
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Deep learning model-based demand
forecasting for secondary water supply
in residential communities: A Case
Study of Shanghai City, China
DALI LI1, QINGWEN FU.3
1Division of Asset and Laboratory Management,Shanghai Normal University, Shanghai200234,China
2College of Information,Mechanical and Electrical Engineering,Shanghai Normal University, Shanghai200234,China

Corresponding author: Dali Li (e-mail: darly_lee@163.com).

ABSTRACT To promote intelligent water services and accelerate the water industry’s modernization
process, accurately predicting regional residents’ water demand and reducing energy consumption for
secondary water supply is a major challenge for scientific scheduling and efficient management of urban
water supply. This paper proposes a deep learning-based approach for demand forecasting in residential
communities. The approach first identifies and corrects outliers in raw water supply data, and incorporates
additional features such as epidemics and meteorological information. A long and short time Transformer
model (LTMFormer) is then proposed, combining the recursive mechanism of the LSTM model and the
parallel mechanism of the Transformer to achieve parallel output in the long-time series modeling task,
improving both the prediction length and accuracy of the model. We evaluate our model on a metering
dataset of 20 cells in Shanghai and compare it to traditional deep-learning models. Our experimental results
demonstrate that the proposed model outperforms other deep learning models, achieving MSE, RMSE, and
MAE scores of 3.337, 4.536, and 1.848 respectively on the test set. These results provide a theoretical and
technical basis for further safeguarding public water health and meeting the growing demand for better
urban water management.

INDEX TERMS Water demand prediction; outlier identification; LSTM model; Transformer model; deep
learning

I. INTRODUCTION

In recent years, with the rapid development of urbaniza-
tion and continuous population growth, the construction of
residential communities has increasingly become a primary
focus of urban planning [1-2]. Alongside this, the fast-paced
development of urban water supply systems has made sec-
ondary water supply technology a vital means to enhance
the quality of tap water and improve the living standards
of residents. Throughout this process, accurately forecasting
secondary water supply demand in residential communities
has become an essential issue. Currently, traditional predic-
tion methods rely on experience and statistical models, which
possess certain limitations and shortcomings. However, with
the constant progress and integration of deep learning tech-
nology in recent years, predicting secondary water supply
demand in residential communities based on deep learning

models have been introduced into the research field. By
training deep learning algorithms on historical data, future
demand for secondary water supply can be more precisely
predicted, leading to better community water supply effi-
ciency and optimized water supply plans. Therefore, this
paper aims to explore the prediction method and application
prospects of secondary water supply demand in residential
communities based on deep learning models. Against this
backdrop, attention towards the rational utilization and pro-
tection of water resources has intensified, and the develop-
ment and application of secondary water supply technology
have garnered increasing attention from governments and
citizens alike.

Water demand forecasting is a topic of widespread re-
search globally. In recent times, machine learning algorithms
have gained popularity in this area. For instance, Hipni, Liu,

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and Msiza [3-4] employed support vector machines (SVM)
for water demand forecasting. Similarly, ARIMA models
have been utilized for urban water demand prediction [5-
8]. Random Forest (RF) was used by M Kumar et al [9]
to solve the problem. Artificial neural networks have also
been refined to handle the nonlinear feature-fitting issue in
water demand forecasting. Although machine learning-based
models have exhibited greater progress than statistical-based
methods in water demand forecasting, the shallow structure
of classical machine learning models may not be as effective
in predicting water demand series with complex data and
long histories.

Recently, rapid advances in deep learning have led to the
emergence of various deep learning-based models that have
revolutionized water demand prediction. For example, Xu et
al [10] employed a continuous deep belief neural network
(CDBNN) model based on chaos theory for urban water
demand prediction, which outperformed feedforward neural
networks, support vector regression, and generalized regres-
sion neural networks. Meanwhile, Jun Guo [11] developed
a novel hybrid model for urban water demand prediction
using temporal convolutional neural networks (TCN), dis-
crete wavelet transform (DWT), and random forest (RF).
The experimental outcomes suggest that this model is highly
effective in predicting urban water demand.

With the continuous development of technology, Trans-
former [12] has been gradually applied in various fields.
Initially utilized in natural language processing for machine
translation tasks, the Transformer model has evolved to en-
compass BERT [13] language models, as well as the Vision
Transformer [14], which has found applications in computer
vision. The Transformer model’s powerful feature extraction
capability has been demonstrated across all these areas.
However, in the time series prediction field, all compared
baselines use autoregressive prediction, which inevitably
generates error accumulation effects. The multi-headed self-
attentive mechanism is the primary driving force behind the
Transformer architecture, endowed with remarkable abilities
to extract semantic correlations between pairs of elements in
long sequences (e.g., words in text or 2D patches in images).
This process is alignment invariant, meaning that it is not af-
fected by order changes. However, in time series analysis, we
are mainly concerned with modeling the temporal dynamics
between a set of consecutive points, where the order itself
often exerts significant influence.

When it comes to long-term feature extraction, LSTMs
[15] represent the input sequence they learn as a state vector
before moving on to future tokens. Although LSTMs solve
the gradient vanishing problem, they are still prone to gra-
dient explosion and cannot parallelize output. On the other
hand, the Transformer has higher bandwidth. For example,
in the Encoder-Decoder Transformer model, the Decoder can
directly process each token in the input sequence, including
those already decoded. However, since the complexity of the
attention mechanism grows exponentially with the sequence
length, it is not well-suited for handling long-term tasks.

Bao et al.[16] applied a hybrid LSTM and autoencoder
model to process financial time series data and demonstrated
the good performance of this hybrid model. Andayani et al.
[17] used a hybrid LSTM and Transformer model to learn
long-term dependencies in speech signals and perform sen-
timent classification. Delgado-Santos et al. [18] proposed a
hybrid LSTM and Transformer model for temporal modeling
and natural language prediction in behavioral biometrics.
These studies indicate that the hybrid LSTM and Transformer
model is a versatile and effective approach that can be used
for sequential data modeling across different domains, par-
ticularly in scenarios involving time series data [19-20].

Building upon the theoretical foundations and relevant
issues discussed above, this paper proposes a Long-Term
Memory Transformer (LTMFormer) which leverages the
unique recursive structure of LSTM to enable long-term
sequence prediction for water supply demand while being
read in parallel. Specifically, the contributions of this paper
are as follows.

1) We effectively combine LSTM neural network and
Transformer architecture for the first time and use them
in the field of urban water supply prediction. Our pro-
posed approach leverages the strengths of both models
to address the challenges of predicting water demand
in urban areas, particularly in fast-growing cities like
Shanghai. By doing so, we offer a novel solution that
improves the accuracy and robustness of existing deep
learning-based methods.

2) We have conducted case experiments with the ac-
tual smart meter dataset in some neighborhoods in
Shanghai, and the experimental results show that the
proposed model is ahead of traditional deep learn-
ing models in all indexes. The empirical evaluation
demonstrates the effectiveness and practicality of our
approach in real-world settings. By comparing the
performance of our proposed model with several state-
of-the-art baselines, we show that it achieves superior
performance in terms of accuracy, efficiency, and scal-
ability. These findings suggest that our proposed model
has significant potential for wider adoption in the field
of urban water resource management.

3) This paper organically combines deep learning tech-
nology and urban water consumption prediction prob-
lem, providing a new solution idea for this field. By
integrating deep learning techniques with the problem
of predicting water demand in urban areas, we offer
a fresh perspective on the challenges and opportuni-
ties of using artificial intelligence to manage water
resources more effectively. Our research contributes
to the growing body of literature on data-driven ap-
proaches to urban water management, paving the way
for further research and development in this field. In
summary, our study offers a valuable contribution to
the academic community by showcasing the potential
of deep learning for addressing complex environmental

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

challenges.

II. DATA AND DATA PROCESSING
A. DATA INTRODUCTION
To predict water demand, we utilized a deep learning model
that incorporated external factors such as weather data,
COVID-19 case numbers, and sensor data from major in-
tersections. The specific sources of these data were the
China Meteorological Data Sharing Service for weather data,
the Shanghai Municipal Health Commission website for
COVID-19 case numbers, and sensors installed at major
intersections for daily interval flows and hourly interval
flows. Additionally, we obtained water supply data from
actual water consumption data desensitized in a residential
district in Shanghai, as well as historical readings of every 5-
minute interval, hourly flow rate readings, and daily flow rate
readings of the flow meters installed behind the secondary
water supply pumps in the same residential district. Finally,
we obtained total meter readings of the smart water meters
in the residential district through a big data platform. The
specific data are described as follows:

(1) Daily interval traffic dataset
The daily interval traffic dataset in this paper provides a

visual presentation of the data, as shown in Figure 1. This
dataset includes cumulative water flow from a specific time
point to the previous time point, which is referred to as
interval flow. However, due to infrequent meter readings,
anomalous values with large intervals were observed in the
training set but not in the test set. The dataset consists of 6
cells (01-06) with consistent coding among several tables.
The interval flows for cells 01 to 06 are represented by
flow_1, flow_2, ..., and flow_6, respectively. This dataset
provides daily interval flows as described below. Note that
some folds in the graphs may be interrupted at certain points,
so default values may need to be processed subsequently. As
shown in Figure 1, the line graph displays the daily interval
traffic dataset.

(2) Hourly interval traffic dataset
The hourly interval traffic dataset provided in this paper

is presented in Figure 2. For observation purposes, we visu-
alized the hourly interval volume data for four of the cells,
as shown in Figure 3. This dataset contains outliers such as
missing values, as well as very large and very small values.

(3) Every 5-minute interval traffic dataset This dataset
provides the interval traffic per 5 minutes, which is shown in
Figure 4, and we visualize it.

(4) Shanghai weather data
This data provides information on the weather condi-

tions in Shanghai and can be utilized as input features for
enhancing features. It includes various parameters such as
precipitation (R) measured in 0.1 mm, wind direction (fx)
measured in degrees, temperature (T) measured in degrees
Celsius, relative humidity (U), wind speed (fs) measured in
0.1 m/s, visibility (V) measured in meters, and barometric
pressure (P) measured in hectopascals. These parameters are
depicted in Figure 5.

(5) Shanghai epidemic data
This dataset provides epidemic data for Shanghai and

includes parameters such as the number of severe cases (zz),
the number of critical cases (wz), the number of confirmed
cases (xzqz), the number of new discharges (xzcy), the num-
ber of new deaths (xzsw), the number of people currently
receiving isolation treatment (glzl), and the number of peo-
ple under medical observation (yxgc). These parameters are
depicted in Figure 6.

B. DATA PROCESSING METHODS
(1) Data pre-processing

Based on the above graphs, it can be observed that the
data contains abnormal values such as NaN (Not a Number)
values, negative values, abnormally large values, and so on.
Therefore, we performed the following data processing steps
to clean up the data:

• To address the issues highlighted in the above findings,
we adopted the following data preprocessing strategy:
negative and abnormal values were set as null values,
and then the original null values together with those
newly set were filled.

• The null values were identified by simulating the normal
distribution of the data. Specifically, values greater than
90% of the data were considered as high, while those
less than 90% were regarded as low. The threshold
values were calculated based on the high and low values,
and all values exceeding the thresholds were marked
as null. This approach helps to eliminate great outliers
observed in the original data, leading to much smaller
standard deviation. However, it also resulted in a con-
siderable increase in the number of null values.

• For filling the null values, we employed a strategy that
preserves the mean and variance of the original data as
closely as possible. We used the data from the same
moment of the previous/next day to fill the missing
values based on our understanding of the data compo-
sition. In cases where there was no available data for the
previous/next day, we fixed the null values to zero.

(2) Training set, test set construction In this study, we
constructed the time series training set based on the process
outlined in Figure 7. We adopted a segmented training ap-
proach that followed the following basic rules:

• Training set 1 can be used to predict test set 1.
• Training sets 1, 2, and 3 can be used to predict test set 3.
• Semi-supervised learning can be used to predict test set

2 using training set 1, test set 1, and training set 2.
• It is forbidden to use training set 3 to predict test sets 1

and 2.
In terms of analyzing the specific data, the training set part

contains a total of 5736 hours of recorded data, and the test
set part has a total of 672 hours of recorded data, which
are divided into four segments, each segment is 168 data
for 7 days, and its various time segments are [2022-05-01
01:00:00 ∼ 2022-05-08 00:00:00], [2022-06-01 01:00:00 ∼

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

daily_dataset

time flow_1 flow_2 flow_3 flow_4 flow_5 flow_6 train or test

2020-01-12 1430.1 518.1 1602.6 1064.7 142.5 2032.2 train

2020-01-13 1925.7 727.9 1601.2 1096.3 141.9 2000.4 train

2020-01-14 1469.2 512.2 1596.6 1108.3 142.7 1979.2 train

2020-01-15 992.5 307.7 976.5 680.8 90.4 1154.5 train

2020-01-16 1447.0 514.2 1532.4 1057.9 153.4 1853.7 train

2020-01-17 1515.6 527.4 1578.9 1092.2 181.7 1957.1 train

2020-01-18 1414.9 487.4 1434.0 1056.2 152.3 1780.2 train

2020-01-19 1417.4 481.7 1399.9 1013.3 123.0 1908.2 train

2020-01-20 1484.7 496.9 1371.5 1012.5 116.0 1807.4 train

2020-01-21 1396.3 458.8 1341.0 1038.4 111.3 1659.5 train

2020-01-22 1454.2 479.4 1379.8 1047.9 114.9 1638.5 train

2020-01-23 1467.5 497.1 1375.7 1036.1 108.6 1771.3 train

2020-01-24 1236.3 377.6 1090.1 785.8 83.1 1342.1 train

2020-01-25 1209.9 366.0 1030.4 726.8 77.6 1159.1 train

2020-01-26 1297.9 402.0 1133.5 866.1 91.4 1362.9 train

2020-01-27 1294.8 419.6 1178.8 910.8 90.3 1443.1 train

2020-01-28 1335.4 431.4 1245.6 948.4 96.3 1544.9 train

2020-01-29 1401.5 449.5 1292.3 920.2 103.7 1637.8 train

2020-01-30 1368.3 453.5 1296.6 931.0 105.5 1741.2 train

2020-01-31 1390.1 461.5 1323.7 953.9 106.7 1888.7 train

2020-02-01 1489.8 459.0 1384.8 954.0 111.1 1800.3 train

2020-02-02 1389.0 471.4 1326.2 951.4 113.1 1707.4 train

2020-02-03 1389.3 451.1 1297.1 935.3 110.8 1630.0 train

2020-02-04 1401.3 449.4 1307.1 930.3 109.3 1622.0 train

2020-02-05 1432.0 467.3 1323.3 975.8 110.9 1647.5 train

2020-02-06 1531.2 474.4 1334.9 972.9 111.3 1646.0 train

2020-02-07 1509.8 480.8 1353.1 991.8 115.9 1698.7 train

2020-02-08 1549.6 480.0 1339.3 981.6 112.5 1693.8 train

2020-02-09 1526.0 478.6 1337.6 992.0 119.2 1774.5 train

2020-02-10 1478.5 459.5 1310.2 977.3 114.7 1643.0 train

2020-02-11 1561.0 485.0 1342.2 984.9 121.0 1684.0 train

2020-02-12 1466.8 457.7 1314.3 973.9 116.7 1626.3 train

2020-02-13 1567.5 468.8 1344.1 970.9 118.3 1655.2 train

2020-02-14 1524.2 484.3 1366.5 1007.0 126.0 1710.3 train

0.0

3500.0

7000.0

10500.0

14000.0

2020-01-12 2020-03-19 2020-05-25 2020-07-31 2020-10-06 2020-12-12 2021-02-17 2021-04-25 2021-07-01 2021-09-06 2021-11-12 2022-01-18 2022-03-26 2022-06-01 2022-08-07

flow_1 flow_2 flow_3 flow_4 flow_5 flow_6

1

FIGURE 1. Line graph of daily interval traffic data set.

hourly_dataset_preprocessed

time flow_1flow_2flow_3flow_4flow_5flow_6flow_7flow_8flow_9flow_10flow_11flow_12flow_13flow_14flow_15flow_16flow_17flow_18flow_19flow_20train or test

0 2022-01-01 01:00:0029.714.654.740.13.049.710.91.15.01.3385.62.9141.73.21.33.56.82.9021.8061.4train

1 2022-01-01 02:00:0021.99.038.027.72.430.26.40.42.60.8743.61.1081.32.20.82.34.52.2693.8470.8train

2 2022-01-01 03:00:0016.94.528.922.91.319.73.80.51.40.5981.70.7720.61.50.61.12.41.0550.5680.5train

3 2022-01-01 04:00:0014.33.225.520.01.515.42.70.41.20.2651.10.4140.21.20.70.81.80.6770.2840.2train

4 2022-01-01 05:00:0014.93.526.420.61.217.52.20.51.20.4160.90.2790.81.10.40.91.90.8910.4830.3train

5 2022-01-01 06:00:0022.36.231.427.52.029.73.80.72.50.8661.51.060.90.90.91.63.41.5720.8111.3train

6 2022-01-01 07:00:0036.515.257.250.06.171.112.72.26.42.2994.82.711.52.01.93.96.85.2322.8062.8train

7 2022-01-01 08:00:0051.027.084.671.28.596.723.83.611.44.2377.74.1323.04.14.25.312.49.3444.843.0train

8 2022-01-01 09:00:0061.030.4103.278.710.0125.227.73.513.65.56210.15.4023.24.84.18.016.010.3445.9444.2train

9 2022-01-01 10:00:0059.128.296.468.19.3121.827.73.911.75.0169.05.3883.33.93.28.113.910.1284.744.5train

102022-01-01 11:00:0054.526.093.358.68.9114.324.24.110.64.3778.75.1942.84.83.17.812.89.5845.3383.8train

112022-01-01 12:00:0049.322.381.849.37.598.618.83.07.94.2237.95.8323.24.42.56.612.07.7524.3943.5train

122022-01-01 13:00:0046.819.074.946.75.686.415.61.87.53.2676.83.8923.33.53.05.710.37.2243.3642.8train

132022-01-01 14:00:0037.615.464.027.14.168.412.22.06.22.5144.32.62.12.42.04.77.45.1762.762.2train

142022-01-01 15:00:0035.213.862.831.34.663.410.72.04.91.953.81.9422.32.62.04.67.05.4722.3722.2train

152022-01-01 16:00:0036.114.664.533.14.166.511.21.75.72.0843.92.4422.12.52.54.57.55.7322.6262.0train

162022-01-01 17:00:0043.417.776.952.05.282.715.52.68.32.7246.03.2682.42.63.06.38.96.4282.692.7train

172022-01-01 18:00:0046.122.078.060.16.390.918.42.98.23.0497.53.5043.43.63.06.410.57.0243.1963.4train

182022-01-01 19:00:0048.523.579.562.45.797.419.93.19.33.3537.93.522.63.92.96.911.38.6083.8283.0train

192022-01-01 20:00:0059.630.493.055.47.1116.123.43.89.93.7938.75.1523.65.63.58.512.410.2124.2023.5train

202022-01-01 21:00:0071.539.1116.680.210.6154.633.44.813.85.311.66.4884.36.14.510.417.414.0485.5944.0train

212022-01-01 22:00:0071.645.4126.081.012.0163.435.84.616.07.0715.08.4125.48.14.79.718.914.5647.2444.8train

222022-01-01 23:00:0064.037.9106.596.17.7127.026.63.812.76.1213.57.3644.96.64.28.716.011.0724.723.5train

232022-01-02 00:00:0038.921.171.056.64.471.316.01.86.93.1878.83.9083.22.72.35.89.56.3842.4922.7train

242022-01-02 01:00:0025.49.341.925.83.137.56.50.82.61.5143.41.2241.41.21.23.05.02.9021.3621.1train

252022-01-02 02:00:0016.34.431.716.62.024.13.00.41.30.9121.60.8321.30.40.61.82.92.2690.6770.9train

262022-01-02 03:00:0012.23.826.714.31.618.72.70.41.30.1851.90.5250.30.30.71.22.31.0550.5680.5train

272022-01-02 04:00:0012.43.525.613.11.216.02.00.21.20.3540.90.2150.30.20.60.71.40.6770.2840.2train

282022-01-02 05:00:0016.13.526.713.91.517.71.90.51.00.1511.00.2230.20.20.80.91.70.8910.4830.1train

292022-01-02 06:00:0020.14.834.218.02.928.34.00.72.10.5441.81.2311.00.51.41.62.51.5720.8111.4train

302022-01-02 07:00:0036.215.955.240.44.567.211.01.76.51.8974.12.4761.61.71.93.66.84.2442.122.2train

312022-01-02 08:00:0052.826.987.362.17.6110.221.44.110.73.8477.95.0042.43.83.47.111.77.6044.3683.6train

322022-01-02 09:00:0062.629.0102.171.610.8133.626.93.912.34.9399.55.4383.45.03.97.413.610.325.4965.0train

332022-01-02 10:00:0061.829.1101.568.09.9129.226.54.012.04.70410.55.3984.54.53.88.814.928.8245.044.8train

342022-01-02 11:00:0059.029.398.463.39.6120.223.73.610.55.219.44.9964.54.33.38.514.69.5844.3924.1train

352022-01-02 12:00:0052.825.689.057.37.7105.522.03.69.34.4979.79.1923.84.03.36.911.87.7524.6563.3train

362022-01-02 13:00:0047.420.479.147.46.494.819.12.28.02.7986.93.8924.33.42.56.010.87.4563.6762.9train

372022-01-02 14:00:0036.620.167.629.64.979.013.81.75.43.1274.62.63.02.11.84.08.714.5642.7782.5train

382022-01-02 15:00:0032.614.262.331.84.370.711.71.74.32.1523.62.0982.51.91.83.07.95.4722.351.8train

392022-01-02 16:00:0039.615.167.636.84.174.212.82.15.97.6454.92.5462.12.11.93.78.25.7322.6041.9train

402022-01-02 17:00:0045.821.477.655.25.189.016.42.77.42.7246.63.0162.53.02.14.48.45.9283.082.3train

412022-01-02 18:00:0048.123.684.162.16.894.419.72.99.23.0497.011.6742.43.13.07.29.97.6762.9483.5train

422022-01-02 19:00:0053.625.488.665.87.3106.322.33.49.63.2277.83.523.03.73.76.511.08.7923.4882.6train

432022-01-02 20:00:0064.032.498.659.39.2122.924.74.111.03.79310.35.1523.94.83.88.814.910.2124.3523.5train

442022-01-02 21:00:0070.640.3119.178.210.9165.236.85.413.85.312.47.0544.77.34.611.219.214.0486.1523.8train

452022-01-02 22:00:00116.047.5131.479.812.0168.637.45.816.87.0714.69.3365.87.95.511.719.614.5647.2443.8train

462022-01-02 23:00:0063.736.4106.095.99.3121.727.14.312.76.94312.56.9045.24.93.68.614.711.0724.723.8train

472022-01-03 00:00:0039.319.868.661.14.969.315.01.95.23.0827.43.7482.63.73.24.99.56.3842.4922.4train

482022-01-03 01:00:0024.18.743.123.72.937.27.31.02.81.2983.31.0931.32.51.63.14.44.7921.2141.3train

492022-01-03 02:00:0017.75.631.016.01.722.83.30.21.70.5531.60.6720.60.51.01.82.92.8320.6730.6train

502022-01-03 03:00:0013.14.526.912.91.218.01.90.21.40.3420.90.2960.50.30.70.91.21.5760.4380.2train

512022-01-03 04:00:0013.43.624.111.01.215.61.40.11.10.1870.70.2450.40.10.41.01.21.110.4940.3train

522022-01-03 05:00:0016.13.924.313.11.317.62.10.60.90.1110.90.2530.30.40.41.01.20.9020.4150.3train

532022-01-03 06:00:0023.66.333.722.22.030.74.20.82.80.8341.70.8280.90.80.91.73.41.8591.0151.4train

542022-01-03 07:00:0038.917.261.342.74.671.512.41.77.62.5174.73.2141.72.02.34.07.74.4881.9152.1train

552022-01-03 08:00:0055.426.090.262.13.4113.220.74.010.93.9747.25.122.33.63.46.611.48.3324.6662.8train

562022-01-03 09:00:0062.630.6105.371.29.6131.226.84.913.74.9859.46.3442.84.73.88.214.010.1084.854.0train

572022-01-03 10:00:0062.630.9102.466.810.0129.625.03.510.05.2279.05.3523.84.32.88.114.29.6684.9443.4train

582022-01-03 11:00:0060.827.997.260.19.4117.022.33.09.34.6458.54.7783.44.64.07.514.48.8684.2523.3train

592022-01-03 12:00:0055.825.489.153.88.1106.919.12.710.43.9148.63.913.64.13.77.512.38.123.2883.6train

602022-01-03 13:00:0045.620.880.445.66.589.616.02.38.72.9097.12.8542.43.32.55.810.57.083.352.8train

612022-01-03 14:00:0036.318.268.630.54.676.114.21.55.52.1986.52.162.42.52.34.38.75.0883.2182.1train

622022-01-03 15:00:0035.415.464.033.14.275.014.61.35.61.7775.11.7262.82.01.93.76.84.7442.3461.4train

632022-01-03 16:00:0039.117.167.735.85.182.715.01.87.12.7124.92.3082.62.22.35.08.15.4523.562.1train

642022-01-03 17:00:0048.220.581.757.36.995.219.03.29.63.2376.73.4162.42.82.66.310.87.1363.2662.4train

652022-01-03 18:00:0054.424.889.769.07.6108.323.03.610.03.638.24.4563.93.63.67.612.48.9363.8942.9train

662022-01-03 19:00:0062.230.799.076.18.4123.426.73.310.73.9759.86.013.35.03.89.214.310.3484.6983.4train

672022-01-03 20:00:0069.440.9118.673.310.3158.434.45.914.86.94811.77.45.06.44.711.818.013.8526.064.8train

682022-01-03 21:00:0072.849.3142.385.112.0194.044.76.421.28.45515.59.5586.08.95.714.424.018.0687.9366.2train

692022-01-03 22:00:0071.646.3133.078.512.3162.234.75.415.16.97217.19.1126.56.86.311.723.416.9168.3925.2train

702022-01-03 23:00:0053.031.697.885.76.7101.623.83.29.54.01410.75.3324.55.53.78.614.710.9724.3883.6train

712022-01-04 00:00:0035.615.755.964.84.151.612.21.43.42.1675.83.2682.53.31.94.96.75.861.5982.3train

722022-01-04 01:00:0022.07.733.423.22.127.55.20.52.10.8753.21.8620.81.11.33.02.82.50.6060.8train

732022-01-04 02:00:0017.35.228.314.21.319.02.90.21.40.2361.70.7430.60.10.61.52.01.0370.3020.5train

742022-01-04 03:00:0016.33.924.911.01.214.91.50.41.40.1480.90.4750.50.20.81.21.00.8590.4040.4train

752022-01-04 04:00:0016.72.623.611.01.114.11.70.30.90.131.62.980.10.21.11.30.90.760.1910.3train

762022-01-04 05:00:0020.54.524.914.51.518.92.40.61.30.2661.40.2530.30.31.61.81.50.9050.3660.5train

772022-01-04 06:00:0035.012.147.238.94.357.211.81.86.41.6363.40.8281.61.73.13.85.33.8521.6512.2train

782022-01-04 07:00:0053.627.589.466.18.4118.824.63.712.44.428.35.153.04.73.97.713.79.1085.1863.6train

792022-01-04 08:00:0053.427.597.066.77.3127.123.13.610.15.2439.25.8163.24.03.56.213.69.8165.04.0train

802022-01-04 09:00:0053.327.894.766.37.3119.019.52.39.13.6628.15.2923.53.83.44.411.77.4723.8823.6train

812022-01-04 10:00:0053.323.183.252.18.2108.318.82.28.63.186.05.0942.42.52.94.710.77.1882.7883.2train

822022-01-04 11:00:0051.621.875.249.98.8100.016.32.67.73.7326.73.842.92.62.44.59.47.282.753.9train

832022-01-04 12:00:0045.720.173.547.95.093.814.92.27.62.8145.83.6263.62.42.64.69.26.1081.9123.8train

842022-01-04 13:00:0036.117.263.938.44.470.612.61.66.11.3394.13.7322.52.41.94.07.25.6562.2522.9train

852022-01-04 14:00:0030.511.452.024.33.857.78.71.14.01.5753.32.2281.91.11.52.55.43.0242.2722.0train

862022-01-04 15:00:0032.913.357.625.43.960.510.10.83.40.9823.01.321.71.11.12.65.33.082.0541.9train

872022-01-04 16:00:0035.514.467.530.54.266.010.41.25.41.2893.21.8081.71.21.62.64.73.6481.9042.3train

882022-01-04 17:00:0041.918.574.446.04.783.113.32.06.42.5095.42.7361.82.31.73.76.65.2322.6162.8train

892022-01-04 18:00:0049.523.185.363.06.299.717.22.69.63.0567.14.0663.23.32.86.29.76.723.252.9train

902022-01-04 19:00:0057.029.192.874.17.2114.023.12.710.03.4068.64.2823.83.83.98.312.18.9844.3683.2train

912022-01-04 20:00:0067.035.6112.367.99.5142.128.23.812.65.86811.66.0564.75.44.410.616.413.6245.7884.4train

922022-01-04 21:00:0073.751.8135.384.413.4190.641.55.917.27.76814.28.8564.97.74.914.521.915.6726.8245.8train

932022-01-04 22:00:00147.550.0135.379.011.9169.539.75.418.57.93616.09.2766.37.96.312.923.316.7127.635.3train

942022-01-04 23:00:0056.931.3104.390.76.8110.026.23.49.84.85210.95.8523.66.03.68.616.611.5924.8523.4train

952022-01-05 00:00:0034.516.758.366.14.054.911.31.24.56.4045.97.7962.43.42.74.47.515.5956.7341.8train

962022-01-05 01:00:0023.78.035.319.82.528.14.60.61.60.8752.11.8621.31.32.01.63.52.50.6061.2train

972022-01-05 02:00:0019.05.228.413.91.818.42.80.11.80.2361.70.7430.70.20.61.51.21.0370.3020.3train

982022-01-05 03:00:0017.34.926.012.01.016.01.70.31.30.1480.90.4750.40.20.70.71.10.8590.4040.3train

992022-01-05 04:00:0016.93.224.711.71.516.21.70.20.70.130.52.980.20.20.60.70.60.760.1910.1train

1002022-01-05 05:00:0019.13.925.915.21.720.22.20.61.20.2661.10.2530.30.30.81.11.50.9050.3660.3train

1012022-01-05 06:00:0033.412.049.438.24.255.810.91.75.61.6363.70.8281.71.92.23.95.83.8521.6511.8train

1022022-01-05 07:00:0051.127.286.061.28.3114.422.24.211.23.9117.86.0342.94.23.57.513.58.6484.2684.0train

1032022-01-05 08:00:0053.229.399.869.85.8112.023.63.510.04.118.96.0662.74.74.06.014.110.7285.1784.2train

1042022-01-05 09:00:0052.826.898.262.47.2111.018.23.38.73.0278.04.5963.43.12.85.912.29.3363.673.1train

1052022-01-05 10:00:0053.624.583.148.56.096.516.21.47.83.6936.73.2323.02.92.45.09.57.6842.722.9train

1062022-01-05 11:00:0050.421.875.346.56.394.514.52.17.32.8336.53.012.83.32.34.39.16.9162.4723.5train

1072022-01-05 12:00:0048.621.573.946.26.091.614.31.86.92.2516.13.552.52.62.44.58.55.6522.3023.1train

1082022-01-05 13:00:0042.517.764.838.93.770.610.91.65.21.474.62.5781.92.11.63.46.14.51.9582.4train

1092022-01-05 14:00:0036.013.054.223.93.358.28.11.13.61.1923.52.5942.31.21.72.34.63.041.3432.0train

1102022-01-05 15:00:0036.014.053.830.62.866.47.21.24.21.2522.41.8821.81.41.32.54.93.161.4561.9train

1112022-01-05 16:00:0041.014.557.334.63.569.39.61.45.01.2943.41.5461.71.51.42.35.014.4161.6462.2train

1122022-01-05 17:00:0046.918.870.346.24.683.412.92.07.02.0765.42.2442.82.01.64.28.15.2322.592.5train

0

75

150

225

300

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310

time flow_1 flow_2 flow_3 flow_4 flow_5 flow_6 flow_7 flow_8 flow_9 flow_10 flow_11 flow_12 flow_13 flow_14 flow_15 flow_16 flow_17 flow_18
flow_19 flow_20

￼1

FIGURE 2. Line graph of hourly interval flow data set.

FIGURE 3. Visual display of four plots

per5min_dataset

timeflow_1flow_2flow_3flow_4flow_5flow_6flow_7flow_8flow_9flow_10flow_11flow_12flow_13flow_14flow_15flow_16flow_17flow_18flow_19flow_20train or test

2022-01-01 00:05:003.81.96.57.40.5 1.70.30.70.2640.80.4280.20.50.20.61.018.3790.2520.3train

2022-01-01 00:10:003.71.76.57.50.77.31.90.20.70.3270.60.3560.30.50.30.70.8 0.2320.4train

2022-01-01 00:15:003.72.06.36.90.67.51.90.30.70.3760.50.2920.20.70.40.61.0 0.220.2train

2022-01-01 00:20:003.32.56.36.50.57.01.70.20.50.3270.50.340.20.70.30.51.0 0.2580.4train

2022-01-01 00:25:003.52.46.46.40.76.81.50.20.60.3170.70.4960.30.50.30.40.9 0.2380.3train

2022-01-01 00:30:003.42.26.07.10.66.61.50.10.60.3140.60.4820.30.40.20.51.0 0.3040.4train

2022-01-01 00:35:003.12.25.67.10.46.61.40.10.70.2750.60.3080.30.40.20.50.8 0.340.3train

2022-01-01 00:40:003.02.45.66.60.66.41.40.20.60.2420.60.2320.30.30.20.60.8 0.2860.2train

2022-01-01 00:45:003.02.45.45.80.55.81.40.10.60.2920.40.2820.20.30.20.50.9 0.2260.4train

2022-01-01 00:50:003.12.05.64.70.46.01.40.20.70.2430.50.230.20.30.30.60.8 0.1680.2train

2022-01-01 00:55:003.82.26.75.00.66.71.20.10.50.20.50.1880.30.30.10.50.8 0.1520.2train

2022-01-01 01:00:002.21.24.53.30.34.50.70.20.50.1360.60.220.10.20.10.30.7 0.2220.1train

2022-01-01 01:05:002.81.65.14.00.25.41.10.10.50.1570.50.210.20.30.20.30.6 0.320.2train

2022-01-01 01:10:002.81.65.43.80.34.81.00.10.50.1320.50.2140.20.30.10.30.5 0.1680.2train

2022-01-01 01:15:002.81.45.03.60.34.51.00.20.40.0580.60.390.20.30.10.40.5 0.1040.2train

2022-01-01 01:20:002.41.34.73.20.44.30.90.10.50.0690.60.2880.10.30.10.30.7 0.1780.1train

2022-01-01 01:25:002.11.44.73.10.34.21.00.00.40.1660.60.3160.20.30.10.40.5 0.1760.1train

2022-01-01 01:30:002.31.34.63.30.34.20.90.10.50.1640.40.3340.10.20.00.30.5 0.1380.1train

2022-01-01 01:35:002.41.34.43.20.33.81.10.10.40.1010.40.2620.10.40.20.20.5 0.1260.1train

2022-01-01 01:40:002.40.94.33.20.23.40.90.10.40.0430.30.2060.10.30.10.30.6 0.0880.1train

2022-01-01 01:45:002.20.84.03.00.13.40.90.10.30.0530.30.1840.20.20.10.30.7 0.1180.1train

2022-01-01 01:50:002.30.83.82.80.13.10.60.00.20.0930.40.1620.10.20.20.20.6 0.1020.1train

2022-01-01 01:55:003.01.04.23.60.24.10.80.00.40.1660.40.1280.10.20.00.20.4 0.0660.0train

2022-01-01 02:00:002.00.63.22.40.22.40.60.10.40.1410.50.0960.10.20.10.30.4 0.0580.0train

2022-01-01 02:05:001.91.13.62.50.22.80.60.00.20.0930.30.10.10.20.10.20.4 0.1240.1train

2022-01-01 02:10:002.01.03.22.30.23.00.60.00.30.1120.30.0280.10.30.00.10.4 2.7790.1train

2022-01-01 02:15:002.00.83.02.40.22.70.60.10.30.0820.20.0880.10.20.10.30.4 0.1train

2022-01-01 02:20:001.80.73.22.40.22.50.60.00.20.0440.50.140.20.30.10.20.4 0.0train

2022-01-01 02:25:002.00.83.12.30.32.80.60.00.20.060.30.0760.00.20.10.30.3 0.1train

2022-01-01 02:30:001.80.73.32.30.32.60.60.10.30.0440.30.1120.20.10.10.10.3 0.0train

2022-01-01 02:35:001.90.53.22.20.32.40.40.00.20.0580.20.090.10.10.00.20.5 0.1train

2022-01-01 02:40:001.60.73.12.10.12.30.40.10.20.0930.20.0980.10.20.10.10.4 0.1train

2022-01-01 02:45:001.70.83.12.10.12.30.40.00.10.1270.20.1080.10.10.00.20.5 0.1train

2022-01-01 02:50:001.30.72.92.20.12.10.50.00.10.0080.30.0840.10.20.00.20.3 0.0train

2022-01-01 02:55:001.90.63.12.50.22.30.50.00.10.0120.30.0880.10.10.10.10.2 0.1train

2022-01-01 03:00:001.10.42.41.60.01.60.40.00.20.0160.10.1160.00.10.10.10.3 0.0train

2022-01-01 03:05:001.50.62.52.00.11.70.30.00.10.0320.20.1060.10.10.00.20.2 0.1train

2022-01-01 03:10:001.60.52.72.00.21.80.30.10.20.0470.10.1020.00.20.00.10.2 0.1train

2022-01-01 03:15:001.40.42.71.90.11.70.40.00.10.0880.20.0720.10.10.10.10.2 0.0train

2022-01-01 03:20:001.40.32.62.00.11.80.20.10.20.0660.20.0520.10.10.00.00.1 0.1train

2022-01-01 03:25:001.60.52.41.80.11.60.20.00.10.0960.20.0360.00.20.10.10.2 0.0train

2022-01-01 03:30:001.50.32.52.20.11.90.30.00.20.110.20.0340.10.10.10.00.1 0.0train

2022-01-01 03:35:001.30.32.11.80.11.60.30.10.00.0570.10.0320.00.20.00.10.3 0.1train

2022-01-01 03:40:001.20.32.11.90.11.60.40.00.10.0350.10.0220.10.10.00.10.1 0.0train

2022-01-01 03:45:001.40.32.01.80.11.50.40.10.10.0320.10.0380.00.10.10.10.3 0.1train

2022-01-01 03:50:001.40.22.31.60.11.30.30.10.10.0080.10.0380.00.10.10.10.2 0.0train

2022-01-01 03:55:001.50.42.62.30.21.60.30.00.00.0110.10.1240.10.10.00.10.2 0.0train

2022-01-01 04:00:001.00.21.71.40.10.90.30.00.10.00.10.0760.00.20.10.10.3 0.1train

2022-01-01 04:05:001.30.32.11.70.01.20.30.00.10.0120.10.0140.00.10.00.10.2 0.0train

2022-01-01 04:10:001.30.42.01.70.11.30.20.00.20.0270.20.0160.00.10.10.10.1 0.0train

2022-01-01 04:15:001.30.22.21.60.11.30.20.10.00.0140.10.010.00.10.00.10.1 0.0train

2022-01-01 04:20:001.20.12.11.80.21.40.20.00.20.0490.20.010.10.10.00.00.1 0.0train

2022-01-01 04:25:001.40.32.21.80.11.40.30.00.10.0780.10.060.00.00.10.00.1 0.0train

2022-01-01 04:30:001.10.32.01.60.21.40.20.10.00.0120.10.0380.10.10.10.10.1 0.0train

2022-01-01 04:35:001.00.22.41.50.11.40.20.00.10.0120.00.0360.00.10.10.10.1 0.0train

2022-01-01 04:40:001.00.42.11.60.21.20.30.00.10.0020.00.0140.00.10.00.10.2 0.0train

2022-01-01 04:45:001.30.12.21.70.01.20.10.10.10.0240.10.0460.00.10.10.00.2 0.1train

2022-01-01 04:50:001.20.42.11.70.21.20.20.00.00.0080.10.040.00.10.10.00.1 0.0train

2022-01-01 04:55:001.20.32.41.90.21.50.20.10.20.0270.00.0540.00.10.00.10.2 0.0train

2022-01-01 05:00:000.90.21.61.20.01.00.20.00.00.0380.10.0280.10.10.10.00.2 0.0train

2022-01-01 05:05:001.30.22.41.60.21.10.20.00.20.0350.10.0340.00.10.00.00.1 0.1train

2022-01-01 05:10:000.80.32.31.90.11.20.20.10.00.0490.00.0240.10.10.00.10.1 0.0train

2022-01-01 05:15:001.60.12.01.60.11.20.10.00.10.0650.10.0060.10.10.10.10.2 0.0train

2022-01-01 05:20:001.20.22.11.70.11.40.20.00.10.0830.10.0280.10.10.00.10.2 0.0train

2022-01-01 05:25:001.10.32.01.60.11.60.20.10.10.0320.10.0420.00.10.10.10.1 0.0train

2022-01-01 05:30:001.10.42.11.70.11.50.20.00.10.0010.00.00.10.10.00.00.2 0.1train

2022-01-01 05:35:001.20.32.11.80.11.50.10.10.10.0130.10.0220.00.10.00.20.1 0.0train

2022-01-01 05:40:001.20.32.41.90.11.50.20.00.10.0150.10.0180.20.10.00.10.2 0.0train

2022-01-01 05:45:001.50.42.31.60.11.50.10.10.10.0110.10.0360.00.00.10.10.1 0.0train

2022-01-01 05:50:001.50.42.31.70.11.60.20.00.10.0660.00.0180.10.10.00.00.3 0.1train

2022-01-01 05:55:001.50.42.82.30.12.40.30.10.20.0080.10.0230.00.10.00.10.1 0.0train

2022-01-01 06:00:000.90.21.81.50.11.50.20.00.20.0440.10.0380.00.10.10.10.2 0.1train

2022-01-01 06:05:001.20.42.31.90.11.90.20.10.20.0540.10.030.10.00.10.10.2 0.1train

2022-01-01 06:10:001.90.62.31.80.12.20.30.10.10.0910.10.0160.10.10.00.00.20.1560.040.1train

2022-01-01 06:15:002.00.32.12.20.22.00.30.00.20.0720.10.0380.10.00.10.10.20.180.070.1train

2022-01-01 06:20:002.10.52.62.10.12.20.30.10.10.050.00.0560.10.10.10.10.30.1960.1050.1train

2022-01-01 06:25:001.70.52.82.20.12.30.20.10.10.0850.00.040.10.00.10.20.20.1160.0630.2train

2022-01-01 06:30:001.60.42.52.10.22.50.30.00.10.110.10.0360.10.10.10.10.30.1360.0660.0train

2022-01-01 06:35:001.90.42.62.30.12.50.30.00.20.0350.20.1240.10.10.00.20.20.1840.0740.2train

2022-01-01 06:40:002.00.52.82.40.22.60.40.10.20.0550.30.1020.10.10.10.10.40.1440.1340.0train

2022-01-01 06:45:002.10.53.02.70.22.90.30.10.30.0940.10.2140.00.10.10.20.50.1870.0720.1train

2022-01-01 06:50:002.30.92.82.80.32.90.40.10.30.0430.20.2580.00.00.00.20.30.1680.090.1train

2022-01-01 06:55:002.61.03.83.50.34.20.60.00.50.1330.20.1080.10.20.10.20.40.2440.1720.2train

2022-01-01 07:00:001.70.82.72.60.23.10.40.10.40.0920.30.0980.00.10.10.20.40.2480.230.2train

2022-01-01 07:05:002.51.03.93.50.44.41.00.10.40.1560.30.2120.10.10.10.20.40.360.1560.1train

2022-01-01 07:10:002.81.03.83.40.54.80.90.20.60.1550.30.3360.10.10.10.20.40.3480.2080.2train

2022-01-01 07:15:002.80.94.23.60.54.61.00.20.50.1780.40.2520.10.10.20.30.50.260.1380.2train

2022-01-01 07:20:003.31.24.64.00.45.51.00.10.40.1710.30.1940.20.10.10.40.50.3280.180.3train

2022-01-01 07:25:002.91.24.64.00.55.70.90.10.60.1730.40.3260.20.10.10.30.60.5120.2060.3train

2022-01-01 07:30:002.71.04.64.40.66.41.00.20.60.2060.50.2720.20.20.10.30.60.4720.210.2train

2022-01-01 07:35:003.01.44.84.50.56.91.20.30.50.130.40.2920.10.20.20.40.80.4720.2420.3train

2022-01-01 07:40:003.11.65.24.50.66.71.20.30.50.2110.40.2040.10.20.20.30.60.440.2880.2train

2022-01-01 07:45:003.41.65.64.70.67.21.20.20.40.220.60.150.10.30.30.50.70.4640.1960.3train

2022-01-01 07:50:003.91.65.64.90.57.41.30.20.70.40.50.1220.10.20.20.30.60.7520.3280.3train

2022-01-01 07:55:004.41.97.65.90.88.41.60.20.80.2070.40.2520.20.30.20.50.70.5760.4240.2train

2022-01-01 08:00:002.91.64.64.10.46.21.30.40.70.3470.40.260.10.30.30.30.80.7120.3160.2train

2022-01-01 08:05:003.42.26.35.40.67.51.60.20.60.3060.60.3560.20.20.20.41.00.5680.2180.1train

2022-01-01 08:10:003.92.46.45.50.77.71.70.30.90.2620.60.4720.30.30.20.31.10.720.3120.3train

2022-01-01 08:15:004.02.26.65.60.78.02.00.41.00.3260.70.4520.30.30.50.50.90.6640.3860.2train

2022-01-01 08:20:004.12.26.56.00.88.51.70.20.90.2730.60.2960.20.50.30.41.00.70.3480.2train

2022-01-01 08:25:004.42.36.96.00.67.12.00.21.20.2670.80.2440.30.30.40.41.10.860.360.3train

2022-01-01 08:30:004.32.36.96.00.77.31.80.31.00.2460.50.3680.20.40.30.51.00.960.3480.3train

2022-01-01 08:35:004.62.17.46.30.87.62.20.30.90.2850.70.2880.30.30.40.51.10.8080.4060.3train

2022-01-01 08:40:004.72.27.46.00.77.72.30.31.00.4290.60.360.20.30.40.41.00.8040.4660.3train

2022-01-01 08:45:004.72.47.56.70.97.62.30.41.10.410.80.3880.30.40.50.61.20.8560.630.2train

2022-01-01 08:50:004.62.38.06.50.68.82.10.31.00.5270.60.310.20.40.40.51.10.9320.5960.2train

2022-01-01 08:55:005.42.810.17.11.012.72.80.31.10.5590.80.3380.40.40.30.51.10.760.4540.4train

2022-01-01 09:00:003.61.96.84.90.68.61.60.31.10.3770.90.3580.20.50.30.61.20.8160.5480.3train

2022-01-01 09:05:005.32.78.56.20.710.42.40.31.20.5130.80.3540.30.50.30.71.20.6960.4660.3train

2022-01-01 09:10:005.22.38.36.80.710.32.10.41.30.3140.80.4240.20.50.30.61.50.760.5460.3train

2022-01-01 09:15:005.22.58.76.40.911.02.30.41.10.5550.80.3940.20.60.50.51.30.9760.550.3train

2022-01-01 09:20:005.02.98.77.10.811.02.40.21.10.390.80.4340.20.20.30.71.51.10.440.3train

2022-01-01 09:25:004.92.58.77.00.810.82.30.41.30.4581.00.4440.20.40.40.61.20.8760.4160.4train

0.0

5.0

10.0

15.0

20.0

2022-01-01 00:05:00 2022-01-01 02:25:00 2022-01-01 04:45:00 2022-01-01 07:05:00 2022-01-01 09:25:00 2022-01-01 11:45:00 2022-01-01 14:05:00 2022-01-01 16:25:00 2022-01-01 18:45:00 2022-01-01 21:05:00 2022-01-01 23:25:00

flow_1 flow_2 flow_3 flow_4 flow_5 flow_6 flow_7 flow_8 flow_9 flow_10 flow_11 flow_12 flow_13 flow_14 flow_15 flow_16 flow_17 flow_18
flow_19 flow_20

￼1

FIGURE 4. Line graph of the flow data set for each five-minute interval.

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS
Water 2023, 15, x FOR PEER REVIEW 5 of 14

 145
Figure 5. Shanghai Weather Data Visualization. 146

(5) Shanghai epidemic data 147
This dataset represents the epidemic data in Shanghai, where zz represents the num- 148

ber of severe cases, wz represents the number of critical cases, xzqz represents the number 149
of confirmed cases, xzcy the number of new discharges, xzsw the number of new deaths, 150
glzl the number of current isolation treatment, and yxgc the number of medical observa- 151
tion. 152

 153
Figure 6. Visualization of the epidemic data in Shanghai. 154

2.2. Data processing methods 155
(1) Data pre-processing 156
From the above graphs, we can find that the data have abnormal values such as NaN 157

value, less than zero, abnormally large, and so on. Therefore, we carried out the following 158
processing. 159
• For the above problems and findings, the following strategy is adopted for data pre- 160

processing: negative values and abnormal values are set as null values, and then the 161
original null values and the null values just set are filled. 162

• The strategy of judging the null values is to simulate the normal distribution by set- 163
ting the values greater than 90% of the data as high and the values less than 90% of 164
the data as low, calculating the threshold values according to high and low, and set- 165
ting all the values greater than the threshold values as null. It can be found that com- 166
pared with the original data, there is no longer an obvious great outlier, and the 167
standard deviation is also much smaller. At the same time, there are many more null 168
values. 169

FIGURE 5. Shanghai Weather Data Visualization.

Water 2023, 15, x FOR PEER REVIEW 5 of 14

 145
Figure 5. Shanghai Weather Data Visualization. 146

(5) Shanghai epidemic data 147
This dataset represents the epidemic data in Shanghai, where zz represents the num- 148

ber of severe cases, wz represents the number of critical cases, xzqz represents the number 149
of confirmed cases, xzcy the number of new discharges, xzsw the number of new deaths, 150
glzl the number of current isolation treatment, and yxgc the number of medical observa- 151
tion. 152

 153
Figure 6. Visualization of the epidemic data in Shanghai. 154

2.2. Data processing methods 155
(1) Data pre-processing 156
From the above graphs, we can find that the data have abnormal values such as NaN 157

value, less than zero, abnormally large, and so on. Therefore, we carried out the following 158
processing. 159
• For the above problems and findings, the following strategy is adopted for data pre- 160

processing: negative values and abnormal values are set as null values, and then the 161
original null values and the null values just set are filled. 162

• The strategy of judging the null values is to simulate the normal distribution by set- 163
ting the values greater than 90% of the data as high and the values less than 90% of 164
the data as low, calculating the threshold values according to high and low, and set- 165
ting all the values greater than the threshold values as null. It can be found that com- 166
pared with the original data, there is no longer an obvious great outlier, and the 167
standard deviation is also much smaller. At the same time, there are many more null 168
values. 169

FIGURE 6. Visualization of the epidemic data in Shanghai.

2022-06-08 00:00:00], [2022-07 -21 01:00:00 ∼ 2022-07-28
00:00:00], [2022-08-21 01:00:00 ∼ 2022-08-28 00:00:00].
The original data input features are 20, i.e., representing
flow_1 to flow_20, which are the features needed to be
predicted in this paper.

Here in this paper, the length of the test set T=168 is the
time span of each constructed data, then, the data of each T
length is X, and the data of the immediately adjacent length
T is Y, which is generated with a sliding window w=1 hour
hour rolling. Each time point t of X includes m feature values,
such as flow_1, flow_2, etc., and constructed features such
as weather, epidemic, etc. After constructing the data, the
corresponding training data are extracted from the sequence
according to the time points of the four test sets. The final test
data, in fact, is only 4, that is, the corresponding 4 test time
points before T of the data.

III. RESEARCH DESIGN
We first introduce the research motivation of this paper,
mainly explaining why LSTM and Transformer should be
used for water demand prediction problems. This is also
an important driving force for our research. Secondly, we
describe the details of the model in detail, reviewing the
conventional LSTM model and Transformer model, and then
carefully describing how to effectively combine them for use
in water demand prediction problems.

A. RESEARCH MOTIVATION
To maximize the accuracy of demand forecasting in practical
applications, deep learning models have been widely used in
the water supply field. However, existing research typically
only adopts a single architecture, such as LSTM or Trans-
former, and does not fully utilize the advantages of these
models.

LSTM, as a type of recurrent neural network (RNN),
excels at processing sequence data by introducing memory

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 7. Flow chart of dataset construction.

cells, input and forget gates, and output gates. It can ac-
curately predict future time periods by capturing temporal
patterns and dependencies in historical data. In contrast,
Transformer is a relatively new model architecture whose
self-attention mechanism makes it particularly adept at han-
dling long sequences of time series data where maintaining
long-term dependencies is crucial for accurate forecasting.

Therefore, this study chooses to mix LSTM and Trans-
former to fully leverage their strengths in processing se-
quence data, thereby improving the accuracy and efficiency
of demand forecasting. Additionally, we focus on secondary
water supply in residential communities in Shanghai, China,
which is a challenging research field due to the existence of
many complex variables and non-linear relationships that are
difficult to capture. By using hybrid models, we hope to im-
prove the accuracy of our predictions and provide guidance
and reference for other research in this field.

In summary, the motivation of this study is to explore and
improve demand forecasting methods based on deep learn-
ing, and apply them to the secondary water supply system
in residential communities in Shanghai. We believe that this
work can greatly improve prediction accuracy and provide
support for more informed decision-making and resource
management.

B. MODEL DETAILS
LTMFormer is a deep learning model that combines the
advantages of both Transformer and LSTM architectures to
be able to make predictions on time series data.

In this model, the input data is first processed using the
Transformer to output a set of feature vectors in parallel.
These feature vectors contain global information about the
original data and can be computed quickly and efficiently
due to Transformer’s parallel computing capabilities. These
feature vectors are then fed into the LSTM to extract relevant
information about the time series. the memory unit and
gating mechanism of the LSTM allow the model to efficiently
capture the evolution pattern of the time series and generate

the final prediction results.
Therefore, the LTMFormer model is able to use the Trans-

former to process the input data to extract global features,
and also to fully utilize the time series modeling capability
of the LSTM to achieve more accurate and efficient water
supply demand time series forecasting. The model structure
is shown in Figure 8.

Input layer: When inputting time series data into the
model, we need to determine the features for each time
node. In this paper, we use a variety of features including
epidemiological data, meteorological data, and dates, and
represent each time node as a vector containing 25 features.
Since we set the length of the test set to 168 time nodes and
used a 20-cell LSTM model for parallel prediction, we input
each cell as a feature.

Specifically, each time node contains 25 features, so we
represent the time series data consisting of all time nodes as a
matrix with the dimension of [25 × 168]. In this input matrix,
each column corresponds to the feature vector of the current
time node, 25 in total, and each row corresponds to a different
time node.

Such an input layer is designed to integrate the rich fea-
ture information into the model effectively and to improve
the training efficiency and prediction accuracy by using the
parallel computing capability of the Transformer model.

Full Connected Dense Layer: In the LTMFormer model,
the fully connected layer is utilized to map the input data to
the hidden layer feature space and transfer the learned dis-
tributed representation to the subsequent Transformer mod-
ule. This layer plays a key role in transforming the original
time series data into a new vector representation that captures
higher-level features.

Specifically, we first represent the time series data as a [25
× 168] matrix, where each element corresponds to the feature
value of a time node. Then, we flatten this matrix into a vector
of length 4200 and pass it through a linear transformation by
a fully connected layer. The output of this layer is the hidden
layer feature vector which has a dimensionality controlled by

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

f_1 f_1 f_1 f_1 f_1

f_2 f_2 f_2 f_2 f_2

f_20 f_20 f_20 f_20 f_20

……
……

Full Connected Dense Layer

Ft1 Ft2 Ft3 Ft4 Ft20

E1 E2 E3 E4 ……

Feature embeddings +Position embeddings

Transformer Encoder

E1

LSTM

Cell

LSTM

Cell

LSTM

Cell

LSTM

Cell

LSTM

Cell

…

…

 Dense Layer

Prediction Module

p_1 p_1 p_1 p_1 p_1

p_2 p_2 p_2 p_2 p_2

p_20 p_20 p_20 p_20 p_20

……
……

Add & Norm

Feed

Forward

Add & Norm

Multi-Head

Attention

Input

Embedding

FIGURE 8. Model architecture diagram.

the model hyperparameters.
Next, we feed the hidden layer feature vector to the Trans-

former module for parallel computation. In this process, the
features of each time node are considered as an input vector,
and intensive self-attentive computations and feedforward
neural network computations are performed against these
vectors to obtain the predicted output for that time node.

Overall, the fully connected layer serves as a critical
component in the LTMFormer model by converting the input
data into a new hidden layer feature space that captures
higher-level information. This design allows the model to
learn more complex temporal patterns and achieve better
prediction performance.

Feature Embeddings + Position Embeddings: When
using Transformer Encoder to process sequential data, we
need to consider how to incorporate position information
of the sequence into the model. Since Transformer Encoder
itself cannot recognize the positional relationship of the
sequence automatically, we need to solve this problem by

adding Position Embeddings.
In the LTMFormer model, we adopt a special way to

implement Position Embeddings, which is cascading with
Feature Embeddings. Specifically, after the feature vector
output from the fully connected layer, we add a vector with
the same length as the input sequence, where each element
corresponds to the position of that time node in the sequence.
This vector is called Position Embeddings, which provides
information about the order of the time series to the model.

Then, we cascade Feature Embeddings and Position Em-
beddings to obtain a new cascaded vector, which serves as
the input of the Transformer Encoder module. In this module,
Position Embeddings and Feature Embeddings participate in
computation together, enabling the model to better under-
stand the temporal characteristics of the sequential data and
generate corresponding prediction results.

In summary, the LTMFormer model utilizes Feature Em-
beddings and Position Embeddings to form a cascaded vec-
tor, effectively transforming the original time series data

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

into a format that can be input to the Transformer Encoder
module. This design enables the model to predict future
secondary water supply demand more accurately.

Transformer Encoder: Each layer of the Transformer
Encoder structure contains two sub-layers, a multi-headed
attention layer and a feed-forward connection layer. Each
sublayer is followed by a residual connection and a normal-
ization layer.

Its computational process.
1. The input is passed through an input embedding layer,

which means that the sound signal or the text is trans-
formed into a vector form.

2. The location code is added, these signals are without
location information, here the lo-cation information is
added.
Since the Transformer model does not have the iterative
operation of RNN, it is necessary to provide the location
information, and here the linear transformation of Sine
and Cosine functions is used to provide the location
information to the model.

PE(pos, 2i) = sin
(
pos /100002i/dmodel

)
PE(pos, 2i + 1) = cos

(
pos /100002i/dmodel

) (1)

3. Multi-head attention layer. Multi-head attention is to
split the query, key and value parameters multiple times
while the overall number of parameters remains un-
changed, and each set of split parameters is mapped
to different subspaces of the high-dimensional space to
calculate the attention weights so as to focus on different
parts of the input. After several parallel calculations, the
attention information in all subspaces is finally com-
bined. Its structure is shown in Figure 9.

MultiHead(Q,K, V) = Concat(head1, ..., headh)W0

(2)

head_i = Attention
(
QWQ

i ,KWK
i ,VWWV

i

)
(3)

4. The output of the previous step is added to a residual
connection to preserve information from previous layers
and avoid vanishing gradients. Then, it is passed through
a layer normalization process to normalize the values
across features for each individual sample in the batch.
This step helps to stabilize the learning process and
improve the model’s generalization ability.

5. The output of the previous step is passed through a
Multi-Layer Perceptron (MLP) layer, which is a fully
connected feed-forward network with nonlinear acti-
vation functions. The purpose of this layer is to learn
higher-level representations based on the extracted fea-
tures from the multi-head attention layer. Specifically,
the MLP layer applies a linear transformation followed
by a non-linear activation function to each feature sepa-
rately.

MatMul

Scale

Mask(opt.)

Softmax

MatMul

KQ V

Scaled Dot-Product

Attention

Concat

Linear

Linear Linear Linear

V K Q

Multi-Head Attention

(a) (b)

FIGURE 9. Attention mechanism diagram; (a) scaled dot product attention(b)
multi-head attention.

6. The output of the MLP layer is added to a residual
connection and then passed through another layer nor-
malization process. This step helps to manage the scale
of the output and stabilize the training process.

LSTM Cell: In many sequence modeling tasks, the Long
Short-Term Memory (LSTM) architecture has been proven
to be effective due to its robustness and stability in modeling
long-range dependencies. The main innovation of the LSTM
is its storage unit, denoted as ct, which accumulates state
information. This unit is accessed, written, and cleared by
several self-parameterizing control gates. Each time a new
input is received, if the input gate is activated, the information
is accumulated in the cell. Additionally, if the forget gate ft
is opened, the previous cell state ct-1 is "forgotten". Whether
the newest cell output ct is propagated to the final state ht is
further controlled by the output gate ot. Utilizing storage cells
and gates to control the flow of information helps prevent
the gradients from disappearing too quickly, which can be
problematic for vanilla RNN models.

The Fully-Connected LSTM (FC-LSTM) can be seen as
a multivariate version of the LSTM, where the inputs, cell
outputs, and states are all one-dimensional vectors. In this
paper, we introduce our original FC-LSTM formulation, with
key equations shown below:

it = σ (Wxixt +Whiht−1 +Wci ◦ ct−1 + bi)

ft = σ (Wxfxt +Whfht−1 +Wcf ◦ ct−1 + bf)

ct = ft ◦ ct−1 + it ◦ tanh (Wxcxt +Whcht−1 + bc)

ot = σ (Wxoxt +Whoht−1 +Wco ◦ ct + bo)

ht = ot ◦ tanh (ct)

(4)

The LSTM architecture has been shown to be effective
in modeling long-range dependencies and is widely used in
various sequence modeling tasks. However, for multivariate
time series data, the Fully-Connected LSTM (FC-LSTM)
model extends the LSTM architecture to handle multiple
correlated time series simultaneously. This makes it suitable

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

for real-world applications that require modeling complex
interactions between multiple variables.

Moreover, by stacking multiple LSTM layers or concate-
nating them in time, more complex structures can be formed
to capture even higher-level patterns in the data. The FC-
LSTM architecture has been successfully applied to solve
many real-life sequence modeling problems, such as speech
recognition, language translation, and financial forecasting,
demonstrating its effectiveness and versatility in handling
diverse types of data.

Dense Layer: The Dense Layer plays a crucial role in
the proposed model by projecting the feature vector of the
LSTM output to a lower-dimensional space through linear
projection. This is accomplished by applying a matrix mul-
tiplication operation, followed by a bias term, to the LSTM
output. The primary purpose of this layer is to reduce the
dimensionality of the feature vector, thereby improving the
model’s efficiency and reducing the risk of overfitting.

In this paper, the dimensionality reduction process is
achieved using the Dense Layer, which enables the model to
extract more relevant and informative features from the data
while discarding irrelevant or redundant information. This
process not only improves the performance of the model but
also reduces its computational complexity, making it more
feasible for real-world applications that involve large-scale
datasets.

Overall, the Dense Layer is a critical component of the
proposed model, responsible for reducing the dimensionality
of the LSTM output and improving the efficiency and effec-
tiveness of the model.

Prediction Module: Despite its simplicity, the prediction
module is a critical component of the proposed model, as it
directly generates the final predictions for the target variable.
By projecting the feature vector to the appropriate output di-
mension, the prediction module enables the model to capture
the complex relationships between multiple variables and
generate high-quality forecasts with high accuracy.

Moreover, the output dimension of the prediction module
is specifically designed based on the problem requirements.
In this paper, the dimension of the prediction is [20×168],
where 20 represents the number of cells and 168 represents
the time length of the predicted sequence (in hours). This
reflects the fact that the model predicts the future values of
the target variable for each of the 20 cells over a period of
168 hours.

Overall, while the prediction module is relatively simple
compared to other components of the model, it plays a crucial
role in generating accurate predictions for the problem at
hand. Its linear projection operation effectively maps the
feature vector of the input sequence to the appropriate output
dimension, allowing the model to learn and capture the
dynamics of the underlying data and make accurate forecasts
for the future.

C. MODEL PERFORMANCE EVALUATION METRICS
When conducting water supply demand forecasting, deep
learning algorithms can be implemented and evaluating the
model performance is crucial. Among widely-used metrics,
such as MSE and RMSE which prioritize larger errors, MAE
is more robust to outliers and extreme values. As a result,
it is a better choice when data has high variability or there
is a risk of extreme events. Additionally, MAE is easier to
interpret than MSE and RMSE because it maintains the target
variable’s units (e.g. liters per day).

It should be noted that while MSE and RMSE may im-
prove accuracy, they can also increase the model’s sensitivity
to outliers. Conversely, MAE treats all errors equally, making
it less susceptible to being influenced by outliers, but may
result in slightly lower accuracy. Ultimately, the choice of
error metric depends on the specific characteristics of the
dataset and modeling approach, and should be thoughtfully
selected based on the analysis goals.

When using different forecasting models for quantitative
analysis and evaluation, the evaluation metrics’ MSE, RMSE,
and MAE are used to assess the accuracy and stability of the
model forecasts. These metrics are calculated as follows:

MSE =
1

m

m∑
i=1

(
yitest − ŷitest

)2
RMSE =

√√√√ 1

m

m∑
i=1

(
yitest − ŷitest

)2
MAE =

1

m

m∑
i=1

∣∣(yitest − ŷitest

)∣∣
(5)

In the context of evaluating time series prediction models,
MSE, RMSE, and MAE are commonly-used metrics. Here,
yitest and yitest represent the true and predicted values of a
single series, respectively. MSE is a measure of the sum of
the squares of the deviations between the predicted and true
values. In comparison, RMSE has the same dimension as
the original data and reflects the deviation between the true
and predicted values by representing the square root of the
ratio of the deviation between the predicted and true values
to the number of forecasting tests. On the other hand, MAE
represents the mean absolute value of the error, indicating the
actual magnitude of the prediction error. The smaller these
three evaluation metrics are, the more accurate the model’s
prediction is considered to be.

IV. EXPERIMENTS AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT AND
HYPERPARAMETER SETTINGS
The experimental environment for the experiments in this
paper is a CPU 12-core, where an A100 graphics card with
40GB of video memory size is used, Python environment
3.7.4, and the deep learning framework we use is Pad-
dlePaddle 2.3.2. The dependency libraries required for the
experimental environment are specified in Table 1.

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

class Tt(nn.Module):
 def __init__(self, seq_len, feature_size, output_size, hidden_size=576):
 super(Tt, self).__init__()

 self.feature_size = feature_size
 self.position_embeddings = nn.Embedding(seq_len, hidden_size)
 self.fc_inputs = nn.Linear(feature_size, hidden_size)

 self.lstm = nn.LSTM(input_size=hidden_size, hidden_size=hidden_size,
num_layers=2)

 encoder_layer = nn.TransformerEncoderLayer(hidden_size, num_heads=6)
 self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)

 self.fc_output_1 = nn.Linear(hidden_size, hidden_size)
 self.fc_output_2 = nn.Linear(hidden_size, hidden_size)
 self.fc_output_3 = nn.Linear(hidden_size, output_size)

 def forward(self, inputs, position_ids=None, attention_mask=None):

 if position_ids is None:
 ones = torch.ones(inputs.shape[:2], dtype=torch.int64)
 seq_length = torch.cumsum(ones, dim=1)
 position_ids = seq_length - ones
 position_ids.requires_grad_(False)

 position_embeddings = self.position_embeddings(position_ids)

 inputs = self.fc_inputs(inputs)
 inputs = torch.tanh(inputs)
 inputs = inputs + position_embeddings

 lstm_outputs, (h, c) = self.lstm(inputs)

 transformer_inputs = lstm_outputs.permute(1,0,2)
 transformer_outputs = self.transformer_encoder(transformer_inputs)
 transformer_outputs = transformer_outputs.permute(1,0,2)

 output = self.fc_output_1(transformer_outputs)
 output = F.relu(output)
 output = self.fc_output_2(output)
 output = self.fc_output_3(output)

 return output

 FIGURE 10. LTMFormer model building pseudo-code.

（a） （b）

（c） （d）

FIGURE 11. The loss iteration diagram of the model, where a, b, c, and d
denote the loss iteration diagrams of the four stages, subsequently used to
predict each of the four test sets, each with a length of 168h.

The LTMFormer model is a hybrid of LSTM and Trans-
former used for predicting cell water demand. The model
structure includes positional encoding, fully connected layers
for input data transformation, LSTM for processing input
data, and Transformer Encoder for feature extraction through
multiple encoder layers. Finally, two fully connected layers

（a） （b）

（c） （d）

FIGURE 12. The Valid Score iteration graph of the model, where a, b, c, and d
denote the four stages of the Valid Score iteration graph, and subsequently
used to predict each of the four test sets, each with a length of 168h.

TABLE 1. Dependency libraries required for the experimental
environment.

Environment names Version number

nvgpu 0.9.0
regex 2022.4.24
spacy 3.3.0
tqdm 4.62.3

visualdl 2.2.3
paddlepaddle-gpu 2.2.2

paddlenlp 2.3.1
LAC 2.1.2
shap 0.40.0

with ReLU activation function are used to transform the
output of Transformer Encoder to obtain the final prediction.

The model’s hyperparameters include the length of the
time series of historical data, the number of features for each
time step, the number of predicted values in the output, the
size of the hidden layers in LSTM and Transformer Encoder,
the number of layers in LSTM, the number of attention heads
in Transformer Encoder, the size of the intermediate layer in
Transformer Encoder, the dropout probability in the hidden
layers, and the dropout probability in the attention layers.
Additionally, there are hyperparameters for the maximum
number of time steps in positional encoding, as well as the
maximum values for the hour, minute, day of week, and total
minute counts in the historical data time part. The pseudo-
code flow about the model is as follows:

B. LOSS FUNCTION
Meanwhile, the loss function used in this paper is Mean
squared logarithmic error (mean squared logarithmic error),
ŷ is the predicted value, y is the true value, n is the number
of samples, m is the number of cells (Label number), and
the goal is to minimize Loss, i.e., to maximize Score. The
purpose of designing this indicator as an evaluation function
is to penalize the underestimation that exists in water supply

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Water 2023, 15, x FOR PEER REVIEW 12 of 14

 355

Table 2. Comparison of experimental results. 356

Title 1 Title 2 MSE RMSE MAE

Transformer

168 3.987 5.032 2.398
168 3.215 5.121 2.387
168 3.341 5.112 2.312
168 3.342 5.654 2.365

LSTM

168 4.217 5.032 2.398
168 4.321 5.121 2.387
168 3.765 5.112 2.312
168 3.957 5.654 2.365

TCN

168 3.740 5.032 2.028
168 3.786 5.121 2.371
168 3.817 5.112 2.209
168 3.875 5.654 2.297

BiLSTM

168 3.655 5.032 2.138
168 3.519 5.121 2.110
168 3.569 5.112 2.245
168 3.682 5.654 2.314

OURS

168 3.337 5.032 1.932
168 3.441 5.121 1.885
168 3.475 5.112 1.848
168 3.421 5.654 1.990

From the above table, we can know that the combined LSTM-Transformer model 357
proposed in this paper has better prediction accuracy and scientific generalization ability 358
among similar models, and all evaluation indexes are in the best state, of which some 359
prediction results are shown in Fig. 10, and it can be seen that the overall conform to the 360
data distribution characteristics. Where Figures 11,12,13,14 represent the predicted water 361
supply demand for 20 cells at four different time periods, and all are 168 hours. 362

 363

 364

Figure 12. Some examples of forecasts. 365
FIGURE 13. Forecast Results Line Chart.

forecasting. That is, it is better to overestimate the data than
to underestimate them. The expressions are as follows.

MSLE(y, ŷ) =
1

n

n∑
i=1

(loge (1 + yi)− loge (1 + ŷi))
2

Loss =

m∑
i=1

MSLE (yi, ŷi)

Score =
= 1/(1 + Loss)

(6)

1) Model performance analysis

In the original data, there are many obvious problems, such
as missing data (large data gaps are missing), obvious data
errors (water consumption is negative), obvious abnormal
data (serious deviation from the value of the mean variance),
in order to analyze the data, it is necessary to carefully clean
and organize the data in advance, and some tables do not
have data information such as weather, epidemic, etc. The
most complete data set is the hourly interval flow data set
The most complete data set is the hourly interval flow data
set and the daily interval flow data set, so as far as possible,
the hourly interval flow data set is used as the basis, and the
rest of the data set is used as auxiliary information to build
multiple features to assist the prediction and thus improve the
prediction effect of the model.

The data collected in this paper has obvious periodicity
(such as the first few days of each week, the first few days
of each month), and there are obvious fluctuations in the
cycle, such as the water consumption of flow_1 in June,
which can be clearly seen on weekdays, such as the peak
of water consumption in the morning and evening, while
the weekend and Sunday will be relatively scattered, taking
these into account, some features can be added to assist in
prediction, so in the actual prediction process Therefore, in
the actual prediction process, we added features such as days
to indicate that this is the first day of the month, record the
day of the week, and record the hour of the day to integrate
more features and make full use of the periodicity of the data.

As shown in the figure below, water consumption will have
small peaks at e.g. 8:00, 12:00, and 9:00 pm.

In this paper, the MSLE loss function is chosen because it
penalizes the underestimation in water supply prediction. In
order to ensure a smaller loss as much as possible, the final
actual output prediction data can be a little bit larger than
the intermediate model output data, so as to ensure that the
background of water use will not be under-predicted as much
as possible when predicting, which leads to the situation of
not enough water.

The model prediction part of this paper takes 4 stages to
carry out, where each stage of the loss iterative process and
Valid Score score iterative process is shown in the figure 11
and figure 12, respectively, save, need to do test set prediction
4 times. It can be seen that all four modules start to converge
sharply when the eoch is 15, and the final loss value is around
1.5 from the original 180, which can be seen that the model as
a whole is in a convergence state. Meanwhile, regarding the
valid score, it starts from about 0.70 and finally converges
to around 0.98, which indicates that the model has a good
scientific generalization ability. In conclusion, as the training
proceeds, the loss of the model is decreasing, indicating that
the model is getting better in the training process. At the
beginning of the model training, the loss is large, but as
the training proceeds, the loss gradually decreases, indicating
that the model is continuously optimized and is getting better
and better at fitting the training data. At the later stage of
training, the loss de-creases more slowly, indicating that
the model has reached a certain stability and is difficult to
optimize further. In order to prevent overfitting, dropout layer
is added, and the hidden states in each LSTM-Transformer
unit are randomly discarded with a certain probability to
prevent some neurons in the neural network from fitting a
certain part of the training data exclusively, thus preventing
overfitting of the model. The training speed of the model
reaches up to 1.83step/s, indicating that the model has high
efficiency in the training process.

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS
Water 2023, 15, x FOR PEER REVIEW 13 of 14

 366

(a). Example of a 168h forecast, focused on May 1, 2022 to May 7, 2022. 367

 368

(b). Example of a 168h forecast, focused on June 1, 2022 to June 7, 2022. 369

 370

(c). Example of a 168h forecast, focused on July 21, 2022 to July 27, 2022. 371

 372

(d). Example of a 168h forecast, focused on August 21, 2022 to August 27, 2022. 373

5. Conclusions 374

In this paper, we propose the LTMFormer model, which utilizes the recursive mech- 375
anism of the LSTM model and the parallel mechanism of the Transformer to achieve par- 376
allel output in the modeling task of long-term sequences, improving the model prediction 377

FIGURE 14. Some examples of forecasts.

C. COMPARATIVE EXPERIMENTS

According to the results presented in Table 2, it is clear that
the LTMFormer model outperforms the other four models
when it comes to predicting the demand for secondary water
supply in residential communities. Specifically, the LTM-
Former model achieved the lowest mean squared error (MSE)
of 3.418 among all test sets, which is slightly lower than
the Transformer model’s MSE value of 3.471 and signifi-
cantly lower than the other three models. In addition, the
LTMFormer model recorded the smallest mean absolute error
(MAE) of 1.913 across all test sets, which is also lower

than the other four models. Furthermore, the LTMFormer
model performed better than the other models in terms of the
average root mean square error (RMSE) on all test sets, with
a value of 5.480.

These findings suggest that the LTMFormer model offers
a practical and effective solution for predicting the demand
for secondary water supply in residential communities. The
model’s superior performance may be attributed to its merg-
ing of LSTM and Transformer models with a self-attention
structure, which enables the model to capture long-term
dependencies and time-series characteristics of the data more

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. Experimental Results Comparison

Models Number of test sets MSE RMSE MAE

Transformer

168 3.987 5.032 2.398
168 3.215 5.121 2.387
168 3.341 5.112 2.312
168 3.342 5.654 2.365

LSTM

168 4.217 5.032 2.398
168 4.321 5.121 2.387
168 3.765 5.112 2.312
168 3.957 5.654 2.365

TCN

168 3.740 5.032 2.028
168 3.786 5.121 2.371
168 3.817 5.112 2.209
168 3.875 5.654 2.297

BiLSTM

168 3.655 5.032 2.138
168 3.519 5.121 2.110
168 3.569 5.112 2.245
168 3.682 5.654 2.314

OURS

168 3.337 5.032 1.932
168 3.441 5.121 1.885
168 3.475 5.112 1.848
168 3.421 5.654 1.990

accurately.
Overall, this study provides a practical approach for pre-

dicting the demand for secondary water supply in residen-
tial communities using the LTMFormer model. This model
could be a valuable tool for water resource planning and
management in various settings, including urban and rural
areas. From the above table, we can see that the combined
LTMFormer model proposed in this paper has better predic-
tion accuracy and scientific generalization ability compared
to similar models. All evaluation indexes are in the best
state, and some prediction results are shown in Figure 13,
which overall conform to the data distribution characteristics.
Figures 14a, 14b, 14c, and 14d represent the predicted water
supply demand for 20 cells at four different time periods, all
of which span over 168 hours.

V. CONCLUSION
In conclusion, the LTMFormer model proposed in this paper
is a novel approach that effectively combines the LSTM and
Transformer models to enhance the accuracy and length of
the prediction in long-term sequence modeling tasks. The
results of our experiments on a metric dataset of 20 cells
in Shanghai demonstrate that the LTMFormer outperforms
traditional deep learning models such as LSTM, Transformer,
TCN, and BiLSTM, achieving the best performance of MSE,
RMSE, and MAE of 3.337, 4.536, and 1.848, respectively.

The cyclical changes observed in the prediction examples
further highlight the ability of the LTMFormer model to
capture complex patterns in the data. Such accurate predic-
tions can help protect the public’s water health and meet the
growing demand for a better life.

Overall, we believe that the LTMFormer model presents
a promising direction for future research in the field of long-
term sequence modeling, and its potential applications extend
beyond water quality monitoring to other domains such as

finance, weather forecasting, and healthcare.

REFERENCES
[1] Vicente, H., Dias, S., Fernandes, A., Abelha, A., Machado, J. and Neves, J.,

2012. Prediction of the quality of public water supply using artificial neural
networks. Journal of Water Supply: Research and Technology—AQUA,
61(7), pp.446-459.

[2] Masduqi, A., 2009. Prediction of rural water supply system sustainability
using a mathematical model. Jurnal Purifikasi, 10(2), pp.155-164.

[3] Antunes, A., A. Andrade-Campos, A. Sardinha-Lourenço, and M. S.
Oliveira. "Short-term water demand forecasting using machine learning
techniques." Journal of Hydroinformatics 20, no. 6 (2018): 1343-1366.

[4] Msiza, Ishmael S., Fulufhelo V. Nelwamondo, and Tshilidzi Marwala.
"Artificial neural networks and support vector machines for water demand
time series forecasting." In 2007 IEEE International Conference on Sys-
tems, Man and Cybernetics, pp. 638-643. IEEE, 2007.

[5] Maleki, Afshin, Simin Nasseri, Mehri Solaimany Aminabad, and Mahdi
Hadi. "Comparison of ARIMA and NNAR models for forecasting water
treatment plant’s influent characteristics." KSCE Journal of Civil Engi-
neering 22, no. 9 (2018): 3233-3245.

[6] Irvine, K. N., and A. J. Eberhardt. "Multiplicative, seasonal arima models
for lake erie and lake ontario water levels 1." JAWRA Journal of the
American Water Resources Association 28, no. 2 (1992): 385-396.

[7] Viccione, G., C. Guarnaccia, S. Mancini, and J. Quartieri. "On the use
of ARIMA models for short-term water tank levels forecasting." Water
Supply 20, no. 3 (2020): 787-799.

[8] Oliveira, Paulo José, Jorge Luiz Steffen, and Peter Cheung. "Parameter
estimation of seasonal ARIMA models for water demand forecasting using
the Harmony Search Algorithm." Procedia Engineering 186 (2017): 177-
185.

[9] Kumar, Manish, and M. Thenmozhi. "Forecasting stock index returns
using ARIMA-SVM, ARIMA-ANN, and ARIMA-random forest hybrid
models." International Journal of Banking, Accounting and Finance 5, no.
3 (2014): 284-308.

[10] Xu, Yuebing, Jing Zhang, Zuqiang Long, and Yan Chen. "A new hybrid
approach for short-term water demand time series forecasting." In 2018
13th World Congress on Intelligent Control and Automation (WCICA),
pp. 534-539. IEEE, 2018.

[11] Guo, Jun, Hui Sun, and Baigang Du. "Multivariable Time Series Forecast-
ing for Urban Water Demand Based on Temporal Convolutional Network
Combining Random Forest Feature Selection and Discrete Wavelet Trans-
form." Water Resources Management 36, no. 9 (2022): 3385-3400.

[12] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention
is all you need." Advances in neural information processing systems 30
(2017).

[13] Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
"Bert: Pre-training of deep bidirectional transformers for language under-
standing." arXiv preprint arXiv:1810.04805 (2018).

[14] Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani et al. "An
image is worth 16x16 words: Transformers for image recognition at scale."
arXiv preprint arXiv:2010.11929 (2020).

[15] Yu, Yong, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. "A review of
recurrent neural networks: LSTM cells and network architectures." Neural
computation 31, no. 7 (2019): 1235-1270.

[16] Bao, W., Yue, J., Rao, Y., Wang, Z. (2017). A deep learning framework
for financial time series using stacked autoencoders and long-short term
memory. ploS one, 12(7), e0180944.

[17] delgado-Santos, Paula, Ruben Tolosana, Richard Guest, Farzin Deravi, and
Ruben Vera-Rodriguez. "Exploring Transformers for Behavioural Biomet-
rics: a Case Study in Gait Recognition." arXiv preprint arXiv:2206.01441
(2022).

[18] F. Andayani, L. B. Theng, M. T. Tsun and C. Chua, "Hybrid LSTM-
Transformer Model for Emotion Recognition From Speech Audio Files,"
in IEEE Access, vol. 10, pp. 36018-36027, 2022, doi: 10.1109/AC-
CESS.2022.3163856.

[19] Hochreiter and J. Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735–1780,1997.

[20] Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent
neural networks. In ICML, pages 1310–1318, 2013.

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

DALI LI was born in TangshanHebei, P.R. China,
in 1980. Now, He works in Division of Asset and
Laboratory Management,Shanghai Normal Uni-
versity. His research interest include big date, data
mining and environmental science.

QINGWEN FU was born in Shanghai,P.R.China,in
1981. Now,He works in the College of Infor-
mation,Mechanical and Electrical Engineering,
Shanghai Normal University. His research in-
terests include data mining and communication
Engineering.

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3288817

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

