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ABSTRACT Under the general trend of smart grid development in China, it has especially importance to 

maintain the stability of power generation, the safety of power operation and the reliability of power supply. 

However, most power plants need to participate in the frequency regulation market and the power spot market, 

resulting in frequent load fluctuations and often unstable operating conditions of power generation equipment. 

In this study, a real-time monitoring method based on a hybrid Genetic Algorithm (GA) and Convolutional 

Neural Networks (CNN) algorithm is utilized to monitor the operation status of power transformers in power 

plants in real time. The GA-CNN algorithm model is proposed by analyzing the advantages and disadvantages 

of CNN and GA. It is proved that the accuracy of the GA-CNN is greatly improved compared with the CNN. 

In the recognition results, the error rate of the GA-CNN is only 1.86%, while that of the CNN is 4%; the 

random matrix accuracy of the predicted and actual output values of the GA-CNN model is 98.11%, and the 

three factors affecting the operating status of the equipment, namely temperature and humidity of the external 

environment and the daily power generation of the power plant, are also acceptable. The model selected for 

this study is able to detect abnormalities in the operating state of power transformers and provide timely 

feedback on changes in the external environment of the equipment. 

INDEX TERMS Convolutional neural network, dissolved gas analysis in oil, genetic algorithm, GA-CNN 

algorithm, real-time online monitoring 

I. INTRODUCTION 

With the increasing complexity of the interconnection 

architecture of China's power grid, any small problem in 

the operation of the power grid may bring serious 

consequences, thus imposing higher requirements on the 

operational aspects of the power grid. In daily production 

operation, real-time monitoring of power transformer (PT) 

operating status is very important [1]. Based on the changes 

of the monitored parameters, timely and targeted 

maintenance of PT is carried out. The existing infrared 

thermography real-time monitoring technology, which is a 

periodic monitoring technology, cannot timely reflect the 

abnormal transformer operating condition, i.e., it is 

impossible to overhaul and maintain the abnormal 

condition [2]. In addition, the Dissolved Gas Analysis 

(DGA) real-time online monitoring method for PT is only 

for a certain period of time and does not provide feedback 

on the environmental parameters in which the transformer 

is operating [3]. To some extent, it brings instability and 

loss of economic efficiency for the operation of power 

plants or grids. In this study, a GA-CNN model is proposed 

to address the shortcomings of existing techniques and to 

combine other influencing parameters external to the 

transformer, such as temperature, humidity, and the daily 

power generation of the power plant. The CNN algorithm 

is utilized to establish a comprehensive real-time 

monitoring model of the operating condition of PT [4]. The 

CNN algorithm is optimized with GA for the problem that 
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the CNN algorithm loses some details, resulting in low 

accuracy. The output of the optimal solution for the 

transformer operating state using the GA is used to raise the 

evaluation accuracy of the operating state of PTs and to 

complete the real-time monitoring of the transformer state 

in power plants [5]. The research includes three main parts. 

The first part illustrates the PT classification, including 

having the body structure of the transformer consists of 

internal and external faults, the faults of the constituent 

structures, and the parts that often produce faults. The 

second part is in the optimized CNN based on GA, and the 

GA-CNN algorithm is proposed. With the decision variable 

encoding as the operation object and the objective function 

value as the search information, the characteristics of multi-

point search are used to reduce the inaccuracy of CNN 

neural network, and then reach to get the global optimal 

solution. The third part is the evaluation and diagnosis of 

PT operation status by GA-CNN algorithm, and the 

feasibility of GA-CNN algorithm and its applicability to PT 

operation in power plants are verified using the data set. 

II. RELATED WORKS 

As the growth of information technology, the usage of smart 

grid technology in daily production and life has gradually 

become more popular and more intelligent in condition 

monitoring, and some experts have carried out many related 

researches in smart condition monitoring technology. Chen Z 

et al. proposed a Temporal Convolutional Network (TCN) 

based RUL prediction model to improve the accuracy of deep 

neural network parameters. The performance of this prediction 

model is validated by C-MAPSS dataset. The outcomes 

showed that the proposed GA-TCN reduced 7.9% to 27.13% 

and 27.87% to 78.69% in assessment indexes of root mean 

square error and score function, respectively [6]. This 

prediction model’s accuracy has been improved to a large 

extent and has practical applications. Kaleli and Akola 

improved the exhaust gas emissions and fuel consumption by 

designing an electromechanical exhaust gas recirculation 

(EGR) cooling system that is different from the conventional 

system. With a grid search method, the hyperparameters of the 

best model were decided. It was proved that the Gaussian 

process regression model outperforms other ML models based 

on the error prediction of NOx and BSFC. Compared with the 

conventional EGR cooling method, this study demonstrated 

that the proposed ML-GA-based system reduced 13.6% 

(NEDC)-9.88% (WLTP) and 2.57% (NEX)-1.89% (WLTP) 

under NEDC and WLTP conditions, respectively [7]. Zhu et 

al. proposed an attention mechanism and GA based LSTM 

model. The structure of the model and data selection 

parameters were optimized by GA, and the time series 

memory and processing capability of the model were utilized 

to predict global horizontal irradiance and direct normal 

irradiance after 5, 10 and 15 minutes. The lab outcomes 

showed that the prediction effectiveness of the model was 

below 19% for all three predicted illumination levels, 

effectively improving the prediction accuracy [8]. Moslemi et 

al. designed a single-legged robot similar to the human leg 

anatomy. To make the simulation more precise, the physical 

characteristics of the environment need to be defined in detail 

and ground contact and friction models need to be developed. 

After this, joint motions are designed and referred to make the 

robot jump in the vertical direction, with toe joint stiffness 

playing a dominant role in the jump height. A GA is then 

applied to optimize the jump height [9]. Xia et al. proposed a 

clutch control strategy to promote the shift quality. The 

strategy well avoids power cycling by analyzing the variation 

of transmission torque and the relationship between the speed 

of the active and driven discs of the shift clutch. Hybrid 

particle swarm optimization with GA solves the problem that 

basic particle swarm optimization often converges to a locally 

optimal solution. Simulation results show that the raised 

control strategy perfectly avoids power cycling during gear 

shifting and improves the shift quality [10]. 

With the development of information technology, 

intelligent algorithms are gradually being used in various 

fields of analysis, providing objective and effective data for 

evaluation and analysis in various fields. Ma Q et al. designed 

a method that combines the discrete wavelet transform (DWT) 

with time-convolutional network and particle swarm 

optimization-based support vector regression. The method 

will use the discrete network wavelet model to decompose the 

traction load into sub-series, and then select the TCN model to 

predict the low and medium frequency series with the 

frequency difference of various series. Experimental results 

show that this method has higher prediction accuracy [11]. 

Ding et al. proposed an algorithm for calculating the degree of 

blade icing, which works out the same points between 

unlabeled data and icing data as labels for the class imbalance 

problem. The final predictions are then obtained by pooling 

the predictions of all temporal convolutional network models. 

Using actual monitoring and data collection which were 

collected from a wind farm in northern China, the raised model 

was proved and the results showed that the algorithm is very 

beneficial for improving the detection accuracy [12]. Vinolin 

and Sucharitha presented a study of deep convolutional neural 

networks based on Taylor rider optimization algorithm for 

detecting spliced images. The aim is to be able to distinguish 

effectively between forged and original images. Among the 

forged images, stitched images involving human faces are a 

great threat to information security. Therefore, this research 

can detect the stitched-out forged images. The results show 

that the maximum accuracy, true positive and negative rates 

of the method for the dataset are 99.23%, 98.96% and 96.67%, 

respectively. The proposed method improves the detection 

accuracy in contrast to the previous methods [13]. 

In summary, the real-time monitoring of PT operating 

parameters of the power plant is critical in daily production 

operations. Due to the fault points in the operation of PTs, it is 

impossible to determine their fault types and fault points in 

time, leading to timely and targeted maintenance of 
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transformers. The GA-CNN algorithm proposed in this study 

can provide timely feedback, which can effectively detect fault 

points, overhaul and maintain them, and improve the 

economic efficiency of production life. 

III. POWER TRANSFORMER CONDITION MONITORING 
MODEL ESTABLISHMENT 

A. FAULT CLASSIFICATION OF POWER 
TRANSFORMERS 

PTs are subject to a variety of faults caused by fluctuations in 

load on the generation side and in the power network during 

long-term operation, as well as by environmental and other 

equipment factors. Screening whether a PT is in operating 

condition requires a comprehensive assessment based on 

multiple factors and cannot be determined from a single point 

of real-time data. Transformers in the power network are in an 

abnormal state, which will cause serious accidents if not 

judged and overhauled in time. The types of PT failures 

occurring are roughly divided into five. The percentage of 

their occurrence is displayed in Table 1. 

TABLE I 

STATISTICS ON THE PROPORTION OF FAULT TYPES IN POWER 

TRANSFORMERS 

Fault Type Number of units proportion 

overheat fault 231 54% 

High energy discharge fault 59 17.93% 

Overheating and high-energy 

discharge faults 
38 10.57% 

Spark discharge fault 23 6.79% 

Damping or partial discharge 9 2.15% 

As can be seen from Table 1, common faults of 

transformers can be classified in three ways. First, the body 

structure of the transformer can be divided into internal faults 

and external faults. Internal faults are manifested as 

abnormalities in the core, insulating oil, magnetic circuit and 

other structural aspects. External faults are manifested as 

phase shorts and ground shorts on the transformer bushing and 

lead-in line. Second, from the transformer's composition 

structure can be divided into winding failure, auxiliary 

equipment failure, filling failure and transformer core failure. 

Finally, from the different parts of the fault generation, it is 

divided into equipment insulation, core insulation, bushing 

faults, and tap changer faults [14]. Among them, overheating 

faults are one of the most common faults that, in addition to 

affecting the daily operation of the transformer, also affect the 

operation of the generator set, thus causing significant 

fluctuations in the power grid, as shown in Figure 1. 

 

FIGURE 1. Power transformer overheat fault. 

 

Figure 1 represents a bushing overheating fault in a PT. The 

overheating of metal parts is caused by the superposition of 

various current interactions such as operating current and 

circulating current generated by the operation of the PT in 

daily operation. In addition, the insulation failure of PT is also 

a common type of fault. PT insulation part of the excellent is 

to determine whether the PT indicators can meet the standard, 

in the long-term operation of the safety. Insulation part of the 

problem, lightly affect the operation of the generator set, 

serious impact on the power plant and the safety of the power 

grid, resulting in great economic losses, as shown in Figure 2. 

 

FIGURE 2. Insulation faults in power transformers. 

 

Figure 2 represents the insulation failure of a PT. 

Temperature, humidity, oil protection and overvoltage are the 

principal issues leading to transformer insulation failure. If a 

PT fails, it is very easy to cause paralysis of the power system 

and affect the normal power supply of the power system, thus 

causing serious economic impact. In addition to the above 

common types of transformer failure, there are other internal 

and external factors caused by the PT failure. Failure to 

perform timely maintenance and repair during prolonged 

operation leads to a reduction in insulation performance and 

increases the risk of transformer failure [15]. The classification 

of PT fault types, as well as the statistics of the types with high 

frequency, provide reliable and effective characteristic 

parameters for this study, which establishes a real-time 

monitoring model of the PT operating condition. 

B. OPTIMIZATION OF CNN NEURAL NETWORKS BY GA 

The most commonly used methods for evaluating the 

operating condition of transformers are infrared thermal 
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imaging temperature measurement and oil chromatography 

analysis by DGA real-time online monitoring devices. 

However, both of them have significant limitations. The 

former is a periodic inspection method, which cannot reflect 

the real-time operating status of the transformer, while the 

latter is a condition assessment of the equipment's interior only, 

which cannot reflect the exterior with other operating 

conditions. Therefore, this study uses a hybrid of GA and 

CNN algorithms for transformer condition assessment. The 

CNN is used to evaluate the transformer operating status, and 

its structure is shown in Figure 3. 

Input
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Pooled

Feature maps Feature maps

Fully-connected 
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Full connectionPoolingConvolutionsPoolingConvolutions

Output

Pooled
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FIGURE 3. CNN network structure. 

 

From Figure 3, CNNs are different from CNNs in that the 

neurons of each layer are prepared in width, height, and depth 

[16]. CNNs mainly consist of two parts, forward extraction 

and backward propagation optimization, and are a multilayer 

perceptron that can mine local features and thus recognize 

images with high accuracy. The algorithm is trained for CNN 

under the condition of that the initial learning rate is 0.01 and 

the formula for its iteration is shown in equation (1). 
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In equation (1), learning_raten+1 is the learning rate of the 

next round and learning_raten is the learning rate of the 

current round. In addition, the error function is the sum of 

squared differences, which is calculated as shown in Eq. (2). 
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In equation (2), loss is the error of the current mini batch, a 

mini batch with B graphs and a total of C nodes, predi
k is the 

coordinates of the node on the ik graph, and labelik is the real 

coordinates of the i node on the k graph. Compared with 

conventional neural networks, it is possible to reduce the 

training parameters and thus the computational cost by sharing 

parameters. The input data is convolved in the convolution 

layer to extract the features, and after moving the convolution 

kernel to obtain different results, the whole feature set is 

finally obtained. The output formula of the 1D convolution is 

shown in equation (3). 

 ( )cn cn cnC f X W b    (3) 

In equation (3), f means the activation function of the 

convolutional layer, X the output data, Wcn the weights of the 

convolutional kernel, and bcn the bias of the convolutional 

kernel. The fully connected layer is considered as a feature 

classifier, usually Soft max classifier, which maps the output 

to a normalized probability distribution and outputs the 

confidence level. The expression is shown in equation (4). 
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In equation (4), k means the amount of classifications and zi 

denotes the output value of the last layer of neurons that are 

not activated. The model needs to be trained to optimize the 

network parameters to prevent the underfitting or overfitting 

phenomenon. The surrogate function is a calculation of the 

error between the predicted result and the actual classification, 

and the cross-entropy loss function is commonly used, whose 

expression is shown in Eq. 

 ( , ) ( ) log ( )
x

H p q p x q x   (5) 

In equation (5), p(x) is the definition of the target 

distribution and q(x) is the definition of the prediction 

distribution. The backpropagation algorithm is the key to the 

optimization of the neural network parameters, which is an 

optimization algorithm update by biasing the objective 

function and then measuring the error between the output and 

the target, i.e., the sensitivity with respect to the parameters, 

and the error calculation formula is shown in equation (6). 
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In equation (6), δl is the error of the target function J to zl . 

Since CNN neural networks lose some details when extracting 

features, there are inaccuracies. In contrast, GA is a kind of 

genetic law that simulates the biological world by imitating the 

biological evolution process. The core of the GA is that the 

optimal individuals are screened in each generation until the 

genetic process is terminated and the optimal individuals in the 

original sample are screened [17]. With the decision variable 

encoding as the operation object and the objective function 

value as the search information, the characteristics of multi-

point search are used to cut down the inaccuracy of the CNN 

and subsequently reach to get the global optimal solution 

(GOS). The algorithm flow is shown in Figure 4. 
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FIGURE 4. GA flowchart. 

 

In Figure 4, algorithm’s core is composed of three parts, 

selection, crossover and variation, and the core parameters are 

parameter encoding, initial population setting, fitness function 

design, operational mode setting and parameter setting for the 

genetic process [18]. In the deriving the GOS using GAs, there 

are different data types, and some of them are not applicable 

to GAs. Therefore, these data types that are not applicable to 

the algorithm are converted to applicable data types by coding. 

In this study binary encoding is used for the encoding setup of 

the algorithm. Assuming that the length of a set of codes has
k  bits, the total number of codes is 2k

, and the formula for 

calculating the true gap between two adjacent codes is shown 

in equation (7). 

 max min

2 1k

U U






 (7) 

In Eq. (7), the gap δ is the precision of this binary code. For 

any binary code, the true solution corresponding to the code 

can be known, and its calculation formula is shown in equation 

(8). 
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In equation (8), X denotes the binary encoding and 𝑋 =
𝑧𝑘𝑧𝑘−1⋯𝑧2𝑧1  is the encoding. Both the binary encoding 

method and decoding method are relatively simple; encoding 

is a discretization of the original data information, and 

decoding is a reverse operation. Due to the small number of 

codes, crossover and mutation operations are relatively 

convenient. In GAs, the degree of adaptation of this scheme in 

the optimization process is evaluated by setting an adaptation 

criterion so that the scheme's has a high degree of adaptability 

[19]. The whole process of the GA is global optimization, so 

the model of the algorithm is divided into two main types, one 

for solving the maximum value and the other for solving the 

minimum value. The formula for the transformation process is 

shown in equation (9). 
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In equation (9), f(x) is the target function value, F(x) is the 

adaptation evaluation function, and Cmin represents a smaller 

number. If the minimum value is solved, the formula of the 

conversion process is shown in Eq. (10). 
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In equation (10), Cmax denotes a larger number. All of the 

above are general expressions of the adaptation evaluation 

function. Individuals with advantageous weights with larger 

values can have a greater probability of participating in the 

next step of the operation. Individuals with disadvantage have 

smaller weight values and can have a smaller probability of 

participating in the next step of the operation, which may also 

eliminate them. Therefore, to increase the probability of the 

dominant individuals to participate in the next step of the 

operation process, a selection operator needs to be designed to 

automatically select the individuals. The formula for 

calculating the probability of each of its individuals to 

participate in the next step of the genetic operation is shown in 

equation (11). 
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In equation (11), D means the population size, Fi means the 

fitness of an individual, and Pi indicates the probability that an 

individual will be chosen to participate in the next genetic 

operation. GAs can solve problems from a global perspective 

and filter the best individuals and search for the dominant 

individuals in the population under a certain degree [20]. Its 

self-learning capability also makes it a better solution for 

complex nonlinear problems. The fitness function of the GA 

can raise the accuracy of the CNN as a way to get the GOS. 

Therefore, the optimization of CNN neural network by GA is 

designed and its basic algorithm flow is shown in Figure 5. 

Feature Extraction Cost Volume Cost Aggregation Disoarity Estimation  

FIGURE 5. GA-CNN algorithm process. 
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For under this algorithm flow, the key parameters setting of 

GA-CNN algorithm and its operation mode are designed as 

follows. Initialize the number within the population as P, set 

the variation probability, weights and the threshold value. The 

individual fitness is calculated, and the formula of its selection 

operator probability is shown in equation (12). 
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f
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f
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To this, the square of the error signal is added and used to 

test the suitable degree value, which is calculated as shown in 

equation (13). 
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In equation (13), i = 1, 2,..., N denotes the amount of 

chromosomes, p = 1, 2,..., l infers the number of learning 

samples, k = 1, 2,..., m means the amount of nodes in the output 

layer, Vk denotes the network output signal, and Tk is the actual 

value. In response to the limitations and inaccuracies of CNN 

neural networks, a GA-CNN algorithm model with GA 

optimized CNN neural network is developed to evaluate the 

operating condition of PTs. 

IV. GA-CNN ALGORITHM TO EVALUATE AND 
DIAGNOSE THE OPERATION STATUS OF POWER 
TRANSFORMERS 

PTs’ operation condition of four units in this power plant was 

evaluated and diagnosed, and the 600 sets of samples involved 

in the network training were normalized and a random number 

matrix was created based on the number of original samples. 

The data were normalized uniformly, while the CNN neural 

network was then initialized and set up. Finally, the following 

results were obtained through the training, learning, and 

testing of the network, and the results are shown in Figure 6. 
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FIGURE 6. CNN neural network training error results. 

 

From Figure 6, the error results of the training sample, the 

learning sample and the test sample are the same at the 

initialization. With the amount of iterations increases, the error 

results of the training samples gradually reduce, and after 6 

iterations, the trend of decreasing error results slows down. 

The error of the test sample also reduce with the rising of the 

amount of iterations, and after 7 iterations, the error results 

tend to level off. However, the error of the overall sample 

verification decreases from the initial to 5 iterations, and tends 

to increase after 5 iterations. And the training of CNN is shown 

in Figure 7. 
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FIGURE 7. Training situation of CNN neural network. 

 

From Figure 7, the training of CNN neural network 

gradually improves with the rising of the number of iterations. 

Among them, the slope shows an overall trend of decreasing 

with the increase of iterations. The validation sample tends to 

be flat before 5 iterations as the number of iterations increases, 

and shows an overall increasing trend after 5 iterations. 

Besides, the regression of CNN training results is shown in 

Figure 8. 
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FIGURE 8. Regression graph of CNN neural network training results. 

 

From Figure 8, the accuracy of the training sample, the test 

sample, and the validation sample are all above 93%, and the 
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accuracy of the full sample data is above 96%. The actual 

output values of the three input samples are acceptable and all 

have some relevance in for the evaluation of the operating 

condition of PTs. The network output values are 0.95986, 

0.95412, 0.93012 and 0.95601, which prove that the input 

sample data of CNN neural network is correlated with the 

operation of PT. However, the inaccuracy of the CNN 

algorithm itself makes its evaluation and analysis of the 

operation status of PTs inaccurate. To improve the accuracy 

of the output results and avoid the local optimal solutions that 

appear in the CNN to realize the GOS, the GA-CNN algorithm 

is used to evaluate and diagnose the operation status of the PT. 

The optimization results of the GA are expressed in Figure 9. 
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FIGURE 9. Trend of error changes in GA-CNN algorithm. 

 

From Figure 9, the error of the GA-CNN is gradually 

decreasing as the amount of iterations raises. At the initial time, 

the error value is 3.71, and the first steady state appears around 

33 iterations. And the error tends to decrease again when the 

iterations reach 60. Until about 67 iterations, the variation of 

the error starts to level off. The training accuracy of GA-CNN 

is promoted in contrast with that of CNN neural network. The 

superiority of the GA-CNN algorithm can also be seen from 

the established random number matrix, the results of which are 

shown in Figure 10. 
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FIGURE 10. GA-CNN algorithm prediction value and actual 
output value matrix. 

 

From Figure 10, the accuracy of the predicted value of the 

GA-CNN with respect to the actual output value is 98.11%. 

The environment’s temperature and humidity throughout the 

operation of the PT and the daily power generation of the 

generator set, the input sample data of these three factors, have 

some correlation on the operating status of the PT. However, 

it can be concluded from the matrix data that these three 

factors affecting the operating state of the equipment are 

acceptable. And the error results between the predicted and 

actual values of GA-CNN algorithm are shown in Figure 11. 
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FIGURE 11. Error between predicted and actual values using 
GA-CNN algorithm. 

 

From Figure 11, it can be seen that in the diagnostic test for 

evaluating the operating condition of PTs, and then combined 

with Figure 10, it can be concluded that the error rate of GA-

CNN algorithm is only 1.86%, while the error rate of CNN 

neural network is 4%. The output accuracy after optimization 

of CNN with GA has a large improvement, and the scheme 

and data of this study are of certain application value. 

V. CONCLUSION 

The importance of real-time monitoring of the operating status 

of PTs in the daily work should not be underestimated. The 

traditional infrared thermal imaging monitoring is a regular 

monitoring method, which is not easy to be found in time 

when the operating condition is abnormal. The DGA real-time 

online monitoring device can detect the abnormal operation 

status in time, but it is not able to do timely feedback on the 

changes of the external environment of the equipment, which 

has certain limitations. The minimum value of convergence 

error is 0.012512. The accuracy of training, testing and 

validation samples is above 93%, and the accuracy of all 

samples is above 96%. The final MSE output of the network 

is 0.012512. However, considering the accuracy of the CNN 

needs to be promoted, this study uses GA to optimize the CNN 

neural network and establishes the GA-CNN algorithm model 
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to evaluate and analyze the operation conditions of PTs. The 

accuracy of the GA-CNN algorithm is improved compared 

with that of the CNN. The accuracy in the random matrix of 

predicted and actual output values of the GA-CNN algorithm 

is 98.11%, and all three factors affecting the operation status 

of the device are acceptable. In the final recognition results, 

the error rate of the GA-CNN algorithm is only 1.86%, while 

the error rate of the CNN neural network is 4%. This shows 

that the optimization of CNN neural network with GA has a 

large improvement in the output accuracy. Although this study 

has provided a more accurate assessment of the operation 

status of PTs, there are still some limitations. For the abnormal 

operation of transformers, how to effectively overhaul and 

improve the efficiency of production work are to be further 

analyzed and studied. 
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