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ABSTRACT In greenhouse tomato cultivation, three primary methods of flower pollination exist:
insect pollination, physical pollination by vibrating flowers, and artificial pollination using hormone-based
chemicals. Insect pollination, the natural method, involves insects (e.g., honeybees) vibrating flowers to
collect pollen and nectar. This paper proposes an alternate approach, using small drones to search and
pollinate flowers in place of bees autonomously. We report field experiments conducted using these drone
technologies. The drone must locate flowers ready for pollination. We developed an artificial intelligence
(AI) image classification system (AI classifier) using machine learning to identify these flowers. Equipped
with an AI classifier, the drone searches for flowers through autonomous flight and positioning technology.
Upon identifying a suitable flower during its search, the drone makes contact to pollinate it. Integrating AI-
based flower detection, autonomous flight control for flower search, and a pollination control device allows
the drone to perform pollination. This study devises these technologies, implements them in a drone, and
evaluates their effectiveness through a pollination experiment.

INDEX TERMS Autonomous drones, Greenhouse tomato cultivation, Pollination methods, pollination, AI
image classification, Flower search, Pollination control device

I. INTRODUCTION

SMART agriculture is an innovative approach that inte-
grates engineering techniques and chemical processes

to optimize agricultural operations and growth. It aims to
reduce labor, improve crop quality, and increase produc-
tion [1]–[4]. The approach uses information and communi-
cation technology, the Internet of Things, and other infor-
mation science technologies to gather data on temperature,
humidity, sunlight hours, soil composition, and other factors
for effective cultivation management. Furthermore, research
on robots assisting in cultivation to save labor is underway.
Robot-assisted cultivation technology has gained significant

attention due to its potential applications in various areas,
such as pesticide application for pest control [5], [6] and
automated crop harvesting [7]–[10]. In [5], a fruit tree pest
identification system using drones is proposed, where a drone
takes pictures of pests, and after determining the location of
the pests, their locations are used to plan a pesticide applica-
tion route. In [8], an unmanned aircraft system called AgriQ
is proposed, in which a drone equipped with a multispectral
image processing system flies to the agricultural field to take
multispectral images and calculate vegetation indices useful
to farmers based on the images. In [9], drones have been
experimented with applying fertilizers and pesticides to rice
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paddies and have been shown to improve the efficiency of
agricultural activities considerably. As these studies show,
robot-assisted cultivation technologies are expected to be
very useful for efficient crop cultivation, but few studies
have addressed robot-assisted pollination [6], [7], [10]. Au-
tomation of the pollination process by robots is an important
technological challenge because no fruit is produced without
pollination.

We developed an autonomous drone-based pollination
system for tomato cultivation. Tomato cultivation has high
demand, as tomatoes rank first in global crop production at
1.8 million tons [11]. Despite their popularity, tomatoes pose
numerous cultivation challenges, one of which is pollination.

A. PROBLEM STATEMENT
Plant pollination involves the production of seeds and fruits
after pollen from the stamen attaches to the pistils. Tomatoes
are "self-pollinated," meaning pollination occurs by shaking
either the same flower or plant. Numerous studies on pollina-
tion are underway [12]–[17]. Greenhouse tomato cultivation
employs three pollination methods: natural pollination by
insects, manual pollination using a vibrating device (e.g., an
electronic toothbrush), as shown in Fig. 1, and artificial pol-
lination using synthetic plant hormones. Insect pollination,
a natural method, relies on insects such as honeybees and
bumblebees, vibrating anthers of flowers to collect pollen,
as shown in Fig. 1(a). However, insects can be difficult to
maintain and manage, and their activity declines at high
temperatures during summer, leading to lower pollination
efficiency. Moreover, there are limitations to using commer-
cial bumblebees in countries such as Japan and Australia
due to ecological risks [16], [18]. Therefore, artificial pol-
lination involving manual flower vibration devices has been
employed, as shown in Fig. 1(b). In this method, workers
visually classify flowers ready for pollination and shake them
using vibrating devices, indicating high labor costs.

Another pollination method uses hormones and plant
growth agents to promote fruit set and growth. Hormone
treatment is useful since it does not require classifying flow-
ers that can be pollinated, and pollination can be performed
easily. Furthermore, inappropriate hormone use may cause
chemical damage and lead to quality problems such as re-
duced fruit shape and taste [19], [20].

B. AIM OF PROPOSED SYSTEM
This paper proposes new pollination methods, as illustrated
in Fig. 2. We developed a system to address the challenges
above in various pollination methods. The proposed method
employs small drones or service robots instead of bees or hu-
mans for pollination. The advantage of using drones instead
of bees is their mobility. Tomatoes for fresh consumption are
cultivated in greenhouses in a controlled environment to grow
upwards, as shown in Fig. 3. Flowers bloom by clusters per
shoot, step by step, and are sequentially fruiting. Therefore,
the height of the flower changes step by step as it grows. The
drone flight is suitable for pollination in a three-dimensional

(a) Pollination by bumblebees

(b) Pollination by manual vibration

FIGURE 1. Conventional general pollination methods.

space, including height. Moreover, when using a ground-
moving robot, it is necessary to build a greenhouse with fixed
rails and a special structure that allows the robot to operate
to overcome the unevenness of the ground. Therefore, drones
that work flexibly are suitable for tomato pollination.

C. METHOD TO RESOLVE PROBLEMS
However, this pollination system presents some limitations
that must be addressed. For instance, drones and robots,
replacing bees and humans, must be capable of searching and
classifying flowers for pollination. Required technologies in-
clude mechanical control for making contact with the flower
to pollinate it and communication technology for remotely
controlling the drone or robot.

The main contributions of this study are as follows:

1) We propose a “search mode” for identifying flowers to
be pollinated. In this flower-search technology, a drone
discovers flowers through autonomous flight. Section
II provides details of the AI classification technology
for searching flowers [21], [22]. Accurate flight po-
sition location technology is required for a drone to
fly autonomously. Therefore, we used motion-capture
schemes for positioning technology [23]–[25]. Robot
operation systems (ROS) were used for drone flight
control [26]–[29]. Therefore, the proposed scheme in-
tegrates positioning and ROS to achieve autonomous
flight control.

2) In the pollination working mode, the drone uses the
same autonomous flight control as in the search mode.
A vibrator device for pollination was developed and
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FIGURE 2. Pollination system configuration using small drones.

FIGURE 3. Flowering and Fruiting Steps.

implemented on the drone allowing it to pollinate flow-
ers effectively during flight.

These two modes were linked as a series of operations,
allowing the drone to perform tasks ranging from flower
search to pollination. Finally, the drone was tested in a
greenhouse tomato field to verify the fruiting rate.

In Section II, we provide an overview of AI classifiers,
review related studies on flight control and positioning tech-
nology, and discuss these problems. In Section III, we present
the details of the technology used for the search and pol-
lination modes. In Section IV, we present the experimental
methods, flight-control accuracy, and effectiveness of the
pollination oscillator. Finally, we conclude the paper and
provide directions for future research in Section V.

II. METHODS COMPARISON AND RELATED WORKS

A. COMPARISON OF POLLINATION METHODS
Table 1 compares the proposed method of pollination of
tomatoes using a drone system against the existing methods
using insects (bees), manual artificial pollination using a
vibrating device, and artificial pollination using synthetic
plant hormones. Table 1 summarizes the pros and cons of
these methods and corresponding related works.

Bee pollination is difficult to maintain because bees are
living organisms that are inactive during high summer tem-
peratures, making them unsuitable for pollination. Further-
more, as mentioned earlier, in some countries, using insects
causes ecological risks. However, bee pollination is similar
to natural pollination, so the hurdle to introducing it is low
and easy to operate.

Manual pollination using vibrating devices is expensive
and requires large numbers of workers during the summer
when bees are inactive. It also requires skill in classifying the
shape of flowers that can be pollinated, which is the biggest
challenge in pollination methods. Despite these shortcom-
ings, the fruiting rate is high because of reliable pollination
by vibrating the flowers.

In contrast, artificial pollination using hormones involves
concerns about the potential for drug-induced damage. When
the insects are used in conjunction, insect damage must also
be considered. Forced hormone pollination also affects the
shape of the tomatoes, making it difficult to maintain quality.
However, artificial pollination is simpler, easier to operate,
and relatively inexpensive compared to manual pollination.

Finally, the proposed pollination method using a drone
system is more expensive to implement than conventional
pollination methods. Moreover, it is a complex technology
with installation and maintenance issues. However, after
installation, pollination is easy, and the reliability and fruit
yield are equivalent to those of bees or manual pollination.
Moreover, additional workers are no longer needed, and farm
managers can reduce the time spent on the farm.

According to Table 1, the proposed method of using
drones has increased costs but offers tremendous benefits
and advantages. Therefore, our study has led to the research
and development of a pollination system using drones. The
technical challenges in pollination using drones and related
works are described below.

B. AI CLASSIFIER FOR FINDING FLOWERS
In prior studies, we developed a technology for classifying
pollable flowers through image analysis using drones [21],
[22]. This classification method was designed using machine
learning with a convolutional neural network algorithm [30],
[31], popular for image analysis. It was developed as an
AI classifier and modified for drone implementation as an
elemental technology for the proposed pollination system.
Fig. 4 illustrates the tomato flower transition from bud to
bloom and fruit. Shape (a) represents a bud, whereas tomato
fruits appear after shape (f). The fruiting rate of tomatoes
was verified, and the flower shape enabling pollination was
determined to be (d) with petals turned back. The exper-
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TABLE 1. Pros and cons of pollination methods.

Method Pros Cons Related works
Pollination by insects
(Bees)

• Cultivation close to natural pollination
• Conventional accustomed operations

• Difficult to maintain and manage insect
• Decreased activity during high summer

temperatures, i.e., lower pollination effi-
ciency

• Ecological risks

Ref. [12]–[14]

Pollination through man-
ual using a vibrating de-
vice

• High pollination accuracy • Worker flower classification skill require-
ments

• Time-limited mass employment and
worker costs

Ref. [15]–[17]

Pollination using synthetic
plant hormones

• Easy Pollination Methods • Use of inappropriate hormones can cause
chemical damage

• Decrease in fruit shape and taste (Quality
problems)

Ref. [19], [20]

Pollination using drone
systems

• Easy Pollination Methods
• High pollination accuracy
• No need to secure workers
• Reduction of farmer’s work hours

• High cost of implementing new systems
• Installation and maintenance of existing

fields

Ref. [21], [22]

(a) (b) (c) (d) (e) (f)

Flower bud
Pollination 
possible shape Fruit

FIGURE 4. Flowering process.

iment results confirmed that the flower shape (d) enabled
pollination. The AI image classifier identified shape (d) from
the captured image. Additionally, drone sway and vibra-
tions caused by robot’s movement affect images captured by
drones and robots.

To simulate image blurring, a Gaussian filter was used
to smooth the images for additional learning opportunities.
The evaluation results obtained using the AI classification
algorithm are shown in Fig. 5. The vertical and horizontal
axes represent the accuracy rate (%) and the number of
epochs, respectively. The solid and dashed lines represent
the validation accuracy (val_accuracy) and training accuracy
(accuracy), respectively. The evaluation results show that the
number of epochs converged after eight, and the validation
accuracy is 87.3%.

In Fig. 6, the horizontal axis displays the accuracy rate of
shape (d) calculated using the AI classifier, and the vertical
axis shows the fruiting rate. When the AI classifier accuracy
rate is below 70%, the fruit set rate is approximately 40%;
however, when the accuracy rate is above 70%, the fruit set
rate exceeds 60%. These results indicate that pollination was
generally successful when the AI classifier output accuracy
was 70%. Therefore, we set the AI classifier threshold value
to at least 70% as the value enabling pollination and imple-
mented it in the drone developed in this study.
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FIGURE 5. Learning result.

C. DRONE POSITIONING
Drone flight-control techniques can be classified into outdoor
and indoor positioning techniques. The global navigation
satellite system (GNSS) is the most used method for outdoor
drone flight positioning. Various methods are employed by
satellites to obtain high positioning accuracy. To achieve this,
we acquired multiple position information and calculated the
relative positions [32]–[34]. Additionally, instead of posi-
tioning based on signals from satellites, the wavelength of the
received waveform is used to attain high positioning accuracy
with an error of a few centimeters. This approach, known as
interferometric positioning, involves satellites and ground-
based reference stations for correction in conjunction with
interferometric positioning. Moreover, RTK-GNSS provides
real-time high-precision positioning for autonomous vehicles
moving at high speeds along arbitrary routes [35], [36].

However, when using GNSS, it is essential to receive
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FIGURE 6. Threshold of accuracy rate obtained from fruit setting rate.

satellite signals reliably. In this study, we assumed tomato
flowers would be pollinated in a greenhouse field; therefore,
it was improbable that sufficient satellite signals would be
received. Satellite positioning is the most popular drone
positioning and flight-control system for outdoor use, and
many related technologies and support systems are available
to the public. However, positioning technology for drones
in enclosed spaces, such as indoors, is less common. Fur-
thermore, technologies and support systems related to flight
control in conjunction with positioning technologies are less
widely available than those for outdoor flights.

Common indoor positioning technologies include wireless
local area networks and beacon systems [37]–[39]. These
methods use the strength of the received power and the
arrival time of wireless devices for positioning. However, in
greenhouse fields, stems and leaves often interfere with radio
waves, making highly accurate positioning difficult. Addi-
tionally, a wireless device for transmitting positioning signals
must be mounted on a small drone. A small drone, which
imitates a bee, should carry a little load to reduce power
consumption, and the power for the positioning signal should
be minimized. Another method is simultaneous localization
and mapping, where a sensor mounted on a moving vehicle
detects feature points in the environment and estimates its
position by referring to registered map information [40]–
[42]. It is unsuitable for greenhouses, where the shape of
tomatoes changes as they grow. Additionally, mounting a
sensor device on a drone poses the same payload and power
consumption problems as wireless devices. The positioning
accuracy ranges from several to tens of meters, and the
positioning range is limited to only a few meters.

In this study, we used motion-capture technology with
infrared cameras, considering the related problems [43]–
[46]. Motion capture is an image positioning technique that
employs triangulation techniques, with positioning accuracy
ranging from a few millimeters to centimeters and a position-
ing range of several tens of meters. Therefore, it provides suf-
ficient performance for drone flight control over a wide area

with complex greenhouse geometries. The motion-capture
system has the following features in terms of operation and
functionality:

#1 High-precision, non-contact, multi-point measurements
#2 Ease of operation
#3 Flexibility in designing a system for each object (camera

arrangement device)

The signal strength can be ignored owing to radio noise
or interference, and no dedicated device is mounted on the
drone; thus, it provides advantages over other systems in
payload and power savings. In related research, this tech-
nology has been employed to analyze body movements and
study high-precision indoor autonomous flights [47], [48].
Specifically, an infrared camera was installed outside the
flight range, and multiple cameras simultaneously observed
the reflections from an optical marker attached to the air-
craft for positioning. Optical markers are lightweight, which
solves the problem of drone payloads, and do not require a
signal to be transmitted, thus eliminating power consumption
by the drone.

D. FLIGHT CONTROL AND ROS

A robot software platform called ROS is commonly used
for drone flight control [26]. In this study, we implemented
a specialized drone flight-control system using ROS. ROS
is an application development support tool and software
for robot control. It is a middleware that runs on a Unix-
based OS and provides libraries for developing and executing
robot application programs, such as data transmission and
reception between multiple pieces of hardware, scheduling,
and error handling. ROS uses nodes that are subdivided by
function and purpose to increase program reusability. Nodes
are the smallest processes implemented in ROS. The nodes
communicate with each other through messages and data ex-
changes. There are two models for message communication:
service type and publisher (Pub)/ subscriber (Sub) type.

1) Service Type
As depicted in Fig. 7(a), the service type operates
once a client wants to start, end, or execute a specific
command. This method comprises a client that requests
and a server that responds; the client determines if
the request is successful. Therefore, the service type is
a one-to-one synchronous communication, responding
only when a request is received and disconnecting
when the communication is over, thus minimizing the
network load. For example, it is used when a robot
performs a predetermined action or when a special
event occurs under certain conditions.

2) Pub/Sub Type
As depicted in Fig. 7(b), the Pub/Sub type operates by
sending data called Topics to a Pub node and receiving
the data from a Sub node. This method can control
multiple robots because it involves simultaneous one-
to-many asynchronous communications.
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FIGURE 7. Message communication method.

This study used the Pub/Sub type as a control technol-
ogy for the ROS because it allows multiple drones to
search for flowers simultaneously.

III. PROPOSAL AND CONFIGURATION OF
POLLINATION SYSTEM
To develop a pollination system using small drones, we
proposed an overall system configuration as illustrated in
Fig. 8(a). The proposed system divides drone flight control
into search and pollination working modes.

The rationale behind using two distinct modes is that
searching for flowers is time-consuming and necessitates
simultaneous control of multiple drones. For the pollination
process, a different drone is used instead of the search drone.
This is due to the separation of functions, allowing the polli-
nation drone to directly move to the location of the identified
flowers and perform pollination tasks. The payload of the
pollination drone is heavier than that of the search drone, as
it is equipped with a vibrator for pollination. Despite these
differences, the same positioning and flight-control methods
are employed for both types of drones.

In this study, motion-capture technology using an Opt-
Track infrared camera was used to position a drone within a
greenhouse environment [49]. Multiple infrared cameras can
detect reflective markers attached to the drones and compute
their 3D coordinates. After determining the drone coordi-
nates, it moves to the next coordinate to search for flowers. As
depicted in Fig. 8(a), the flight-control node notifies the drone
of its destination using the Launch command within the ROS
library. This notification, called a Topic, is a predefined ROS
function. The flight-control node acts as the publisher, and
the subscriber drones receive notifications of the Topic. The
ROS was pre-programmed to guide drones around tomato
seedlings using the random waypoint method [50], directing
them to fly to coordinates calculated by this method. More
advanced search methods can also be efficiently implemented

using swarm intelligence algorithms such as particle swarm
optimization, ant colony optimization, and artificial bee
colony [50]. These tasks can be effectively executed [51]–
[53]. However, because the primary goal of this study is
to verify the proposed method through implementation, the
random waypoint method, which is simple to implement, was
chosen. Detailed description of the search method is provided
ahead in this paper, whereas the implementation of swarm
intelligence algorithms will be the focus of future studies.

For the flower-search process, illustrated in Fig. 8(b), each
drone is equipped with an ultra-compact camera that captures
flower image data while in flight and transmits it to the
AI classifier via the flight-control node. In this scenario,
the drones act as the publisher and the flight-control node
serves as the subscriber. AI classification has been exten-
sively discussed in related studies on image coverage and
quality [21], [22]. The AI classifier supplies the flight-control
node with the flower locations suitable for pollination based
on classification results. Following the search process, the AI
system enters the pollination mode. The flight-control node
supplies the specialized drone with the coordinates of the
flowers that can be pollinated, along with flight instructions,
and the drone performs the pollination task. As depicted in
Fig. 9, the AI determiner during search mode only lists the
flower coordinates suitable for pollination in the database
and transfers these coordinates to the pollination working
mode. In search mode, a Crazyflie2.1 [54] from Bitcraze was
employed as an ultra-compact drone.

For the pollination working mode, we used a modified
Tello [55] from Ryze Tech. Crazyflie2.1 is a palm-sized
drone with dimensions of 92 mm width, 92 mm depth, 29 mm
height, and 38 g weight (Fig. 10(a)). This drone is equipped
with a camera for capturing images, a Wi-Fi module, and a
marker frame for motion capture. The camera mounted on the
drone has the same angle of view range and resolution as that
used in the AI classifier [21]. In contrast, Tello has dimen-
sions of 98 mm width, 92.5 mm depth, 41 mm height, and 80
g weight (Fig. 10 (b)). It employs a drone with a larger pay-
load capacity to accommodate the pollinator required for the
pollination working mode. The search and pollination drones
are equipped with four markers that reflect the infrared light
emitted by the camera. Two or more cameras are used to
locate the reflected light and calculate the center of gravity
and marker coordinates. The search drone was also equipped
with a camera for taking pictures of flowers. The image data
and flight instruction information were transmitted via Wi-
Fi. The onboard pollinator features a vibrating machine in
the pollination working mode, as illustrated in Fig. 10(b). A
detailed description of the vibrating machine is provided in
the preceding section.

IV. EXPERIMENTAL CONFIGURATION AND
PERFORMANCE EVALUATION
The proposed system was implemented on drones, and its
performance was evaluated through flight experiments in a
tomato field. A frame with an infrared camera was con-
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FIGURE 8. Configuration of pollination system.

structed in the tomato field, as illustrated in Fig. 11. The
frame spanned the pathway and had a width (W) of 2 m,
depth (L) of 3 m, and height (H) of 2 m. The flight range
of the drone was within the frame. Fig. 12 illustrates the
experimental configuration with the installed frame and in-
frared camera. In the search mode, the drone used the ran-
dom waypoint method to search for flowers, which involved
flying around the tomato trunk. A computer simulation was
performed to evaluate the efficiency of the proposed search
mode in identifying flowers, as depicted in Fig. 14.

As shown in Fig. 14(a), five flower positions (red points)
were arbitrarily set at random, and a single drone moved
through space along a horizontal axis of 1 m and vertical
axis of 2 m using the random waypoint method. An average
of 1000 simulations and random flower placements were
conducted. When a drone flew within 0.1 m of a flower,
assumed to be the image range of the camera mounted on the
drone, its position was recorded in the database. The opera-
tion illustrated in Fig. 14(a) represents the all-search phase.
Because only the approximate flower location is determined
in this phase, the system transitions to the detailed search
phase, as depicted in Fig. 14(b). In the detailed search phase,

the system flies back and forth at 0.05 m intervals within a
0.3 m square around the flower locations identified in the all-
search phase. During this flight, the system outputs 1 for the
correct flag and coordinates when a flower is found and 0
otherwise. After completing the detailed search phase within
the flight range, the center point of the coordinate that outputs
1 is determined, which is estimated to be the exact flower
coordinates. Simultaneously, the AI classifier classified flow-
ers. The search concluded after a detailed search of all flower
locations found during all-search phases.

These flight operations are described by the flowchart
in Fig. 13. First, the flight is initiated using the random
waypoint. The flight control node instructs the takeoff. Next,
a randomly selected first flight coordinate point is determined
within the flight range of Fig. 14(a). The flight is divided
into 10 segments up to that coordinate. This division method
stabilizes the flight speed to move accurately from the start
to the destination coordinate point. The flight instructions are
issued to these calculated route coordinates. Next, we deter-
mine if the current coordinates are the final destination of the
10 segmented coordinates. If not, the process is repeated until
the destination is reached. The drone repeats this operation
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for a certain period. Although we can determine the flight
method based on distance and not time, the flight time was
set to 5 min considering the drone’s battery capacity. These
actions represent a rough search of the entire tomato trunk.

After completing the full search, the drone transitions to
the detailed search operation. Detailed search computes the
paths to search around the coordinates listed in the database
in full search. The calculated paths are traversed back and
forth as shown in Fig. 14(b) to determine if the search for the
detailed search range has been completed. When this search
range is finished, a detailed search is performed around the
next listed coordinate. The all-search mode is terminated by
issuing a landing instruction after all detailed search points
listed are completed.

Once the takeoff command is issued, these procedures are
automatically executed as a series of operations. The drone
can fly autonomously without human intervention or the need
to input commands as necessary.

Fig. 15 displays the results of evaluating the accuracy

H
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Motion 
capture Flight 

controller 

AI classifier 

HUB

FIGURE 11. Frame with an infrared camera.

of flower location estimation using the search mode. The
horizontal axis represents the distance of the estimation error,
ranging from 0 to less than 10 mm, from 10 to less than 20
mm, and up to less than 60 mm. The vertical axis represents
the cumulative results within the error range of the correct
coordinates. The error ranges were approximately 37% for
less than 10 mm, 24% for less than 20 mm, and 17% for
less than 30 mm, with an overall error of approximately
80% within 30 mm. Correcting the flower positions in the
pollination work mode was necessary for the error range to
be nearly the same for drone implementation. A pollination
vibrator was developed to address this.

Fig. 16(a) highlights the vibrator used for pollination. The
vibrator consists of a T-shaped bar, the connection part of
which is vibrated using a motor. The T-shaped part has a
margin with a spring inserted to provide a movable range
of motion when in contact with the flower, as depicted in
Fig. 16(b). For instance, the T-shaped bar compensates for
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FIGURE 12. Experimental configuration.
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the coordinate error in the flower position because it makes
contact with the surface. The width of the top surface of the
T shape is 55 mm, considering a margin based on an error
range of 30 mm within 80% of the simulation results. The
T-shaped connection length is 130 mm, which is the distance
at which the drone’s propeller would not come into contact
with the leaves or trunk of the tomato plant. The weight of
the pollination vibrator, including the battery, is 15 g, and the
power consumption is 3.7 V at 81 mA. An optical sensor is
attached to the upper surface of the T shape, and the vibrator
automatically vibrates when in contact with the flower. The
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optical sensor is wirelessly connected to the flight-control
node. If the flower detection is incorrect or the T junction
cannot contact the flower, the sensor does not send a contact
signal to the flight-control node. Then, the algorithm aborts
the pollination process, moves to another flower location,
and resumes pollination. Fig. 17 illustrates an experimental
scenario of search and pollination in the field.

Finally, the performance of the pollination vibrator was
verified By evaluating the fruiting rate when performing
pollination using the proposed vibrator (Prop. Vibrator),
bumblebees, and hormone treatments. The fruiting rate was
defined as the percentage of pollinated flowers that became
fruit. A pollination vibrator was used to vibrate the petiole
for approximately 5 s on 200 flower clusters. The fruiting
rates of the bumblebees are shown in Fig. 18(a). There is
no significant difference between the fruiting rate of the
bumblebees and that of the proposed pollination vibrator. The
hormone treatment resulted in a slightly lower fruiting rate,
confirming the superiority of physical vibration.
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These results demonstrate the effectiveness of the pro-
posed pollination vibrator. The shape of the tomato fruits
after fruit setting was also compared, as shown in Fig. 18 (a).
The upper and lower rows show the shape of the fruit after
treatment with the hormone and proposed pollination vibra-
tor, respectively. Although this was a subjective evaluation, it
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FIGURE 18. Fruit setting and fruit quality.

was confirmed that the shape obtained using the pollination
vibrator was close to a circle and of high quality. However,
the results are not absolute as they vary depending on the
outside air conditions and other factors. Therefore, future
work will continue the verification process by conducting
quantitative evaluations under uniform conditions such as
ambient air.

V. CONCLUSIONS
We developed small drones as a substitute for bees to au-
tonomously fly, search for flowers, and pollinate the dis-
covered flowers. We also reported the experimental results
using these drones. The drones were developed with flower-
searching and pollination working modes. For the pollination
working mode, we proposed a vibration machine with a
structure designed to account for errors in the position of
flowers detected in the search mode. The proposed system
was validated through experiments and successfully imple-
mented as an autonomous system that performs tasks ranging
from flower search to pollination. The findings of this study
can serve as a reference for future robot-assisted cultivation
methods and systems.

However, the proposed system assumes that the field is
currently in operation, which may limit operational condi-
tions and cultivation efficiency. Robot and drone technologies
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are improving rapidly, and low-priced aircraft will become
commonplace. Therefore, replacing bees with the proposed
drone pollination system will contribute to smart agriculture.
However, this experiment was conducted in a limited and
restricted area, which is insufficient for operation in a large
field. Challenges for practical application include short flight
time due to the limited battery capacity of the drones, battery
charge management for smooth operation, and service life
and cost-effectiveness. However, this study aims to establish
a drone control technology that autonomously searches for
flowers and automatically pollinates them. In contrast, op-
erational issues are obstacles that must be addressed for the
system to be marketed as a service and commercialized as a
product. We leave these issues for future work.

In addition, changes in illumination may reduce the clas-
sification accuracy of the AI classifier. For example, when
experiments were conducted in the field from morning to
evening, classification accuracy was reduced in some cases
due to the amount and angle of sunlight in the greenhouse.
Therefore, the time of day and weather conditions during
which the drones search for the best flowers will be discussed
in future work.

Based on these findings, we plan to expand this research
by proposing a new cultivation method, preparing fields with
environments suitable for drones and robots, and suggesting
alternative cultivation techniques and approaches. This will
help develop more efficient and adaptable robotic systems for
agricultural applications.

SUPPLEMENTARY MATERIAL
Demonstration experiments of the drone bee system in a
laboratory and tomato field in a greenhouse is available
as supplementary video material. This video also can be
viewed on YouTube at https://www.youtube.com/watch?v=
OVtBr70ExWw
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