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ABSTRACT Spectral computed tomography (CT) has a wide range of applications in material 
discrimination, clinical diagnosis and tissue representation. However, the photon counting detector 
measurements are subject to serious quantum noise caused by photon starvation, photon accumulation, charge 
sharing, and other factors, which will lead to a decrease in the quality of the reconstructed image and make 
clinical diagnosis more difficult. To tackle with this problem, this paper proposes a spectral CT reconstruction 
technique that exploits the spatial sparsity of inter-channel images and the high correlation of images between 
different energy channels. Specifically, similar patches from spatial and spectral domains are extracted to 
form the low-rank tensors. Then the tensor-train rank, which is derived from a well-balanced matricization 
technique, is adopted to depict the high correlation among different energy channels. To capture the self-
similarity of the low-rank tensors, the L0-norm of the image gradient is employed for image smoothing. An 
efficient algorithm is devised to solve the reconstruction model utilizing the Alternating Direction Method of 
Multipliers. For the sake of testing and verifying the effectiveness of the proposed algorithm, numerical 
simulations and real data experiments are conducted. Qualitatively, the designed method demonstrates a clear 
advantage in image quality over the existing state-of-the-art algorithms. For instance, when taking the full 
energy bin image as an example, the proposed method reduces the Root Mean Square Error (RMSE) by 
52.07%, 38.69%, 35.13%, 12.67%, respectively, compared to the competing methods. Quantitative and 
qualitative assessment indices have revealed that the suggested method has excellent noise suppression, 
artifact elimination, and image detail preservation properties. 

INDEX TERMS Spectral computed tomography, image reconstruction, non-local similarity, tensor train 
decomposition, alternating direction method of multipliers.

I. INTRODUCTION 1 

With the advent of photon-counting detector (PCD) [1], 
Spectral computed tomography (CT) has a vast potential 
for medical diagnosis, such as tumor detection [2], [3], 
material discrimination [4], [5] and automated bone 
removal [6]. Spectral CT can acquire comprehensive 
material information by taking advantage of the difference 
in attenuation coefficients of materials. Furthermore, 
spectral CT imaging provides high tissue contrast and 
patients are exposed to low-dose radiation. [7], [8]. 
However, the number of photons allotted to each channel 
through the established energy threshold is inadequate, and 
the quantum noise of the projection is particularly 
pronounced [9], [10]. There are numerous classical image 
reconstruction techniques available to reduce noise, such as 

the iterative algorithm based on image sparsity 
regularization in projection domain or image domain such 
as total variation (TV) and its modifications [11-13], tight 
frame (TF) [14], dictionary learning (DL) [15], [16], tensor 
factorization [17] and the non-local similarity [18]. The 
PRISM (prior rank, intensity and sparsity) algorithm has 
been successfully applied to low-dose CT reconstruction 
[19], yielding superior results. While these algorithms 
based on compressed sensing [20] are partly effective in 
restoring image structure, they fail to capture the image 
correlation. To address this issue, several tensor-based 
algorithms have been proposed in succession to 
characterize the multi-dimensional features of spectral CT 
images. In [21], the authors proposed a spectral CT image 
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reconstruction algorithm that leverages tensor dictionary 
learning and the L0-norm to effectively extract features and 
maintain image edge details. Furthermore, by incorporating 
the adaptive spectral prior information, the framework in 
[21] was extended in [22]. Subsequently, based on tensor 
expansion, the authors derived the tensor form of PRISM 
algorithm in [23], which achieved superior quality by fully 
exploiting the sparsity.  

For spectral CT imaging, the low-rankness and high 
correlation of tensor are advantageous priors, yet they are not 
easy to handle or to illustrate clearly. To approximate the 
low-rankness, the tensor nuclear norm has been widely used 
in image processing [24], [25]. To capture the high 
correlation, tensor decomposition has been developed to 
optimize reconstruction by combining the tensor nuclear 
norm. Tucker decomposition [26] was adopted to explore the 
global correlation between cerebral perfusion CT images in 
[27] and the dimensions reduction in [28]. Candecomp/Para-
fac (CP) decomposition [29] was employed to enhance 
sparse reconstruction based on self-similarity in [30]. 
Moreover, the authors developed an intrinsic tensor sparsity 
regularization model based on Tucker decomposition and CP 
decomposition to characterize the low-rankness [31],[32] 
and sparsity of tensor [33]. To explore the correlation of 
tensors more comprehensively, the work in [34], [35] 
constructed low rank tensor model by clustering similar 
patches and then decomposed it into low rank tensor and 
sparse tensor. This approach enabled multi-channel image 
reconstruction to achieve remarkable results. However, 
according to the work in [31], [32], the CP decomposition 
cannot accurately depict the low-rankness of the subspace 
formed by the modules of tensors, while the Tucker 
decomposition was difficult to evaluate the sparsity of the 
core tensor in theory. In [36], the authors established the 
perfect tensor singular value decomposition(t-SVD) theory 
through tensor-tensor product. The first and second mode 
correlation may be characterized by t-SVD, but the third 
mode's correlation are encoded by embedded circular 
convolution, which means that the tensor nuclear norm lacks 
a direct measurement of the third dimension [37], [38]. It is 
essential to make full use of the high correlated statistical 
properties of different channels to remove noise and artifacts, 
which is the core problem of this study. Therefore, it is 
necessary to seek a suitable tensor decomposition to describe 
this high correlation between different energy channels to 
improve the reconstruction images. 

In recent decades, tensor train (TT) rank has attracted 
much attention due to its well-balanced matricization 
technique. This technique involves flattening the tensor 
along permutations of modes, which has been effectively 
used in tensor completion and image restoration as it can 
better capture the global correlation between different tensor 
modes [39], [40]. Moreover, a low-order tensor can be 
augmented in order by employing a suitable block 
addressing technique, which makes it easier to depict the 

correlation between various modes [41],[42]. Furthermore, 
the work [43] constructed high order low-rank tensor 
groups by exploiting the non-local self-similarity, and 
made an exhaustive theoretical analysis. 

Taking inspiration from the previous work, we present a 
spectral CT reconstruction technique that makes good use 
of the low-rank tensor train rank and the self-similarity to 
preserve details. To begin, similar patches from the initial 
images are extracted and low-rank tensor groups are 
constructed. The spectral CT reconstruction model is then 
developed employing the tensor train nuclear norm 
(TTNN), which approximates the tensor train rank, and the 
L0-norm of image gradient. To the best of our knowledge, 
this is the first time that the TTNN was used in spectral CT 
imaging, allowing us to better investigate the high spatial-
spectral correlation and the non-local self-similarity of 
spectral CT images due to its well-balanced matrix 
expansion techniques. Additionally, for the TTNN, we 
adopted the direct decomposition algorithm, which has a 
fast decomposition speed and high calculation efficiency. 
In comparison to other iterative least square algorithms, 
such as CP decomposition, the direct decomposition 
consumes less time and less physical memory. Finally, 
using k-means++clustering, we create low-rank tensor 
units that effectively encoded non-local self-similarity 
while reducing computational complexity.  

The following is the organization structure of this study. 
Part II briefly introduces the preliminary knowledge of 
tensors, and presents the model and its optimization of low 
rank tensor train applied to spectral CT reconstruction. In 
part III, the proposed method is evaluated through simulation 
experiments and actual data experiments. Both quantitative 
results and property assessment show that the presented 
method is better than the competing algorithms. The last part 
is discussion and conclusion. 

II. METHODS 

A. PRELIMINARIES ON TENSOR 
Multi-channel image data could be regarded as a 3rd-order 
tensor, including two spatial dimensions and one spectral 
dimension. In general, an N-order tensor could be expressed 

as 1 2 NJ J J     . Tensor and matrix can be transformed by 
unfolding or folding operator [26]. A tensor can be expanded 
into a matrix along the k-th dimension 

1 1 1( )unfold ( ) .k k k NJ J J J Jk
k X          (1) 

The correlation of different channel images could be described 
by tensor rank. However, tensor does not have a definite rank 
compared with matrix. With different expansion pattern, the 
expression of tensor rank is different. Tucker rank [26] of an N 
-order tensor 1 2 NJ J J      is denoted as 

1 2rank ( ) : (rank( ), rank( ), , rank( )),N
tc X X X   (2) 

Where nX  is the mode-n expansion of   and the ( )irank X  
provides the mean of the correlation between a single mode 
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and other modes of the tensor. Both the matrix rank and the 
tensor rank are powerful prior to characterize the correlation 
and the non-local self-similarity. However, minimizing the 
matrix rank is a difficult problem. In general, the nuclear norm 
of the matrix could approximat the matrix rank defined as 
follows [44]. 

 
1 2 1 2*

( ),n n i n ni
X X    (3) 

1 2 1 2( )( 1, 2, ,min( , ))i n nX i n n     is the i-th singular value of 

the matrix 
1 2n nX  . Considering that the nuclear norm of a 

matrix is the approximation of matrix rank, the sum of the 

nuclear norms 
*

i

i
X  is used as the approximation of the 

sum of the rank ( )i

i

rank X . Similarly, according to the 

tensor nuclear norm introduced in the work [36], we obtain the 
expression of the tensor nuclear norm 

3
( )

* *
1

n
k

k

X


 ,where ( )kX is the k-th frontal slice of tensor. 

B. TENSOR-TRAIN NUCLEAR NORM 
Tensor-train decomposition, which has attracted a lot of 
attention in recent years, is a method of expanding a tensor in 
a relatively balanced way. For an N-order tensor

1 2 NJ J J     , its tensor-train decomposition is as follows 
 

[ ] 1 1
( , ), 1,2, , .k k

k Np q
k k i k ii i k

X p J q J k N

  
        (4) 

The TT rank is denoted by vector 1 2 1( , , , )Nr r r  r , where  

the [ ]( )k kr rank X  is the rank of matrix [ ]kX  in (4). In light 

of this, the TTNN is defined as a convex combination of 
nuclear norms of different matrices generated via tensor 
expansion by (4), namely 

 [ ]TTNN 1 *
,

N

k kk
X


   (5) 

where the weights 1{ }N
k k   satisfying 

1
1, 0

N

k kk
 


   

represents the weight of [ ]kX . Setting different weights is due 

to the following considerations. The importance of tensor train 
rank of different modes is different. The adaptive weighting 
process establishes the weight k [45].  

Appendix A demonstrates that the tensor rank derived from 
the tensor expansion in (1) only accounts for the correlation 
between a single mode and the other modes (one mode versus 
the rest), while ignoring the global correlation between the 
modes. While tensor train rank based on tensor train 
expansion in (4) takes into account the correlation between 
some modes and others more fully. Because of the well-
balanced matricization technique [40], it can describe the 
global correlation among the tensor entries in great detail. To 
demonstrate that the TTNN acquired by tensor train 
decomposition as described in (4) is superior to the nuclear 
norm obtained by Tucker decomposition and the nuclear norm 
obtained by tensor singular value decomposition [46]. We 
conducted simulation experiments in comparison to other 

norms such as the TNN (tensor nuclear norm) [36], PSTNN 
(partial sum of the tubal nuclear norm) based on tensor tube 
rank [37], SNN (sum of nuclear norm) based on Tucker rank 
[47]. Gaussian noise of 0.001 was added to the original data. 
The denoising experiment results were shown in figure 1, 
which presents the better denoising performance by TTNN. 
The peal signal to noise ratio (PSNR) and structural similarity 
(SSIM) of all denoised results are calculated in table 1. The 
PSNR and SSIM confirm the consistent results for SNN, TNN 
and PSTNN in [38],[42]. 

 

FIGURE 1. The images in row 1 are ground truth, noised image, 
denoised image by SNN, respectively. Row 2 are the denoised images by 
PSTNN, TNN, TTNN. The display window of row 1 and the first image in 
row 2 are [0.001 0.2]. The rest in row 2 are [0.02 0.1] and [0.009 0.15], 
respectively. 

TABLE I THE PSNR AND SSIM GAINED BY METHODS 

Index SNN         PSTNN         TNN       TTNN 

PSNR 21.1407    22.2526    22.0489        26.1324 
SSIM 0.1720      0.3614      0.1939          0.4260 

The problem of optimizing the TTNN is expressed as  

 
2

TTNN
min ,

2


 


     (6) 

where   is an observed noised tensor. Substituting (5) into 
(6), the following equation can be obtained  

 
[ ]

2

[ ] [ ] [ ]1F *
min ,

2k

N

k k k kkX
X Y X

 


    (7) 

where [ ] [ ],k kX Y are the matrices obtained by tensor train 

expansion of ,   according to (4). The closed-form solution 
of (7) can be acquired by employing the Singular Value 
Thresholding (SVT) in [44], 

 T
[ ]

ˆ max( ,0) .k
k i i ii

X u v





    (8) 

where i are the singular values and ,i iu v  the singular vectors 

of the matrix [ ].kY  

C.LOW-RANK TENSOR-TRAIN MODEL FOR 
SPECTRAL CT RECONSTRUCTION 

Spectral CT images are usually expressed as 3rd -order tensor
h w sn n n  , where ,h wn n  and sn  are the spatial dimension 

and the spectral dimension of the image, respectively. 
Similarly, spectral CT projections can also be written as a 3rd-

order tensor d v sn n n  , where ,dn n  are the number of 
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detector elements and projections, respectively. Spectral CT 
images can be regarded as the sequence of traditional CT 
images. If extended along some channel, the usual linear 
system can be obtained 

 ( 1,2, , ),s sy Ax s S     (9) 

where the system matrix ( ) ( )d v h wn n n nA    , sx  is the 

vectorization results of two-dimensional image h wn n
sX  ,  

that is the attenuation coefficient we calculated, and sy  is the 

vectorization results of two-dimensional projection d vn n
sY  . 

The tensor nuclear norm is used to approximate a tensor’s low 
rank, and L0-norm of image gradient is commonly used to 
describe the spatial-spectral sparsity. To fully encode the low 
rank and sparsity of images, the spectral images are pre-treated 
with a similar block matching operation. The noise image 
block of a specific channel is first selected, and then the 
similar block is matched. Finally, similar blocks are extracted 
from different channels at the corresponding positions to form 
small low-rank tensor unit. The block extraction and 
clustering methods used in the work [34] will result in 
inconsistent clustering after repeated iterations, increasing the 
calculation’s complexity. In this study, the non-local self-
similarity of images is investigated using the k-means++ 
clustering method [48]. This preprocessing operation on 
tensors is recorded as 1 2 3( ) J J J

c x   , where 1, 2, ,c C 
C denotes the total number of tensor units. 

The spectral CT reconstruction model is constructed as 
follows

2

0 TTNN1 1 12

1
min ( ) .

2s

S S C

s s s cs s cx
Ax y x 

  
         (10) 

The first regularization term is intended to describe the 
sparsity of the gradient image in each energy channel, which 
can have a positive effect on noise suppression. The second 
regularization term aims to depict the correlation between 
multi-channel images, which can improve the model's ability 
to protect the details of the image. The regularization 
parameters ,   will balance the above terms. In order to 

solve (10), we introduce the auxiliary variables ( )c c  
and s sf x . We can gain the unconstrained objective function. 

2 2

2 0 F
, , , , , 1

2

TTNN F
1 1

1
argmin ,

2 2

             + , ( ) ( )
2

s c s s

S

s s s s s s s s
x f u s

C C

c c c c c c
c c

Ax y f u f x f x






 

        
 

   



 

 

       
 (11) 

where ,s cu   are Lagrange multipliers and ,  are 

regularization parameters. The function can be optimized by 
alternative direction minimization method (ADMM) [49], and 

c  can be updated with fixed , , ( )t
c cx    , then obtain the 

closed-form solution by referring to (8). 

 
2

1

TTNN
1 1 F

argmin ( ) .
2

C C
t t c
c c c c

c c







 

    


      (12) 

Similarly, updating sf  with fixed sx  as follows: 

2

1

0
1 1 F

arg min .
2s

tS S
t t s

s s s s
f s s

u
f f f x






 

      (13) 

For (13), it is a typical L0-norm minimization problem, which 
can be solved by approximation algorithm of 0l -smoothing 

[50]. For the following sx -subproblem  
2

2 1

2
1 1 F

2

1 1

1 F

1
arg min

2 2

                               ( ) .
2

s

tS S
t s

s s s s s
x s s

tC
t t c
c c

c

u
x Ax y x f









 

 



    

  

 

   

, (14) 

it is going to be updated, and the elements of 
, ( ) and c c c    are vectorized along mode-1, mode-2 and 

mode-3, and record them as , ( ) and c c cR x m respectively. 

The sx -subproblem can be rewritten as 
2

2 1

2
1 1 F

2

1 F

1
arg min

2 2

                                       ( ) .
2

s

tS S
t s

s s s s s
x s s

tC
t c
c c

c

u
x Ax y x f

x









 



    


  

 

 m R

. (15) 

Note that each term in (15) is a quadratic form, and it can be 
solved by the separate quadratic surrogate (SQS) method to 
update sx  as 

 
T

1

T T

1

( ) ( )
,

t t
t t s s s
s s C

c c
c

A Ax y P x
x x

A A  





 
 

1+ 1R R
  (16) 

where T 1 1

1

( ) ( ( ) ) ( )
t tC

t t t t tc s
s c c c s s

c

u
P x x x f 

 
 



     R R m
 . 

The calculation of formula (16) is performed in the element-
wise manner. Finally, the Lagrange multipliers in (11) can be 
updated by gradient descent: 

 1 1 1( ( ))t t t t
c c c c           (17) 

 1 1 1( ).t t t t
s s s su u f x       (18) 

The flow chart of the devised method is given in Algorithm 1. 

Algorithm 1 The workflow of proposed algorithm. 

Input: the projection sy  and the parameters , , , ,C    . 

Initialization: the system matrix A and 0 0 0, , f  . 

While not meet the stop criterion 
For t = 1: T Do 
        Updating c  by the SVT via (12); 

Updating sf  via (13); 

Updating sx  by the SQS method via (15), (16); 

        Updating ,c su  by the gradient descent via (17), (18); 

         t = t +1 
End 
Output: The reconstructed image sx . 

III. EXPERIMENTS AND RESULTS 
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A. EXPERIMENTAL DATA 
In this part, we first test the feasibility of the designed method, 
and then evaluate its behavior through the numerical mouse 
simulations and real data experiments. For the numerical 
simulations, the scan protocol and energy threshold setting are 
same as [30]. The distances between the X-ray source and the 
object and the PCD are 132 mm and 180 mm respectively. The 
PCD has 512 units and each of them is 0.1 mm length. A 
polychromatic 50kVp X-ray spectrum is generated and the 
intervals for the X-ray energy are divided into 8 channels as 
[16-22) keV, [22-25) keV, [25-28) keV, [28-31) keV, [31-34) 
keV, [34-37) keV, [37-41) keV and [41-50) keV. Figure 2(a) 
demonstrates the ground truth image for the simulation 
experiments and figure 2 (b) demonstrates the standardized X-
ray spectrum with eight energy channels. The scanning angle 
covers 360 with an interval of 2  or 4  , namely we get 180 
projection views or 90 projection views. The simulation of 
image noise was realized by adding the Poisson noise to 
projections as follows: 

 0Poisson( exp( )),p sI I y    (19) 

Where 0I  denotes the number of X-ray photons and sy  

denotes the noise-free projection. In this work, 0I  was set to 
35 10  and 61 10 , respectively. 

 

FIGURE 2. Simulated and real experimental data. (a) The truth 
image for simulation experiments; (b) Standardized X-ray spectrum with 
eight energy channels; (c) Real mouse data reconstructed image of 
channel 1 by FBP. 

To represent the effectiveness of the suggested method, 
several spectral CT image reconstruction methods are selected 
as competing algorithms, including SART, LRTV(Low-Rank 
TV)[28], FTNN(Framelet Tensor Nuclear Norm) [24] and 
SISTER(Spectral-Image Similarity-based Tensor with 
Enhanced-sparsity Reconstruction) [30]. The goal of the 
proposed algorithm is to characterize the low-rankness and 
high correlation between multi-channel image and perform 
high-quality spectral CT reconstruction with low-dose 
radiation. The initial image is reconstructed by FBP, and the 
number of iterations were put to be 100 for the simulation 
experiment and 20 for the real data study. We use the 
sequential subset synchronous iterative reconstruction with a 
limit of 10 subsets to accelerate the convergence of the image. 
The parameters in the comparison algorithms are adjusted to 
the optimum level in order to evaluate the algorithm fairly. In 
numerical simulation experiments, the iterative methods are 
stopped at iteration 45 in the LRTV and the FTNN, and 100 
in the SART and the SISTER. The regularization parameters 
in the LRTV are set to be 1.9, 0.0012   . While the 
regularization parameter 100   and patch size and similar 
patch numbers are set to 6 and 50 in the FTNN, respectively. 

The selection of the parameters in SISTER are similar to that 
in reference [30], and then slightly modified according to the 
experimental results. In real data experiments, the iterative 
methods are stopped at iteration 15 in the FTNN, the SART 
and the SISTER, 20 in the LRTV. We adjusted the according 
regularization parameters based on the simulation 
experiments. 

In both simulation experiment and real data experiment of 
LRTT, the parameters were set 51.8 10 ,  

1.1,  5.6,   22  . The size of the small tensor in each 
channel is 8 8 , and the group number in k-
means++clustering method was set to be 152 for the 
simulation experiment and 100 for the read data study. In this 
study, we choose the region of interest (ROI) containing 
complex texture structure for magnification and comparison. 
In the simulation experiment, the root means square error 
(RMSE), the PSNR and the SSIM of all reconstruction results 
are calculated.  
Note: For the convenience of writing, the proposed 

algorithm in this paper is abbreviated as LRTT (Low-Rank 
Tensor Train) in the following illustrations and documents. 

B. NUMERICAL SIMULATIONS 
To test the feasibility of the devised algorithm, we conducted 
a preliminarily test with the results shown in figure 3 under 
low-level noise 6

0 1 10I    with size of 256 256 8  . It is 
obvious that the LRTT method is capable of reducing noise 
and demonstrates its benefits. We performed the simulation 
experiments with different projection views and high-level 
noise 3

0 5 10I    with size of 512 512 8   to further validate 
the designed algorithm in figure 4 and 6, which show the 
results of 180 projections and 90 projections, respectively. 

The reconstructed images from different algorithms differ 
significantly, as shown in figures 4 (a)-(f) and 6 (a)-(f), and 
images produced by the LRTT method outperform the 
competing algorithms in fine structure and clear edge. Figures 
4 (b1) -(b4) and 6 (b1) -(b4) show that the images 
reconstructed by SART yielded the lowest image quality and 
were blurred by severe noise artifacts in four energy bins. The 
LRTV-based algorithm effectively suppresses noise and 
produced the cleaner image, but with the visible blocky 
artifacts shown in figures 4 (c1) -(c4) and 6 (c1) -(c4). In 
comparison to SART and LRTV, the FTNN and SISTER 
results provide much structures and reduce a significant 
amount of noise. However, FTNN and SISTER lose the finer 
structure of the object and blur the edges, as shown in figures 
4 (d1)- (e4) and 6 (d1) -(e4), respectively. Furthermore, the 
two algorithms were unable to clearly reconstruct the specific 
region denoted by the red box, including the detail information 
in figure 4 (a1). LRTT, on the other hand, produces impressive 
image results, suppresses the noise-induced artifacts, 
preserves the small structure and results in the remarkable 
visual effect shown in figure 4 (f1) - (f4). To see the results of 
different methods more clearly, the ROI “A” and “B” in 
figures 3 and 4 and the corresponding gradient images are 
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exhibited in figure 5. In SART, the bone structure in “A” was 
obscured by noise, blurred by blocky artifacts in LRTV, and 
well preserved in FTNN and SISTER. The ROI “A” and 
gradient images show that the LRTT method has a 
significantly clear contour profile and detail structure. 
Furthermore, the finer details highlighted by the red arrow 
could be seen in the LRTT but not in other comparison 
methods.  

Figures 4 and 6 show that the quality of the reconstructed 
image improves as the number of projection views increases, 
implying that the more projection views, the higher the image 
quality. Notably, the image structure of the soft tissue and the 
bone structure become more distinct.  

The line profiles along the yellow dashed line in figure 4 
(a1) were drawn in figure 7. It is obvious to see that the line 
profiles of SART and LRTV fluctuate significantly, with a 
significant deviation from the true value. However, while the 
FTNN and SISTER achieve better results, some areas cannot 
be completely restored (as seen in the area marked by the red 
arrow in figure 7). LRTT line profiles, on the other hand, are 
closest to the true value line and have the smallest deviation 
from the ground truth. Furthermore, the LRTT is more 
accurate than other algorithms, particularly in areas with 
complex structures (marked by the red arrows). It is more 
visible in the magnified images, as illustrated in figure 7 (a2) 
and (b2), the LRTT agrees with the ground truth with the least 
amount of error. 

To accurately measure the overall performance of various 
algorithms, RMSE, SSIM and PSNR are displayed in figures 
8 and 9. The represented method clearly outperforms the other 
competing algorithms. Notably, among all the competing 

methods for all channels, the LRTT algorithm achieves the 
highest SSIM and the lowest RMSE. When considering the 
full energy bin image, for instance, the LRTT method reduced 
the RMSE by 52.07%, 38.69%, 35.13%, 12.67%, respectively, 
when compared to the SART, LRTV, FTNN and SISTER. 
According to the SSIM and RMSE results, the LRTT can 
effectively recover the internal structure and reduce the error 
with the ground truth, which is consistent with the previous 
analysis. As can be seen from the curves of the evaluation 
indicators in figure 8 and 9, the noise increases as the 
projection views decrease, and the evaluation indicators of the 
competing algorithm deteriorate, while the LRTT remains 
relatively unaffected, indicating that the LRTT algorithm has 
excellent anti-noise capability. 

The LRTT algorithm yields the lowest RMSE and a rate of 
convergence that is almost as fast as the SISTER. Furthermore, 
when compared to the SISTER, the LRTT significantly 
enhances the calculation efficiency and decreases caculation 
time and physical memory, as shown in Table III and IV. The 
LRTT takes much less time and less memory resources than 
the SISTER, which confirms our conclusion. The SISTER 
requires an average of 45 seconds and 49 seconds for each 
iteration with 180 projection views under high and low noise, 
respectively. The LRTT algorithm, on the other hand, takes an 
average of 12.2 seconds and 11.7 seconds. The LRTT requires 
less processing power than that the SISTER, owing to a more 
direct tensor train decomposition and lower computational 
complexity, while the SISTER needs a large number of 
alternating least squares iterative operations in CP 
decomposition [30]. 

 

FIGURE 3. Denoising results of different algorithms from 180 projections and 
0

6
1 10I   . Rows 1 to 4 denote the 1th, 4th, 7th and 8th energy 

channel and the display windows are [0.01 0.19], [0.009 0.065], [0 0.055], [0 0.045], respectively. Column (a) shows the reference images, and columns 
(b) to (f) indicate the reconstruction images by SART, LRTV, FTNN, SISTER, LRTT method, respectively. 
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FIGURE 4. Reconstruction images of different algorithms from 180 projections. Rows 1 to 4 denote the 1th, 4th, 7th and 8th energy channel and the 
display windows are set to [0.01 0.19], [0.009 0.065], [0 0.055], [0 0.045], respectively. Column (a) shows the reference images, and columns (b) to (f) 
indicate the reconstruction images by SART, LRTV, FTNN, SISTER, LRTT method, respectively. 

 

FIGURE 5. Gradient images of the 8th energy channel from the different algorithms consistent with Figure4. Row 3 is the results of magnifying the 
ROI A, B, C and D in the corresponding image. The display windows are set to [0.0008 0.025] for the gradient image, [0.003 0.01] for ROI of the gradient 
image, and [0.007 0.025] for ROI of the reconstruction image. 

TABLE II MEAN VALUES AND STDS OF ROI A, B, E, F, G OF CHANNEL1 IN FIGURE 11 

Metric ROI SART LRTV FTNN SISTER LRTT 

 
Mean values 
 STD 

A 0.4465 1.33e-2 0.4756 3.79e-3 0.4908 3.68e-3 0.5129 4.07e-3 0.4705 3.08e-3 

B 0.5003 2.21e-2 0.4863 6.31e-3 0.5035 6.35e-3 0.5233 7.02e-3 0.4826 5.01e-3 

E 0.4761 5.36e-3 0.4719 1.38e-3 0.4885 1.17e-3 0.5083 1.24e-3 0.4690 6.71e-4 

F 0.6380 8.10e-2 0.5748 1.41e-2 0.5936 1.43e-2 0.6189 1.71e-2 0.5696 1.29e-2 

G 0.5792 2.52e-2 0.5651 6.71e-3 0.5854 6.61e-3 0.6100 7.58e-3 0.5616 5.76e-3 
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FIGURE 6. Denoising results of different algorithms from 90 projections. Rows 1 to 4 denote the 1th, 4th, 7th and 8th energy channel image and the 
display windows are set to [0.01 0.16], [0.009 0.06], [0 0.05], [0 0.045], respectively. Column (a) shows the reference images, and (b) to (f) represent the 
reconstructions of SART, LRTV, FTNN, SISTER, LRTT method, respectively. 

 

FIGURE 7. Pixel values of denoising results with different algorithms. column(a) denotes the profile results of channel 4 and (b) is channel 8. Row 
2 is the magnification of the corresponding area of red row 

 
FIGURE 8. Assessment of image quality for 180 projections and 3

0
5 10I    with different algorithms. From left to right are the evaluation 

indicators of PSNR, SSIM and RMSE of different algorithms. 
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FIGURE 9. Assessment of image quality for 90 projections and 3

0
5 10I   with different algorithms. From left to right are the evaluation 

indicators of PSNR, SSIM and RMSE of different algorithms

 

FIGURE 10. Convergence curve in terms of RMSE. The left is the convergence curve of LRTT for the difference noises and views. The right is the 
convergence curve of RMSE for the different methods. 

 

FIGURE 11. Real mouse data reconstruction results of 270 projection views. Columns from left to right represent the images of SART, LRTV, FTNN, 
SISTER and LRTT method, respectively. Rows 1 to 3 are the reconstructions of channel 1, 8 and 13, respectively. 

Figure 10 depicts a thorough analysis of the convergence of 
the various algorithms. The LRTT algorithm’s convergence 
curves under different projection views and noise levels are 
shown on the left. It is possible to conclude that the LRTT has 
superior convergence performance regardless of the noise 
level and the projection views. The convergence curves of the 
LRTT algorithm and the competing algorithms are displayed 
on the right. The LRTT and SISTER algorithms both exhibit 
excellent convergence, with the LRTT achieving the lowest 

RMSE value. All of these findings support the claim that the 
proposed approach is highly stable and resistant to noise. 

C.REAL DATA EXPERIMENT 

The real projection data were gained from a mouse injected 
with gold nanoparticles (GNPs) by MARS micro- CT as 
exhibited in [34]. The PCD system was performed at 120 kVp 
and 175 mA and the source had a minimum focal spot of 75 

m . The distances from the X-ray source to object and PCD 
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TABLE III THE COMPUTATIONAL COST OF METHODS 

 SART / LRTV / FTNN / SISTER / LRTT 

90Views 3

0
5 10I  

6

0
1 10I    

0.1     9.0     18.1       41.0      9.8 

0.1     8.4    18.2      48.7        9.9 

180Views 3

0
5 10I  

6

0
1 10I    

3.9    17.1    18.9     45.0      12.2 

3.2   16.3    18.3      49.0      11.7 

TABLE IV THE MEMORY USAGE OF METHODS 

Physical 

Memory (MB) 

SART LRTV FTNN SISTER LRTT 

15034 15564 17412 14505 12384 

are 158 mm and 255 mm, respectively. The PCD system has 
512 detector elements and each of them is of 0.11 mm. The 
spectrum of X-ray source is divided into 13 channels. The size 
of image is 512 512  for each channel. Figure 2 (c) 
demonstrates the FBP reconstruction image. 

Figures 11 and 14 illustrate the results of reconstruction 
images of 270 and 180 projection views, respectively, using 
different methods. The SART method produced images that 
were heavily impaired by noise, making it difficult to 
distinguish finer bone structure and soft tissue. The LRTV 
algorithm managed to reduce the noise through

 

FIGURE 12. Real data gradient image results of five algorithms. Columns from left to right show the images of SART, LRTV, FTNN, SISTER and 
LRTT method, respectively. Rows 1 to 3 are the reconstructions of channel 1, 8 and 13, respectively. 

 

FIGURE 13. Real data experiment ROI results of five algorithms. Columns a to e denote SART, LRTV, FTNN, SISTER and LRTT images, respectively. 
Rows f to j are the images and gradient images from channel 1, 8 and 13, respectively. 
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FIGURE 14. Decomposition results based on the reconstruction images from simulation experiments by different algorithms. Rows 1 to 3 
represent the basis material image of bone, tissue, and iodine, respectively.  Columns from left to right denote the decomposition results based 
on the reference and the reconstructed images with the SART, LRTV, FTNN, SISTER and LRTT method, respectively. The display windows of 
rows 1 to 3 are [0.01 0.551], [0.05 0.65], and [0.25 0.85], respectively. 

 

FIGURE 15. Real data experiment results of 180 projection views. Columns from left to right denote the images of SART, LRTV, FTNN, SISTER and 
LRTT method, respectively. Rows 1 to 3 are the reconstructions of channel 1, 8 and 13, respectively. 

regularization, but there are still blocky artifacts and some 
structural details are still lost. The FTNN and SISTER 
algorithms, as seen in the third and fourth columns, had a 
significant advantage over the LRTV and SART algorithms in 
terms of details recovery and edges preservation. However, 
compared to the LRTT, the two methods still had a noticeable 
gap in restoring image features and preserving edges.  

From the magnified ROIs in figures 11 and 14 and the 
gradient images in figure 12, it can be seen that it is 
challenging to differentiate the contour profile in “B” and “D” 
using SART, LRTV and FTNN, particularly in the high 
energy channels (e.g.,13th). However, SISTER and LRTT can 
provide distinct bone contours. The bone structure in “B” and 
“D” reconstructed by SISTER is connected in low energy 
channels, but is fragmented in the high energy channels, while 
the counterpart reconstructed by LRTT could restore the 
complete bone structure.  

To further illustrate the superiority of the LRTT, the ROIs 
with more intricate structures, namely “A” and “C”, are 
extracted. Upon magnification, it is evident that the images 
obtained by the SART are heavily corrupted by noise, and the 
contour structure is barely visible. The LRTV and FTNN have 
improved the images, but the edges are blurred and hard to 
make out. Generally, the SISTER and LRTT offer better 
image quality, with the LRTT providing the most complete 
and clear image structures, as can be seen from the 
corresponding gradient images. 

The ROI areas A and C depicted in figures 11 and 12 are 
magnified in figure 13. Upon closer inspection of the 
magnified ROI images, it is evident that the LRTT algorithm 

is highly effective in preserving the image edge information 
and detail structure. For quantitative evaluation of the real data 
experiments, we have presented mean values and standard 
deviations, as shown in table II. The mean values address the 
accuracy of the reconstruction results, while the standard 
deviations measure the performance of noise suppression for 
different algorithms. To calculate the evaluation index, we 
selected textured regions (A, B, G) and smooth regions (E, F) 
from figure 11 (a1 and e1). SART had the worst noise 
suppression effect. Compared to FTNN and SISTER, LRTV 
achieved smaller STDs, but lost detailed structures. From the 
quantitative evaluation, the LRTT gained the promising 
results in terms of reconstruction results and noise suppression. 

The decomposition results of spectral CT images in the 
simulation experiment are shown in figure 14. As can be seen 
from row 1 of figure 14, many soft tissue and iodine contrast 
agent pixels are incorrectly calssified by SART. LRTV 
algorithms are more likely to mistake iodine contrast agents 
for bone structures. Compared to SART and LRTV methods, 
the decomposition results obtained by FTNN and SISTER are 
improved, but there are still some structures that are relatively 
blurred. In contrast, the LRTT result can produce clearer bone 
and iodine contrast agent maps. Although the fine textures are 
still slightly blurred. 

IV.DISCUSSION AND CONCLUSIONS 

This study presented a novel image reconstruction approach 
based on the global correlation and spatial sparsity of the 
image, which was intended to address the serious noise and 
degradation of image quality of photon counting spectral CT 
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image. Numerical simulation and a real data analysis were 
employed to validate the efficiency of the designed method. 
The global correlation of the spectral CT image was 
investigated further in this study, and the tensor train rank was 
adopted to describe the global correlation. The relatively 
balanced expansion of the tensor train can better capure the 
high correlation between different channel images, effectively 
reduce image noise, and improve image quality. In order to 
reconstruct the image with distinct texture features, the energy 
channel spatial sparsity was also described using the L0 norm 
of the TV whilepreserving the structure details.  

Tensor train rank offers a superior ability to capture hidden 
correlations among different energy channels of spectral CT 
images, thanks to its well-balanced matricization strategy. 
Unlike other tensor ranks like Tucker rank, which cannot 
appropriately capture the global correlation of a tensor, tensor 
train rank provides a mean of the correlation between a few 
modes and the rest modes, while Tucker rank provides the 
mean of the correlation between a single mode and the rest 
modes. Therefore, it is a more robust tensor decomposition 
technique for spectral CT reconstruction. 

The tensor train decomposition contrubutes to the 
reconstruction of spectral CT images by exploring the global 
correlation between multi-channel images and realizing 
communication between high and low energy channel 
information. In other words, by using high-quality channel 
images to improve the detail retention capabilities of low-
quality channel images, the technique improved the 
expressiveness of the model to spectrum CT image. 

In this study, the tensor train decomposition is carried out 
directly, which reduced the calculation complexity and time 
consumptio, as shown in the table III and IV, compared with 
the least square iterative operation of CP decomposition used 
in the SISTER. This advantage over the competing methods 
was obtained while maintaining superior performance. The 
patch extraction operation employed in the SISTER took 
much longer than the k-mean++clustering in the LRTT. 
Intuitively, the LRTT algorithm is not significantly superior to 
the SISTER, but it could be concluded from Table III that the 
calculation efficiency of the LRTT has been greatly improved, 
and the time consumption has been reduced by about 75%. 

In this paper, a spectral CT reconstruction method based on 
the low rank tensor train was proposed. Based on the high 
correlation among channels and the sparsity of spectral CT 
image, two regularization terms were developed. To begin, k-
means++clustering was employed to extract similar blocks 
from various energy channel and form low rank tensors. 
Because of the benefit of maintaining image detail structure, 
the L0-norm of TV was utilized. In additional, the effective 
ADMM algorithm was adopted to optimize the model. Finally, 
numerical simulations and real data experiments were 
conducted to validate the effectiveness of the LRTT and the 
competing algorithms, demonstrating that the proposed 
method outperformed the contrast algorithms in terms of noise 
suppression and image detail structure preservation. 

In spectral CT imaging, material decomposition is a crucial 
component of spectrum CT imaging, as it enables material 
discrimination and information extraction. While our 
proposed algorithm outperformed the competing methods in 
image reconstruction, the real data experiments showed slight 
noise, leading to suboptimal material decomposition results in 
our numerical simulation experiments, as illustrated in figure 
14. Consequently, designing an efficient and reliable multi-
material decomposition algorithm is a key focus for the next 
stage of our project. 

As shown in table III and IV, our proposed LRTT 
algorithm requires less computation time and RAM due 
to its direct tensor train decomposition on low-rank tensor 
unit comparing with the competing algorithms. However, 
as demonstrated by the results of our numerical simulation 
and real data experiments, the reconstruction images of 
LRTT are not significantly better than those of the contrast 
algorithms. This may be due to the adoption of tensor train 
rank and L0-norm of gradient image, which only partially 
describe the global correlation and the non-local 
similarities of spectral CT. To address this limitation, we 
plan to explore the addition of neural network 
regularization in the next stage as in reference [51]-[54]. 
This approach will leverage the powerful feature 
extraction capabilities of neural network to more fully 
express the rich prior information of spectral CT. 

APPENDIX A 
For completeness, we decribe the concept of von Neumann 
entropy in [40] to describe the correlation between subspace 
and its complementary subspace. An N-order tensor 

1 2 NJ J J      can be expanded into a matrix along the k-th 
dimension 

( )
1,

, , ,
N

m n
k k l

l l k

X m J n J

 

                       (A1) 

( )kX  represents a composite system and the two subspaces are 

, ,m n
A BX X   respectively. The von Neumann entropy 

can be calculated by the following formula 

2 2
2

1

log ,
kr

i i
i

S  


                               (A2) 

where kr  is the rank of ( )kX  and non-zero singular values i  

fulfilling 2

1
1kr

ii



 . According to (A2), if the singular value 

decreases quickly, the entropy will be very small, indicating 
that the correlation between the two subsystems is, and vice 
versa. If ( )kX is obtained by expanding a tensor using 

formulation (4), the singular value of ( )kX will be realistically 

balanced and decreases slowly, resulting in a high entropy, 
indicating that the correlation between two sub-spaces is 
strong.  
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