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ABSTRACT Manifold learning technique aims to the non-linear dimension reduction of data. The 

foundation of this concept is the notion that high dimensionality of data features is required to be reduced. 

Dimension reduction is the field of interest and demand of many data analysts. Moreover it is widely used 

in computer vision, image processing, pattern recognition, neural networks and machine learning. The 

research has been divided in to two phases to recognize manifold learning techniques' importance. In the 

first phase, manifold learning approach is used to improve the „feature selection by clustering‟. Clustering 

algorithms such as K-means, spectral clustering and Gaussian Mixer Model have been tested with manifold 

learning approaches for adaptive feature selection and the results obtained are satisfactory as compared to 

simple clustering. In the second phase, a Triple Layered Convolutional Architecture (TLCA) has been 

proposed for image classification bearing 85.34%, 59.14%, 71.43%, 90.06% and 71.71% accuracy level for 

the datasets such as Pistashio, Animal, HAR, Mango Leaves and Cards respectively. The performance of 

proposed TLCA model is compared to the other deep learning models i.e. CNN, LSTM and GRU. In order 

to further improve the accuracy, reduced dimensional data from manifold learning technique is used and 

achieved higher accuracies from  Hybrid Triple Layered Convolutional Architecture HTLCA 97.73%, 

87.18%, 97.97%, 99.19% and 96.91% for the above mentioned sequence of datasets. The effectiveness and 

precision of the suggested methods are demonstrated by the experimental findings.  

INDEX TERMS Adaptive Feature Selection, Clustering, Feature extraction, Image classification, Manifold 

Learning Techniques, Triple Layered Convolutional Architecture.  

I. INTRODUCTION 

Manifold learning is a machine learning and data analysis 

technique that extracts meaningful features from high-

dimensional data [1]. Its primary objective is to identify a 

lower-dimensional representation of the data that preserves 

the underlying structure and relationships among the data 

points. The technique treats the data as it lays on a manifold, 

which is curved in shape, lower-dimensional surface 

embedded in the high-dimensional space. This manifold can 

be envisioned as a twisted or folded version of the high-

dimensional space. Through identifying the underlying 

manifold, the manifold learning algorithms can uncover the 

intrinsic structure of the data, thereby extracting meaningful 

features that capture this structure. 

Several techniques for manifold learning exist, including 

Principal Component Analysis (PCA) [2], t-SNE (t-

Distributed Stochastic Neighbor Embedding) [3], and Isomap 

(Isometric Mapping)[4], among others. These techniques 

employ different algorithms to determine the lower-

dimensional representation of the data while preserving the 

relationships among the data points. The extracted features 

can be utilized for diverse tasks, such as classification, 

clustering, object recognition, image retrieval and 

visualization [5]. Through the reduction of the data's 

dimensionality and the extraction of meaningful features, 

manifold learning enhances the performance of machine 

learning and deep learning algorithms and simplifies the 

understanding and interpretation of the data. 
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The use of extracted features from manifold learning 

techniques help deep learning algorithms to accurately 

classify images based on their underlying structure and 

relationships, thereby improving the performance of 

computer vision systems [6]. Image classification by deep 

learning algorithms is widely used in fields such as medical 

imaging, natural language processing, and robotics. By 

reducing the dimensionality of the image data and extracting 

meaningful features, manifold learning can enhance the 

performance of computer vision systems, thereby advancing 

research and practical applications in these fields.  

Diffusion maps [7], Laplacian eigenmaps , and manifold 

regularized extreme learning machines [8] are other manifold 

learning algorithms that have been used for picture 

categorization. These techniques have showed promising 

increase in image classification accuracy as they aim to 

capture many features of the underlying data structure. A 

researcher proposed a unique approach to feature selection 

that makes use of both labeled and unlabeled data [9]. To 

find the most pertinent features for classification, a strategy 

that combines manifold learning with a graph-based semi-

supervised learning algorithm is used. To propagate labels 

from labeled to unlabeled data, it uses the graph-based semi-

supervised learning algorithm. 

Feature selection is basically a data preprocessing 

technique that prepares data for various data mining and 

machine learning tasks [10]. It aims the simpler and 

comprehend model in order to improve data mining 

performance and produce clean and logical data. Daniela 

proposed a solution for feature selection SFAM [11], a 

unified learning paradigm that combines adaptive global 

structure learning with manifold learning, to address the 

algorithm cost concern. The method is designed to retain 

global and sparse reconstruction structure while investigating 

local structure and label correlations.  

 

FIGURE 1. Main Focus of the Research 

The main attention of this study is to realize the 

importance of manifold learning techniques in the domain of 

machine learning and deep learning. The focus of our 

research has been mentioned in Fig. 1 and the techniques 

used and applications considered are stared in the diagram. 

The major applications are the image classification, adaptive 

feature selection and data visualization. Image classification 

is used in the field of medical imaging, natural language 

processing and robotics. Adaptive feature selection technique 

has its advantages in web cluster engines [12], bioinformatics 

[13], recommendation systems, search result clustering and 

social network analyses, while data visualization is essential 

for image and video processing [14]. 
There is lots of feature selection methods already existed 

like filter, wrappers and some hybrid methods [15]. 

Clustering itself facilitates feature selection. Different 

clustering algorithms have different accuracies on different 
datasets. These accuracies can be improved using manifold 

learning techniques. Same is the case with image 

classification. Experimental results show that introducing 

feature extraction by manifold learning can play an 

important role in adaptive feature selection and perform 

better image classification than that can be achieved by 

state-of-art deep learning models.  

Further sections are organized as follows; Section II 

describes the preliminaries for feature selection and image 

classification. Methodology is explained in Section III and 

Section IV is all about experimentation, results and 

discussions. The research is concluded in Section V and 
future direction also elaborated.  

II. Preliminaries 

Machine learning and data analysis employ manifold 

learning approaches to comprehend and extract high-

dimensional data structures. Data often resides on a lower-

dimensional manifold embedded in a higher-dimensional 

environment in real-world applications. Manifold learning 

attempts to capture and explain this fundamental structure. 

Different manifold learning techniques are discussed and 

elaborated below.  

A. Isomap 

Isomap dimensionality reduction preserves geodesic 

distances between data points. Visualizing high-

dimensional data in smaller dimensions is typical. Isomap 

creates a neighbourhood graph from paired data point 

distances and finds a low-dimensional embedding that 

retains geodesic distances. Isomap has the following steps 

to be followed. Data input X with „d‟ dimensions refer to 
(1) has „n‟ number of data points. 

   [           ]       
                       (1) 

Pairwise distances between data points are computed to build 

the neighborhood graph. The distance matrix D = [dij] shows 

the distance between data points xi and xj. In the k-nearest 

neighborhood graph G, Euclidean distance (2) is used to 

calculate the edge length 

     ‖      ‖
 
                               (2) 

An adjacency matrix A represents the neighborhood graph, 

where Aij = 1 if xi and xj are connected and 0 otherwise. 

Next, the geodesic distances between all pairs of data points 

are obtained. The shortest route distance along G is the 

geodesic distance (3) Gij between xi and xj. 
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                                             (3)                

The shortest paths are usually calculated using graph-based 

methods like Dijkstra's or Floyd-Warshall. The distance 

matrix DG = [Gij] reflects the geodesic distance between xi 

and xj. Isomap computes a low-dimensional data embedding 

using classical multidimensional scaling (MDS). MDS finds 

a group of points in a lower-dimensional space that 

approximates pairwise distances from the high-dimensional 

space. The low-dimensional embedding matrix Y = [y1, y2,..., 

yn] represents the lower-dimensional coordinates of each data 

point xi. 

Isomap has proved successful in several applications. Data 

and parameters determine its efficacy. Isomap, like other 

dimensionality reduction methods, does not function well for 

all datasets. The data structure, noise, and outliers affect its 

performance. 

B. LLE 

Locally Linear Embedding (LLE) is an effective non-linear 

dimension reduction technique for reducing the features of 

high-dimensional data while retaining its core geometric 

structure. The LLE algorithm consists of three key stages: 

constructing a neighborhood graph, computing the weight 

matrix, and computing the embedding coordinates. To begin, 

the algorithm constructs a neighborhood graph G represented 

by adjacency matrix. It identifies the k nearest neighbors „j‟ 

of each data point „i‟ and connecting them with edges. The 

variable „Gij‟ sets to 1 if there is an edge between i and j 

otherwise sets to 0. Next, for each data point, the algorithm 

computes a weight matrix E(W) (4) by minimizing the 

reconstruction error between the data point and its neighbors 

using linear weights Wij.     

      ∑ |   ∑       |
 

                       (4) 

Finally, the algorithm computes the embedding 

coordinates Yi by minimizing a cost function C(Y) that 

preserves the local relationships between the data points refer 

to (5).  

      ∑ |   ∑       |
 

                        (5) 

The resulting embedding coordinates provide a lower-

dimensional representation of the data that maintains its 

essential geometric structure. LLE recovers global nonlinear 

structure from locally linear fits, unlike Isomap. 

C. UMAP 

UMAP is mostly used for larger datasets to convert high 

dimensional data to lower dimensional data that‟s 

visualization is much better and easy. It is beneficial for the 

outliers and similarities to be identified. UMAP works in a 

way that reserves the high dimensional grouping of data and 

the relationships between different data points. The method 

starts with all the high dimensional points in low dimension 

and then move those low dimensional data points so that the 

categorization among different groups remains as same as the 

relationships present in high dimension data. Distances 

between every pair of data in high dimension are calculated 

in initial step. Then UMAP algorithm determines the 

similarity score for each cluster that helps recognizing how 

good clustering has been done. It must be as same as the 

clusters in the low dimensional graph present. UMAP uses 

Spectral Embedding to initiate a low-dimensional graph by 

using the similarity score SS (6). 

                                                       (6) 

        (
 

        
)       

 

              
           (7) 

UMAP focuses on the two scores „neighbor‟ and „not 

neighbor‟ to evaluate if a point is in the right place or not. 

There is a Cost Function elaborated in (7) which uses the two 

scores to calculate. For an optimal low-dimensional graph a 

very few of points are moved at a time by Stochastic 

Gradient Descent.  

D. PHAT 

High-dimensional data is complex to visualize in a manner 

that is it should be intuitive and accurate. This visualization 

method must preserve local and global structure in higher 

dimensional data, denoise the data so that the underlying 

structure is plainly visible, and preserve as much information 

as possible i.e. local and global structure, in low dimensions 

(two to three). In addition, a visualization method should be 

robust in the sense that the obtained data structure is 

insensitive to the user configurations of the algorithm and 

scalable to the massive sizes of contemporary data. PHAT 

[16] is designed for these objectives. 

There are three main steps of the algorithm. First step is to 

use local similarities to encode local data information. 

Second step is to use potential distances to encode global 

relationships in data. Third one is to have a low dimensional 

data by embedding potential distance information.  

III. Methodology 

The research has been divided in two phases. Feature 

selection is the first phase in which different clustering 

techniques are used. These selected features are analyzed 

against five datasets. Along with the clustering techniques, 

some manifold learning techniques are hybridized in 

attention to attain better performances. In the following 

sections 3.1 and 3.2, the manifold learning techniques and the 

clustering techniques are explained respectively. The second 

phase of the research is about image classification, where 

three state of the art algorithms are tested. Section 3.3 is 

about those existing image classification models. Section 3.4 

elaborates the proposed model TLCA for image 

classification.  
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A. Adaptive Feature Selection 

The objective of feature selection for clustering is to select 

set of most relevant features that facilitate the discovery of 

natural clusters in the data, according to the selected criterion 

[17]. These selected features may lead to the best version of 

relevant features if a suitable feature extraction technique is 

applied to consider the spatial features of image data X. Fig. 
2 represent the complete flow how data spectrum is used to 

capture spectral features and how feature extraction is 

performed. As normal preprocessing steps, data 

normalization and data scaling of a spectral signature are 

used to provide the spectral features of an image. Therefore, 
we add feature extraction using isomap, LLE, UMAP or 

PHAT. These techniques are known as manifold learning 

techniques explained in Section 2. 

  

FIGURE 2. Adaptive Feature Selection includes Techniques as feature extractor and Clustering Algorithms for feature selection.

Clustering algorithms discussed in the literature are 

sensitive to largeness or high-dimensionality or both. There 

is an entropy based solution is proposed for the ranking of 

features [18]. The key issue regarding this resolution is the 

repeated calculations required for the information-entropy-

based significance of an attribute set, which slows down 

feature selection for large datasets. Consequently, feature 

extraction followed by feature selection assisted in this 

regard. Adaptive feature selection involved different 

combinations of clustering techniques and manifold leaning 

techniques. Experimentally tested clustering methodologies 

are discussed below. 

1) K-MEAN 

It works in an iterative process [19] of assigning all the data 

points to the groups with the initial supposition of a specific 

centroid to each cluster. This assignment of data points is 

done by calculating Euclidean distance between the data 

points and the supposed centroids.  

        √∑        
  

                         (8) 

The centroid chosen for a fixed number of clusters in first 

step, keep on changes to minimize the sum of distances 

between the data points and the assigned centroids.  

    
 

|  |
∑                                    (9) 

2) SPECTRAL CLUSTERING 

Numerous fields, such as data analysis, video indexing, 

character identification, image processing, speech separation 

etc., have effectively implemented spectral clustering. In 

these applications and many more, the number of data 

elements to cluster can be extraordinarily large [20]. Basic 

concepts of spectral clustering involve algebraic graph theory 

and graph cut methods. The advanced development of 

spectral clustering comprises the aspects of similarity matrix, 

Laplacian matrix, selecting eigenvectors and the number of 

clusters chosen. The main focus of spectral clustering is 

choosing a distance measurement that adequately describes 

the intrinsic structure of the data elements. Data within the 

same category should have a high degree of similarity and 

adhere to space consistency. The measurement of similarity 

is vital to the efficacy of spectral clustering [21]. As a rule, 

the Gaussian kernel function is chosen as the similarity 

measure. 

Following the construction of similarity matrix, the 

corresponding Laplacian matrix is created using various 

graph cut methods. The efficacy of spectral clustering 

algorithms is significantly influenced by the selection of 

graph cut methods and the construction of Laplacian 

matrices. Through eigen-decomposition, the eigenvalues and 

eigenvectors of a Laplacian matrix can be determined. An 
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analysis of the properties of eigenspace demonstrates that: (a) 

not every Laplacian matrix‟s eigenvector is relevant for 

clustering; (b) eigenvector selection is crucial because using 

uninformative eigenvectors could result in poor clustering 

results; and (c) the corresponding eigenvalues cannot be used 

to select relevant eigenvectors for a realistic dataset. 

3) GAUSSIAN MIXER MODEL 

GMM [22] works same as k-means does but k-means only 

perform better for the data distributed over circular shape. 

The reason behind is it clusters the points only in circular 

shape with a radius defined by the most distant point. While 

in case of GMM, the clusters can be oblong depending upon 

the data distribution. Besides assigning cluster to each point, 

GMM consider the probabilities that a certain point belongs 

to which cluster also.  

B. IMAGE CLASSIFICATION  

A popular technique for classifying hyperspectral images 

is supervised classification. The fundamental procedure is to 

calculate the discriminant function and then establish the 

discriminant criterion based on the given sample category 

and prior knowledge; Support vector machine, artificial 

neural network (ANN) [23], convolutional neural network 

(CNN) [24], long short-term memory (LSTM) , decision tree, 

gated recurrent unit networks (GRU) [25] and maximum 

likelihood classification methods are supervised 

classification techniques that are frequently employed. Some 

of these are described below.  

1) CNN 

CNN's structure includes the convolutional, pooling, 

nonlinear activation, and fully connected layers. In general, 

the image is preprocessed [26] before being provided to the 

network via the input layer, passed through a series of 

alternately arranged convolutional and pooling layers, and 

then fully connected layer is used for classification. 

CNN [27],[28] adds a very distinctive convolutional and 

pooling layer compared to Multilayer Perceptron (MLP). For 

large data sets, CNN exhibits exceptional cost performance 

in terms of model size, and its performance is better also. The 

convolutional layer has the properties of a local receptive 

field, which retains the input shape. Another point to be 

noticed is that, the convolutional layer frequently calculates 

the same convolution kernel and various input positions 

through a sliding window, thereby effectively preventing the 

training parameter size from becoming excessively large. 

The pooling layer reduces the computational load by 

minimizing the number of connections between the 

convolutional layers [29] and alleviates the convolutional 

layer's excessive position sensitivity. CNN ensures the 

invariance of input image pixels with respect to 

displacement, scaling, and distortion. 

2) LSTM 

Long Short-Term Memory (LSTM) is a sophisticated form 

of Recurrent Neural Networks (RNN) that captures long-

term dependencies. LSTM was introduced in 1997 [30] and 

improved in 2013 [31], garnering a great deal of popularity in 

the deep learning community. LSTM models have proven 

more effective than standard RNNs at retaining and utilizing 

information over extended sequences [32]. 

In an LSTM network, the current input at a particular time 

step and the output from the previous time step are supplied 

into the LSTM unit, which in turn generates an output that is 

passed on to the subsequent time step. Commonly, the final 

hidden layer of the last time phase, and sometimes all hidden 

layers, are used for classification purposes [33].  

Three gates comprise LSTM: input gate, forget gate, and 

output gate. Each gate serves a distinct purpose in regulating 

the passage of information. Based on the current input and 

the preceding internal state, the input gate determines how to 

update the internal state. The forget gate determines how 

much of the preceding state of the internal environment 

should be forgotten. Lastly, the output gate regulates the 

effect of the system's internal state [34].  

3) GRU 

Gated recurrent unit (GRU) is an improvement on the 

conventional RNN (recurrent neural network). In 2014, 

Kyunghyun Cho [35] introduced it for statistical machine 

translation. More or less they are similar to LSTM. GRU also 

employs gates to control the information flow, just as LSTM. 

They are comparatively more recent than LSTM and are 

superior to LSTM in terms of simplicity of architecture. 

Unlike LSTM, it lacks a distinct cell state (Ct) and 

possesses only a hidden state (Ht). Due to their simplified 

architecture, GRUs can be trained more quickly. Only two 

gates comprise GRU: Reset gate and Update gate. Equations 

for their functionalities are as follows. 

                                       (10) 

                                      (11) 

Reset gate uses equation 1, where Ur and Wr are the weight 

matrices for reset gate. Similarly, update gate uses equation 

2, where Uu and Wu are the weight matrices for update gate.  

4) TLCA (PROPOSED MODEL) 

TLCA has proven to be an effective solution for image 

classification problems. The efficacy of large image 

databases, such as the Pistachio, HAR, Mango Leaves, and 

Cards datasets, has been significantly enhanced by TLCA-

based network. As an improved form of CNN, it is very 

adept at understanding the local and global structures from 

image data.  

The overall design of the framework can be depicted in 

Fig. 3. The first part of layer 1 is a convolutional layer with 

32 output channels and a kernel dimension of 3x3 pixels. The 

second part of layer 1 is also a convolutional layer with 64 

output channels and with the same kernal size. The third part 

of layer 1 is a max pooling layer with a 2x2 kernel. In a 

triple-layered architecture, the same sequence is repeated for 
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three times. Each of the subsequent five layers is composed 

of 73728-1024-512-64-c neurons and is fully connected. 

FIGURE 3. Proposed Model of Image Classification.

Where „c‟ is different for different datasets and is the number 

of classes each dataset has. Since the input-image is not 

textual, the network must learn large scale or high-level 

features. The network with a three-layered architecture 

performs image classification tasks significantly well. The 

large number of parameters to be learned may result in over-

fitting, but as a consequence, accuracy improves. The results 

obtained using epochs 20 on batch size 32 were satisfactory.  
TABLE I 

MODEL SUMMARY 

Layer (type)    Output Shape Param #    

conv2d_12 (Conv2D)           (None, 222, 222, 
32) 

890 

conv2d_13 (Conv2D)           (None, 220, 220, 
64)       

18496 

max_pooling2d_6 
(MaxPooling2D)                                                              

(None, 110, 110, 
64)      

0 

conv2d_14 (Conv2D)           (None, 108, 108, 
64) 

36928 

conv2d_15 (Conv2D)           (None, 106, 106, 
128)      

73856 

max_pooling2d_7 
(MaxPooling 2D)                                               

(None, 53, 53, 
128) 

0 

conv2d_16 (Conv2D)           (None, 51, 51, 
256)        

295168 

conv2d_17 (Conv2D)           (None, 49, 49, 
128)        

295040 

max_pooling2d_8 
(MaxPooling 2D) 

(None, 24, 24, 
128)       

0 

dropout_6 (Dropout)          (None, 24, 24, 
128)        

0 

flatten_2 (Flatten)          (None, 73728)              0 

dense_8 (Dense)              (None, 1024)               75498496 

dropout_7 (Dropout)          (None, 1024)               0 
dense_9 (Dense)              (None, 512)                524800 
dropout_8 (Dropout)          (None, 512)                0 
dense_10 (Dense)             (None, 64)                 32832 
dense_11 (Dense)             (None, 2)    3445 

Total params: 76,779,957 
Trainable params: 76,779,957 

Non-trainable params: 0 

IV. Results and Discussion 

To evaluate proposed model of adaptive feature selection 

and image classification model TLCA, we used the following 

experimental setup and five datasets, whose prescription is 

mentioned in the following sections.  

A. Experimental setup 

Experiment setup involves disk storage, system RAM and 

GPU RAM as hardware requirement and Python3 as 

software prerequisites. Depending on dataset size and model 

complexity almost 32 GB of system RAM and 32 GB disk 

storage is desired for data accumulation, model checkpoints 

and other relevant files. We have used Google Colab Pro+ 

version for our experimentation. A100 type of GPU has been 

chosen. The latest generation A100 80GB doubles GPU 

memory and introduces the world's quickest memory 

bandwidth at 2 terabytes per second (TB/s), which 

accelerates time to solution for the largest models and largest 

datasets. 

 
Figure 1 
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B. Datasets 

Five different image datasets mentioned in Table 1 have 

been used for experimentation. The image data has been 

divided into 3 proportions for training, testing and validation. 

Of total images, 75% is used for training, 15% for testing and 

10% for validation. Their distribution can be seen in the 

table.  
Table 1: Dataset Description 

Dataset Name Classes Image count Train/Test/Validate  

Pistachio_dataset 2 2,147 1,610/322/215 

Animal_dataset 2 69 51/11/7 

HAR_dataset 15 28,992 21,744/4,348/2,899 

Mango Leaves 16 14,200 10,650/2,130/1,420 

Cards Image  53 7,624 5,718/1,144/762 

 

Distribution of data over different classes in each dataset is 

demonstrated in the histograms shown in Fig. 6. Dataset 

Pistachio and Animal are binary class dataset while others 

are multiclass. The dataset „Human Action Recognition‟ 

(HAR) is the balanced dataset which means each class have 

equal number of images and dataset „Mango Leaves‟ is the 

most imbalanced while others are near to balanced.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

 
 
 
 
 
 
 
 
 

(e)  

 

C. Experimental Results 

In the first part of experimentation, three clustering 

algorithms: KMeans, GMM and spectral clustering are used 

for feature selection. As expected the results are not satisfied 
so some manifold learning techniques: LLE, Isomap, UMAP 

and PHAT are introduced as a preprocessing step to simple 

clustering for better performance. For different datasets, 

different combination of clustering and manifold learning 

technique provides the best results. Three out of five datasets 

i.e. Animal, HAR and Cards dataset perform better with 

PHAT + Kmeans while for Pistachio dataset, its Isomap + 

Kmeans that performs well. As far as simple clustering 

concerns, spectral behaves a way better than Kmeans and 

GMM for this dataset but when these clustering techniques 

combine with Isomap, Kmeans provide better features. There 

are two most prominent cases where clustering accuracy 
improved remarkably by introducing manifold learning. For 

dataset HAR, it arises from 8.07% to 55.07% while for 

Cards, it elevates from 20.80% to 31.78%. 

In the second phase of experimentation, proposed image 

classification model TLCA is evaluated on the basis of 

accuracy. Its performance is compared with state of the art 

image classification models CNN, LSTM and GRU. Simple 

classification can be further improved by reducing data size 

before processing. 

This data size reduction is basically dimension reduction 

which prevents overfitting and eliminates noise and 
redundancy. Eventually computational cost reduces and 

generalization performance improves. As shown in the table 

III, accuracy level of TLCA for datasets Pistachio, Animal 

and Cards is far better than CNN, LSTM and GRU. The 

accuracy is further improved when feature extraction by 

PHAT is done and the reduced data is used for classification 

by TLCA. For Pistachio it goes from 85.34% to 97.73%. 
 

 

 

 

 

 

 

 

 

 

 

TABLE II 

ADAPTIVE FEATURE SELECTION RESULTS

Dataset Clustering 

Techniques 

Simple 

Clustering 

Clustering with Manifold Learning 

LLE Isomap UMAP PHAT 

Pistachio 

 

KMeans 27.88% 56.37% 64.71% 46.32% 59.21% 

GMM 30.67% 52.54% 31.79% 47.39% 60.24% 
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Spectral 

Clustering 

59.17% 57.54% 37.52% 50.54% 45.85% 

Animal 

 

KMeans 52.17% 50.52% 56.52% 55.07% 56.53% 

GMM 52.37% 50.72% 57.97% 55.24% 50.72% 

Spectral 

Clustering 

50.72% 52.72% 43.47% 53.62% 50.71% 

HAR 

 

KMeans 07.19% 50.72% 43.47% 49.27% 55.07% 

GMM 06.76% 50.73% 42.02% 42.02% 50.72% 

Spectral 

Clustering 

08.07% 47.82% 43.47% 45.45% 50.70% 

Mango 

Leaves 

KMeans 02.08% 02.55% 01.67% 01.68% 03.17% 

GMM 01.80% 01.38% 01.47% 01.85% 01.79% 

Spectral 

Clustering 

1.49% 01.15% 01.43% 02.25% 01.47% 

Cards  KMeans 20.80% 25.51% 16.74% 16.87% 31.78% 

GMM 10.80% 13.86% 14.78% 18.57% 17.92% 

Spectral 

Clustering 

14.09% 11.51% 14.39% 22.50% 14.78% 

For HAR, it improves from 71.43% to 97.97% and for 

dataset Cards, the accuracy raises from 71.71% to 95.65%. 

The results of TLCA with PHAT (HTLCA) are also 

mentioned in the table. 

To evaluate the convergence of TLCA, we show its 

training accuracy and validation accuracy curves in the upper 

half of the Fig 5 for each of 5 datasets and training loss and 

validation loss curves on the lower half of each figure. It can 

be observed from the loss plots of the four datasets, Auto-

GCN converges rapidly within 15 epochs. We first extract 

features then reduce dimensions/features using PHAT and 

then train TLCA offline using the labeled image dataset.  
 

TABLE III 

IMAGE CLASSIFICATION RESULTS 

Dataset Technique Accuracy 

Pistachio 

CNN 83.72% 

LSTM 57.18% 

GRU 58.44% 

TLCA 85.34%  

HTLCA 97.73% 

Animal 

CNN 57.14% 

LSTM 52.73% 

GRU 57.11% 

TLCA 

HTLCA 

58.14% 

60.18% 

HAR 

CNN 78.18% 

LSTM 57.45% 

GRU 58.44% 

TLCA 

HTLCA 

71.43% 

97.97% 

Images of Mango Leaves 

CNN 29.03% 

LSTM 16.94% 

GRU 44.35% 

TLCA 

HTLCA 

25.81%  

16.53% 

Cards Image Dataset 

CNN 20.80% 

LSTM 10.92% 

GRU 11.07% 

TLCA 

HTLCA 

71.71%  

95.65% 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3322147

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

8 VOLUME XX, 2017 

(a) Pistachio         (b) Animal                                                              (c) HAR

(a) Mango Leaves       (b) Cards                  
D. Analysis of Results 

Adaptive feature learning via clustering is introduced in 

the first step of this experiment. It is obvious that feature 

selection can be significantly improved using manifold 

learning techniques. In the second phase of experimentation, 

proposed image classification model TLCA is tested and the 

accuracy is compared with state-of-the-art classification 

models: CNN, LSTM and GRU. The association with 

manifold learning further improves the classification 

performance. Convergence graph for the training/validation 

accuracy and loss of the proposed model shows how it 

behaves; overfit or good fit for different datasets. The results 

show that the technique prevented overfitting as a result of 

small data quantities. Among these models, TLCA achieved 

the best classification performance for the Pistachio and 

Cards image datasets, with an accuracy of 85.34% and 

71.71%. Using PHAT as preprocessing step, increases the 

classification accuracy up to 97.73%, 60.18%, 97.97% and  

95.65% for Pistachio, Animal, HAR and Cards dataset 

respectively. Here are some useful insights observed in 

experimental results.  

For Larger datasets Pistachio, HAR, Mango Leaves and 

Cards, we observe a smooth curve of TLCA accuracy, while 

for dataset „Animal‟, jerks are found. This dataset is about 

100 times smaller than others, so adequate training data is 

required for better model performance. For datasets 

Pistachio, Mango Leaves and Animal, the training accuracy 

and validation accuracy graph line are much closed to each 

other, which depict a very small over fitting of data. It means 

the model is performing well on unseen data. Contrary to 

this, the data is overfitted for the datasets HAR and Cards. 

Accuracy may be compromised for smaller datasets and the 

datasets where data distribution over classes is not balanced. 

For instance, the Animal dataset is small, and for Mango 

Leaves, data distribution over 16 classes is unbalanced. 

 

h  

h
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V. Conclusion and Future work 

Manifold learning is a technique of machine learning and 

data analysis that extracts significant features from high-

dimensional data. Different clustering algorithms have 

different performances on various datasets for feature 

selection. Their accuracies can be enhanced using manifold 

learning techniques i.e. PHAT, UMAP, isomap and LLE. 

The extracted features can also assist in image classification. 

Therefore, feature extraction by manifold learning followed 

by adaptive feature selection or image classification perform 

well that can be depicted by experimental results. Animal, 

HAR and Cards datasets perform better with PHAT followed 

by Kmeans while for Pistachio dataset, its Isomap followed 

by Kmeans that performs well. In the second phase of 

experimentation, proposed image classification model TLCA 

is evaluated, compared with modern classification models: 

CNN, LSTM and GRU and governed the accuracies of 

97.73%, 60.18%, 97.97% and 95.65% for Pistachio, Animal, 

HAR and Cards dataset respectively .  

In future, this research can be extended with dimension 

reduction by autoencoders. As we see, in the results how 

drastically performance accelerated by using manifold 

learning techniques, extra feature reduction can cause lesser 

training times, enhancing or at least retaining the accuracy 

level of feature selection and image classification. Moreover, 

work can be done to resolve data over fitting issue.  
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