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ABSTRACT Hybrid electric vehicle power systems (VPSs) comprise of limited energy resources and
variable load requirements. The functional status of components and subsystems that make up the VPS is
critical to the overall system operation. The degradation and critical operating states of components affect
system efficiency and reliability differently. Therefore, monitoring of the functional status (referred to as
functional situational awareness (FSA)) of components, subsystems and system is needed for reliable and
efficient operation of VPS. In this study, VPS-FSA is inferred hierarchically at three levels of complexity,
namely, at the component, subsystem and system level. In each of these levels, two types of FSA are inferred
to qualify and quantify the functional states of components, subsystems and system.
Component-FSA is based on currents and temperatures measurements of the components. Subsystem-FSA
and System-FSA are derived as fusion of Component-FSA and Subsystem-FSA, respectively. Type 1-FSA
is inferred using reasoning and threshold values. Type 2-FSA is derived using more complex relationships
of temperature and current states. Typical FSA results are presented for a VPS for a standard drive cycle
and long-term effects on the VPS operation are shown over several drive cylces.

INDEX TERMS Functional situational awareness, hybrid electric vehicles power system, component
degradation, critical operating states.

NOMENCLATURE

αCom Com criticality coefficient for current
βCom Com criticality coefficient for temperature
∆DCom Degradation of Com in a time step
∆DCom,cyc Cycling degradation of Com in a time step
∆DCom,cal Calendar degradation of Com in a time step
ηini,com Initial efficiency of Com
ηfin,com Final efficiency (at 100% degradation) of

Com
ν Vehicle speed
acom coefficient related to the mass and heat capac-

ity of Com
bcom coefficient related to he effective cross area

and thermal conductivity of Com
Bat Battery
CCom Criticality estimation of Com
Com Component
DCom Degradation estimation of Com
DCom,A Lower degradation threshold of Com’s de-

graded state
F 0
y Functional state of y

F 1,C
y Type 1 critical state of y

F 1,D
y Type 1 degraded state of y

F 1,N
y Type 1 normal state of y

F 2,C
y Type 2-Criticality FSA of y

F 2,D
y Type 2-Degradation FSA of y
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Gen Generator
ICom Current measurement of Com
ICom,A Lower threshold Com’s critical current range
ICom,NF Upper threshold Com’s critical current range
kCom Com’s degradation coefficient
L1 Electric load 1
L2 Electric load 2
Mot Motor
PCMi Power converter module of subsystem i
Px Power consumption/ supply of x (component

or subsystem)
Ql,com Heat loss of Com
Qc,com Cooling (heat rejection) of Com
SOC Battery state of charge
SS, i Subsystem i
Sys System
t time (present)
T True (boolean)
Tamb Ambient temperature
TCom Temperature measurement of Com
TCom,A Lower threshold Com’s critical temperature

range
TCom,NF Upper threshold Com’s critical temperature

range
wi Priority of subsystem i
Wj Rule firing strength of rule j
zj Rule output level of rule j

I. INTRODUCTION

ELECTRIFICATION of transportation is a rapidly grow-
ing paradigm shift towards more efficient power and en-

ergy management, higher performance, and reliable vehicles.
Hybridization of vehicle powertrains allow for optimization
of the propulsive energy of the vehicle by effectively utilizing
two or more power sources and achieve higher mileage and
power capabilities while reducing greenhouse gas emissions
[1]. Hybrid electric vehicle (HEV) power systems comprise
of heterogeneous sources and demands, and their operating
points affect individual components differently. It leads to
have components at different states of health. Prolonged
operation may result in lower efficiency and reliability, and
it can also lead to system failures. For instance, heat waves
in India have caused a large number of electrical vehicles to
catch fire in April/ May 2022 [2]. Rising battery temperature,
and their inability to dissipate heat during prolonged oper-
ation has caused fires. Typical energy management systems
are based on electrical dynamics of the components that make
up the system [3], [4], [5]. However, a component’s perfor-
mance depends on two other types of dynamics, namely,
thermal and aging [6]. Situational awareness (SA) on two
types of component dynamics are required to dispatch the
component reliably.

SA is the perception of the elements in the environment
within a volume of time and space, the comprehension of
their meaning, and the projection of their status in the near
future [7]. SA has gained popularity in a number of domains

with critical operations, including military, aviation, air traf-
fic control and power system. In each of these domains, a
massive amount of data is received, and critical decisions
are needed to be made fast, often by a human. Therefore,
data should be converted to valuable information that could
be comprehended by a human. For HEVs, such information
facilitates effective decision making to ensure reliable and
efficient operation.

The series HEV power system (Fig.1) uses both internal
combustion engine and energy storage to meet system re-
quirements such as vehicle range, charging/ fueling time and
efficiency [8]. In [9], an integrated energy management and
control (EMC) framework for a HEV was proposed. The
framework is based on SA inferred using measurements of
the vehicle power system (VPS) components (Fig. 2). SA
can be used to dynamically reconfigure VPS components’
operating states, and adaptations are proposed to the energy
management system (EMS) based on SA levels.

The VPS in Fig. 2 is divided into subsystem based on
functional contribution of subsets of the system, and these
subsystems comprise of components. The components’ func-
tionality affect hierarchically subsystems’ and system’s func-
tionality. Therefore, SA on functionality of each entity (com-
ponents, subsystems and the system) is required to sustain-
ably utilize them. In this study, authors define SA in the
context of functionality as functional situational awareness
(FSA).

FSA provides functionality information of components in
VPS using measurements, and they can be used to dispatch
decisions as depicted in Fig. 2. The EMC framework in the
figure illustrates the interactions between different modules,
namely, VPS, FSA, system mode of operation (SMO) and
the dynamic optimization. It uses FSA to identify prevail-
ing SMO, and dynamically optimize and dispatch energy
resources. The SMO identifies VPS states as normal, critical
and degraded. The identification of system mode assists
dynamic optimization to adapt to prevailing system situation.
FSA and SMO are used in the dispatch decision optimization.
EMS receives objectives set by the operator and provide
the performance index evaluations to the operator. The FSA
based EMC framework’s dual benefits are reliability and
longevity of the VPS.

The contributions of this paper are as follows:
• A hierarchical FSA framework for VPS is proposed.

FSA is inferred for different complexity levels (com-
ponents, subsystems and system), and two types of
inferences are defined: qualitative and quantitative. The
knowledge depth increases with the Type as depicted in
Fig. 3. FSA systems for components, subsystems and
system are depicted in Figs. 4, 5 and 7, respectively.

• The hierarchical VPS-FSA framework is illustrated on
an HEV power system. VPS is divided into subsystems
based on functionality contribution to the overall vehi-
cle power system. Fig. 2 illustrates the vehicle power
system, and contribution of FSA to vehicle energy man-
agement system.
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FIGURE 1: Powertrain of the HEV.

The rest of the paper is organized as follows: Section II
introduces the HEV power system and thermal modeling.
Section III elaborates FSA implementation steps in an HEV
power system including component-FSA (in Section III-A),
subsystem-FSA (in Section III-B) and system-FSA (in Sec-
tion III-C). Section IV present the results and discussion of
the case study. Finally, section V concludes the paper.

II. HYBRID ELECTRIC VEHICLE POWER SYSTEM
In this study, an HEV is used to demonstrate the hierarchical
FSA inference. The vehicle power system architecture is
shown in Fig. 2.

A. HEV POWERTRAIN
The HEV used in this study has a series powertrain as shown
in Fig.1. A series hybrid is one in which the power converter
only supplies the motor with propulsion power; the engine is
no longer directly linked to the axis in this arrangement.Here,
the generator, motor, battery storage and loads are connected
to a DC bus through PCMs. The engine power is transformed
into electrical energy by the generator, which can either
run the motor directly or recharge the battery. The motor
can be run solely on battery power, generator power, or a
combination of both.

B. HEV SYSTEM ARCHITECTURE
The HEV consists of five subsystems as follows:

• Subsystem 1: Internal combustion engine is located
in this subsystem. It consists of two electrical power
components, namely, generator and power conversion
module (AC-DC). Generator is modeled as a three phase
permanent magnet synchronous machine.

• Subsystem 2: Propulsion of the vehicle is located in
subsystem 2, and it consists of the electric motors and
power conversion modules (AC to DC). Motor is mod-
eled as a three phase permanent magnet synchronous
machine.

• Subsystem 3: Subsystem 3 is the energy storage sub-
system. It consists of battery energy storage and power
conversion module (DC-DC).

• Subsystem 4: Subsystem 4 consists of a constant power
load critical electrical load dispatched during vehicle
idle times. Only the power converter module is modeled
with power data is provided to the model as an input.

• Subsystem 5: Subsystem 5 consists of cooling load for
the entire vehicle, and only the power converter module
is modeled with power data is provided to the model as
an input.

Thermal characteristics of components can be learned by
approximating them into a lumped parameter model, and us-
ing parameter identification methods. Thermal characteristics
of the components are modeled using a lumped capacitance
model [10], [11], [12], [13] as follows:

∂Tcom

∂t
(t) = acom × (Ql,com(t)−Qc,com(t)−

bcom × (Tcom(t)− Tamb(t)))
(1)

Ql,com is computed using power loss of the equipment.
Component efficiency is assumed to be linearly decreased
with increasing degradation as follows:

Ql,com(t) = ((1−Dcom(t))× ηini,com

+Dcom(t)× ηfin,com)× Pcom(t)×∆t
(2)

Thermal coefficients (acom and bcom) used for the vehicle
power system simulation are listed in Table 1.

TABLE 1: Coefficient values of components’ thermal models
[14].

Component acom bcom
PCM1 0.002 0.02

Generator 0.001 0.03
PCM2 0.003 0.03
Motor 0.0006 0.05
PCM3 0.002 0.02
Battery 0.0067 0.01
PCM4 0.0015 0.02
PCM5 0.0005 0.02

III. FSA IMPLEMENTATION IN HEV POWER SYSTEM
Each component in an HEV has a unique contribution to
the overall functionality of the vehicle power system. A
subsystem, in this study, consists of multiple components and
represents an energy resource. For instance, energy storage
subsystem consists of battery that stores energy, PCM that
convert electricity from battery voltage to the bus voltage. In
a subsystem, components are integrated as a chain. There-
fore, each component handles an equal amount of power
(except the power loss).

However, power flow in the chain of components affect
differently to each component. This is due to differences in
efficiencies, heat removal process (natural, forced, rejection
rate), construction and material properties. Therefore, a fu-
sion of individual component-FSA inference is needed to
evaluate subsystem-FSA. Similarly, characteristics of sub-
systems differ from eachother due to varying underlying
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FIGURE 2: Energy management and control framework of an HEV with data and control flow shown.

FIGURE 3: Complexity and knowledge depth of FSA system.

technologies and subsystems’ utility to the system perfor-
mance. Hence, system-FSA depends on subsystem-FSA, and
is inferred as a fusion of subsystem-FSA.

FSA in each level (component, subsystem and system)
inferred in two types. Entities are categorized into three
states in Type 1-FSA estimation, namely, normal, degraded
and critical. A normal state means the current operating
conditions does not impact the functional capability of the
entity and the full capacity is available to be dispatched.

Degraded and critical states indicate a compromise in the
entity. Degraded state signifies lifetime compromise of the
entity since the first use. Therefore, it is a non-decreasing
function over time. On the other hand, critical state shows
a compromise of the current operation. Type 2-FSA is con-
ducted for entities in degraded and critical states. It assigns a
value between 0 and 1 for each state.

A. COMPONENT-FSA
Modern development in sensor technologies, communica-
tion and electronic circuitry have made many measurements
available in components. These are essential in monitoring
and control of the component and the power system as a
whole. However, processing of measurements can produce
more valuable insights to identify underlying dynamics. In
this study, a fusion of measurements is carried out to provide
functionality information of the component.

Components’ Type 2-FSA are derived by comparing
threshold values of the measurements/ metrics. Fig. 4 de-
picts the determination of component-FSA. Temperature and
current of the component are used to determine whether the
component is functional. Normal, critical and degraded states
are defined based on threshold values of the measurements.

For components in critical/ degraded states, Type 2-FSA
evaluation conducted using further analysis. Out of the com-
ponents in a HEV power system, battery storage has the
notion of capacity fading due to cycling. Hence, battery
degradation is depicted in terms of capacity loss. In [15],
Arrhenius equation [16] is used to model battery cycling
and calendar degradation, and battery degradation has the
following form:

DBat =

∫ t

0

∆DBatdt (3)

∆DBat = ∆DBat,cyc +∆DBat,cal (4)

∆DBat,cyc(IBat, TBat) =

f1(IBat, TBat)× ef2(IBat,TBat)
(5)
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FIGURE 4: Component-FSA flowchart for two FSA Types (qualitative and quantitative).

∆DBat,cal(SOC, TBat, t) =

f3(SOC)× ef4(TBat) × t0.5
(6)

f1, f2, f3 and f4 are functions of respective variables
which are determined through experiments.

For battery, a criticality metric is defined based on devi-
ation of standard operating conditions such as temperature
and current. The criticality depends less on calendar aging as
it is slower than cycling aging (during use). Therefore, the
criticality metric is defined as follows:

CBat =

|∆DBat(IBat, TBat)−∆DBat(IBat,C , TBat,C)|
∆DBat(IBat,NF , TBat,NF )−∆DBat(IBat,C , TBat,C)

(7)

Electrical machines and power converters do not have
a direct metric of degradation such as capacity fading in
battery energy storage. However, there are stochastic models
studied under prognostic health management. Such models
estimate the remaining useful life of the components based on
measurements [17]. Measurements are used to either estimate
component parameters (such as internal resistance) or learn
a function approximator to predict degradation/ remaining
useful life. In this study, a linear combination of temperature
and current is used to approximate criticality of machines and
converters as follows:

Ccom =
αcom × Icom,N + βcom × Tcom,N

αcom + βcom
(8)

Icom,N =
Icom − Icom,C

Icom,NF − Icom,C
(9)

Tcom,N =
Tcom − Tcom,C

Tcom,NF − Tcom,C
(10)

Similar to battery, degradation is computed as an accumu-
lation of criticality. Hence, integral of Ccom is considered as
the degradation as follows:

Dcom = kcom ×
∫ t

0

Ccomdt (11)

Components’ criticality and degradation are evaluated us-
ing (8) and (11) in the absence of a degradation model. The
coefficients αcom and βcom determine relative contributions
of current and temperature to aging of components.

B. SUBSYSTEM-FSA
In the hierarchical VPS-FSA framework, component-FSA is
the initial inference based on measurements. FSA of levels
upward in the hierarchy, namely, subsystem and system are
inferred based on FSA output of the previous level. It utilizes
a logical fusion of previous level FSA output.

A subsystem represent an energy resource/ demand which
comprises of multiple components. Therefore, FSA of energy
resource/ demand is inferred using component-FSA in the
subsystem. In this study, subsystem-FSA evaluations are
done for two Types similar to components. Type 1-FSA
evaluation is conducted using a simple logic that takes Type
1-FSA of components as depicted in Fig. 5.

In a subsystem, Functional Status is inferred using compo-
nent Functional Status. As all the components in a subsystem
are connected as a chain, non-functionality of any component
leads to non-functionality of the subsystem. Using a similar
reasoning, it can be concluded that both components should
be in normal (Type 1-FSA) state to have a normal subsystem
Type 1-FSA. If both components in the subsystem are not
in normal states, the subsystem is in a degraded or critical (or
both) state(s). Degraded/ critical (Type 1-FSA) of at least one
of the components make the subsystem degraded/ critical.
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FIGURE 5: Subsystem-FSA flowchart for two FSA Types (qualitative and quantitative).

FIGURE 6: Input membership functions of FIS

In Type 2-FSA, quantitative inferences are done to deter-
mine degradation and criticality. In subsystems, criticality
cannot be estimated directly similar to components. It can
only be expressed quantitatively, possibly by an expert, with
domain knowledge in the component technologies. A fuzzy
inference system (FIS) is to infer these quantitative assess-
ments to determine crisp levels of criticality and degradation.
Fuzzy logic implements a mathematical model based on
approximate reasoning. Fuzzy inference is the process of
non-linear mapping a set of inputs to desired outputs using
fuzzy logic.

In this study, FISs are used for criticality and degradation
inferences in subsystems. Components’ Type 2-Criticality
and Degradation FSA are used as inputs to Takagi-Sugeno
FIS [18]. Rules are defined for membership function combi-
nations, and FIS is trained to map those instances. Type 2-
Criticality FSA is inferred using components’ criticality and
degradation. For instance, in an energy storage subsystem,
there are four inputs related to criticality and degradation
(Type 2-FSA) of PCM and battery. Each input is fuzzified
accordig to the three input membership functions shown in
Fig. 6.Then the The inference technique involves reasoning

using predefined fuzzy logic rules.There are 81 rules in the
rule base (34). For degradation, only component degradations
are used as FIS inputs, and 9 (32) rules are defined. The
formulation of the fuzzy system to derive the subsystem level
criticality and degradation is as follows:

F 2,C
SS,i =

∑81
j=1 Wj × zj∑81

j=1 Wj

(12)

F 2,D
SS,i =

∑9
j=1 Wj × zj∑9

j=1 Wj

(13)

C. SYSTEM-FSA
Subsystems in HEV are connected radially, and consists of
subsystems with power generators, energy storage and power
demand. Therefore, unlike in a subsystem, Functional Status
of the system does not require all the subsystems to be
functional as depicted in Fig. 7. It requires at least one energy
supply source (generator or energy storage) and at least one
critical demand available. It is trivial that there should be at
least one energy supply to function a vehicle power system.
Type 1-FSA is similar to subsystem-FSA as the system is
normal only when all the subsystems are normal and so on.

Subsystems in the system have different priorities de-
pending on their utility to the system objectives. Therefore,
a single degradation and criticality metric is computed for
the collection of subsystems by weighting according to the
priority. The formulation of system level criticality is as
follows:

F 2,C
Sys =

∑
F 2,C
SS,i × wi∑

wi
(14)

F 2,D
Sys =

∑
F 2,D
SS,i × wi∑

wi
(15)
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FIGURE 7: System-FSA flowchart for two FSA Types (qualitative and quantitative).

IV. RESULTS AND DISCUSSION
The proposed hierarchical VPS-FSA framework is imple-
mented on a HEV power system. Component-FSA is inferred
using current Icom and temperature Tcom measurements, and
hierarchically for subsystems and system as discussed in
Sections III-A, III-B and III-C.

Fig. 8 depicts the Urban Cycle 1 drive cycle [19] and power
profiles for five subsystems (Fig. 2). The propulsion power
requirement (Fig. 8c) generally depends on the acceleration
and the maximum speed. This drive cycle demonstrates three
sections of increasing power requirements. In the first stage,
vehicle speed rises to 15 kmph in an acceleration of 1ms−2.
In the next two stages, the vehicle speed rises to 32 kmph
and 50 kmph, respectively. The accelerations are 0.69ms−2

and 0.55 ms−2, respectively.
Component current measurements for the first run of the

drive cycle are shown in Fig. 9. Current profiles are unique
to the power demand/ supply of indivividual component.
Temperature results are obtained by repeating the drive cycle
multiple times, and results are depicted in Fig. 10 for 1st,
101st and 201st cycle. Temperature profiles of components
depend on component efficiencies and heat removal process
as shown in eq. 1. It should be noted that these thermal
dynamics are unique for the drive cycle and system speci-
fications.

In practical operation, a vehicle operator would pay at-
tention to the system-FSA first, and look if the vehicle is
functional and its Type 1 states. For F 1,C

Sys == T or F 1,D
Sys ==

T , F 2,C
Sys and F 2,D

Sys indices will be analysed to estimate
the degree of compromise. In such situations, the operator
would scrutinize subsystem-FSA to find out what subsystems
contributed to the prevailing compromise, and understand
the component(s) in compromised subsystems those need
attention. Depending on the severity of the component’s
functional capability and its impact to the current operation,
objectives will be adjusted. Results are presented for the

(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 8: Drive cycle and power profiles of five subsystems:
a) Urban Drive Cycle [19], b) engine power, c) propulsion
power, d)energy storage power (discharging positive), e) load
1 power, f) load 2 power.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIGURE 9: Components’ current measurements: a) Gener-
ator (IGen), b) PCM1 (IPCM1), c) PCM2 (IPCM2), d) Motor
(IMot), e) Battery (IBat), f) PCM3 (IPCM3), g) PCM4 (IPCM4),
h) PCM5 (IMCM5).

first drive cycle in that logical order: system, subsystem and
component.

A. SYSTEM-FSA
System-FSA is the holistic functionality indicator of the ve-
hicle, and it conveys a summary of overall vehicle functional
capability. Type 1-FSA depict any compromise in terms
of critical and degraded states, and Type 2-FSA provides
quantitative assessments of compromise in critical and de-
graded states. FSA provides alert signals if the system is in a
compromised state to make necessary adjustment to sustain

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

FIGURE 10: Components’ temperature measurements: a)
Generator (TGen), b) PCM1 (TPCM1), c) PCM1 magnified
(TPCM1), d) PCM2 (TPCM2), e) Motor (TMot), f) Battery
(TBat), g) PCM3 (TPCM3), h) PCM4 (TPCM4), i) PCM4 mag-
nified (TPCM4), j) PCM5 (TPCM5).
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current operation.
Fig. 11 depicts system-FSA results for the first drive cycle.

Type 1 stays normal for first 5 seconds, and changes to
critical afterwards. Overall system degradation rises from
zero. A comparison of results for 1st, 101st and 201st cycles
are provided for Type 2-FSA by running the same cycle
repeatedly. It is clearly seen that Criticality increases with the
system degradation. In Fig. 11d the difference of the system
degradation is plotted for 100 cycles. The results show that
the degradation of the second 100 cycles is higher than the
first. This illustrates the compounding effects of Criticality
on Degradation.

(a)

(b)

(c)

(d)

FIGURE 11: System-FSA results: a) Type 1, b) Type 2 -
Degradation, c) Type 2 - Criticality, d) Degradation for 100
cycles.

FIGURE 12: Subsystems’ Type 1-FSA (N: Normal, C: Critical,
D: Degraded).

B. SUBSYSTEM-FSA
Subsystem-FSA is used to demonstrate functional capability
of a particular energy resource or demand. It provides ad-
ditional information related to a compromise in the system
level. For instance, in Fig. 11a, the system becomes critical
after 5 seconds approximately, and peaks (to 0.3 approx.)

(a)

(b)

(c)

(d)

(e)

FIGURE 13: Subsystems’ Type 2-Criticality FSA results: a)
SS, 1, b) SS, 2, c) SS, 3, d) SS, 4, e) SS, 5.

multiple times during the drive cycle. Subsystem-FSA can
be used to infer more insights on subsystems that cause such
compromises to the system.

Type 1-FSA is shown in Fig. 12. Subsystems attain normal
and critical states only. This is because of new condition of
the vehicle and degradation is lower than the threshold for
degraded states.

Results in Fig. 13 illustrates criticality of different sub-
systems over time. For instance, subsystems 1 and 3 has
criticality values between 0.2 and 0.4 after the rise from the
initial values (zero). However, subsystem 3 criticality peaks
around 145s to 0.5 approximately. Subsystems’ degradations
are depicted in Fig. 14 in a logarithmic scale. Components’
contribution to subsystems’ criticality and degradation can be
analysed using components’ FSA data.

C. COMPONENT-FSA
Components are the interfaces of the FSA to the physical sys-
tem via measurements. Similar to subsystems, components’
Type 1-FSA (Fig. 15) attains normal and critical states only.
Type 3-Criticality and Degradation results of the components
are shown in Figs. 16 and 17 respectively. In Fig.13a, Type
2-Criticality FSA forSS, 1 depicted, and it shows a periodic
rise and fall of the criticality index. The observation in
Fig.16b of Type 2-Criticality FSA for components in SS, 1
proves that the subsystem criticality is mainly contributed by
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(a)

(b)

(c)

(d)

(e)

FIGURE 14: Subsystems’ Type 2-Degradation FSA results: a)
SS, 1, b) SS, 2, c) SS, 3, d) SS, 4, e) SS, 5.

FIGURE 15: Components’ Type 1-FSA (N: Normal, C: Critical,
D: Degraded).

PCM1. The periodic behavior of the criticality is coming
from the thermostat operation of component cooling. On the
other hand, as shown in Fig.16c criticality FSA for SS, 2
components reach their peaks close to 150s though PCM2
reaches a higher peak. This is due to the higher propulsion
power demand during high acceleration and velocity.

The battery criticality depicted in Fig. 16e shows a more
complex behavior. This is due to the exponential equations in
criticality and degradation modeling of Lithium-ion batteries.
PCMs are the only electrical components in SS, 4 and
SS, 5. Therefore, they solely contribute to their respective
subsystem-FSA.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIGURE 16: Components’ Type 2-Criticality FSA results: a)
Generator, b) PCM1, c) PCM2, d) Motor, e) Battery, f) PCM3,
g) PCM4, h) PCM5.

D. DISCUSSION

The results presented demonstrate increasing complexity in
bottom-up hierarchy. The component-FSA is simpler and can
be inferred using the component’s measurements. However,
in two upper levels of the hierarchy, FSA can be only inferred
by fusing FSA of the previous level. Therefore, components
are connected together to form a tree-like structure in hi-
erarchical FSA inference. In subsystem-FSA, a dominant
component that contributes to subsystem-FSA can be singled
out. The differentiating factors for the components’ behavior
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIGURE 17: Components’ Type 2-Degradation FSA results:
a) Generator, b) PCM1, c) PCM2, d) Motor, e) Battery, f)
PCM3, g) PCM4, h) PCM5.

are technical specifications (electrical and thermal) and heat
removal process. A more combined effect is demonstrated in
system-FSA where all the subsystems are integrated based on
the functional priority.

In Table 2, criticality and degradation results are compared
for the system, subsystem and component levels at different
number of cycles. The results are achieved by running Urban
Cycle 1 drive cycle repeatedly. The results indicated are the
maximum values during the cycle. Though the results are
derived by running the same drive cycle, criticality values

are increasing over time. For instance, the system criticality
reaches a peak of 0.2812 during the first cycle, and grad-
ually increases to 0.3492 in the 801st cycles. Therefore,
degradation also increases with criticality in a compounded
manner, and the energy management system should take the
degradation into account in order to maintain the functional
capability of the vehicle power system.

It is observed that subsystem 2 and its components’ Type
2-Criticality FSA is higher than other subsystems. However,
its degradation is not the highest among five subsystems.
This is a result of its components’ temperature and current
variations during the drive cycle. For instance, as shown in
Figs. 9c and 10d, PCM2 current and temperature reach
their peaks around 145s. The current is rising and falling
(as observed in Fig. 9(c)) according to the drive cycle in
Fig. 8(a). The different peaks in the current are based on
the different vehicle speeds. However, the temperature is
increasing during the drive cycle until around 145 s and then
drops (as observed in Fig. 10(d)).

In this study, component temperatures are controlled by
dual-setpoint thermostat cooling. In the simulation, PCM2
and Mot (subsystem2 components) are maintained between
70-90 Celcius during thermostat control for the base study.
An additional study is conducted to evaluate the effects of
thermostat setpoints on Type 2-FSA for subsystem 2 and its
components by reducing thermostat temperature range to 60-
80 Celcius. Results are shown in Table 3. It is evident that the
drop in thermostat dual-setpoints reduce both Criticality and
Degradation of subsystem 2 and its components. This result
highlights the importance temperature control in components
for a reliable VPS.

The importance of FSA in a VPS is presented in this paper.
However, the full potential of VPS-FSA framework can only
be reaped by deploying it in energy management and control
of VPS. Energy management and control of HEV should be
further investigated based on FSA as depicted in Fig. 2.

V. CONCLUSION
In this paper, functional situational awareness (FSA) is in-
troduced to infer functionality of a hybrid electric vehicle
power system (VPS). VPS-FSA framework uses measure-
ments as inputs to derive FSA at three hierarchical levels,
namely, component, subsystem and system. In component
level, current and temperature measurements are used to
identify component’s functional capability. Subsystem-FSA
is determined based on FSA of the components in energy
resource’s subsystem. Similarly, system-FSA is inferred as
a fusion of subsystem-FSA.

Two types of FSA proposed in each stage. In Type 1,
a binary qualitative evaluation is done to estimate whether
the entity (component, subsystem or system) is functional.
Functional entities are further categorized into three states,
namely, normal, degraded and critical. Degraded and critical
states signify a compromised condition of the entity and
reduces available capacity of the entity for dispatch. Type 3-
FSA inference is conducted for degraded and critical states
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TABLE 2: Results summary of repeated simulation of Urban Cycle 1 drive cycle.

Entity Type 3-FSA Maximum value during the cycle
Cycle 1 Cycle 101 Cycle 201 Cycle 401 Cycle 601 Cycle 801

System Criticality 0.2812 0.287 0.2999 0.3227 0.3356 0.3492
Degradation 0.0001 0.0113 0.0228 0.0462 0.0676 0.0886

Subsystem 1 Criticality 0.3762 0.3818 0.3900 0.3999 0.4117 0.4223
Degradation 0.0002 0.0185 0.0364 0.0701 0.1013 0.1301

Subsystem 1
Components

Gen. Criticality 0.3127 0.3158 0.3190 0.3256 0.3328 0.3401
Degradation 0.0001 0.0097 0.0195 0.0394 0.0598 0.0807

PCM1 Criticality 0.4235 0.4297 0.4371 0.4523 0.4688 0.4879
Degradation 0.0002 0.0153 0.0309 0.0630 0.0965 0.1315

Subsystem 2 Criticality 0.4638 0.4653 0.4721 0.5016 0.5334 0.5697
Degradation 0.0001 0.0116 0.0231 0.0455 0.0672 0.0884

Subsystem 2
Components

PCM2 Criticality 0.5610 0.5757 0.5916 0.6326 0.6762 0.7264
Degradation 0.0001 0.0095 0.0192 0.0395 0.0610 0.0837

Mot. Criticality 0.3239 0.3257 0.3275 0.3320 0.3362 0.3407
Degradation 0.0001 0.0060 0.0120 0.0243 0.0369 0.0497

Subsystem 3 Criticality 0.3645 0.3695 0.3712 0.3741 0.3775 0.3816
Degradation 0.0001 0.0099 0.0198 0.0396 0.0595 0.0796

Subsystem 3
Components

Bat. Criticality 0.4751 0.4761 0.4776 0.4795 0.4826 0.4869
Degradation 0.0001 0.0021 0.0041 0.0083 0.0125 0.0168

PCM3 Criticality 0.3471 0.3519 0.3553 0.3646 0.3750 0.3987
Degradation 0.0001 0.0121 0.0244 0.0496 0.0757 0.1029

Subsystem 4 (PCM4) Criticality 0.3472 0.3504 0.3547 0.3656 0.3739 0.3830
Degradation 0.0001 0.0110 0.0230 0.0501 0.0719 0.0938

Subsystem 5 (PCM5) Criticality 0.1319 0.1367 0.1422 0.1534 0.1686 0.1859
Degradation 0.0000 0.0017 0.0036 0.0075 0.0119 0.0169

TABLE 3: Repeated cycles results with 10 Celsius lower thermostat dual-setpoint for subsystem 2 components.

Entity Type 2-FSA Maximum value during the cycle
Cycle 1 Cycle 101 Cycle 201 Cycle 401 Cycle 601 Cycle 801

Subsystem 2 Criticality 0.2981 0.3000 0.3024 0.3066 0.3111 0.3163
Degradation 0.0001 0.0099 0.0195 0.0382 0.0562 0.0737

Subsystem 2
Components

PCM2 Criticality 0.3474 0.3493 0.3527 0.3585 0.3648 0.3716
Degradation 0.0001 0.0080 0.0161 0.0325 0.0495 0.0669

Mot. Criticality 0.2658 0.2667 0.2675 0.2709 0.2735 0.2773
Degradation 0.0001 0.0051 0.0102 0.0204 0.0308 0.0414

which computes compromise in terms of degradation and
criticality of the entity.
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