major area that deserves further 

exploration. Detection accuracy is also impacted by the 

particular activity that the patient is performing, so activity 

recognition is also an active topic for future research. 
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