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ABSTRACT Spectral computed tomography (spectral CT) is a promising medical 

imaging technology because of its ability to provide information on material 

characterization and quantification. However, the difficulty of decomposition also 

increases due to the nonlinearity nature of the measurements and ill condition of the 

problem, especially in the case of geometric inconsistency, which typically leads to low 

image qualities. Therefore, it is a crucial issue for inconsistent spectral CT imaging to 

improve the accuracy of material decomposition while suppressing the noise. This 

paper depends on a statistical reconstruction model with different priors to propose one-

step multi-material algorithms. In these approaches, the gradient sparisty-based and 

convolutional neural network based methods are designed for the case of the consistent 

numbers of material and energies. And volume conservation constraint are further 

developed while the two numbers are not equal. An efficient Newton descent method 

is adopted based on the simple surrogate function. For simulation experiments with 

different noise levels, the largest peak signal-to-noise ratio (PSNR) obtained by the 

proposed method approximately increases by 20.924 dB and 18.283 dB compared with 

those of other algorithms. Magnified areas of real data also further demonstrated that 

the proposed methods has a better ability to suppress noise. Numerical experiments 

verify that the proposed method efficiently reconstructed the material maps, and 

reduced noise compared with the state-of-the-art methods. 

INDEX TERMS Spectral computed tomography, Image reconstruction, One-step 

material decomposition, Inconsistent geometry. 
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I. INTRODUCTION 
Spectral computed tomography (spectral CT) has promising 
potentials in wide applications due to its ability of quantitative 
material discrimination for diagnostics and therapy evaluation 
in medical imaging[1-3]. Evidences are becoming found 
indicating that spectral CT can help to improve the diagnosis 
of coronavirus disease (COVID-19)[4, 5]. As one of the 
typical implementations of spectral CT, the principle of dual-
energy CT (DECT) has been studied for a long time. Recent 
developments of energy selective detectors have spurred the 
research in this area, especially the improvement of photon-
counting detectors (PCDs)[6]. However, the low signal-to-
noise ratio (SNR) measurements, caused by pile-up, 
fluorescence effect, charge sharing, and photon scattering, 
affects the image quality as well as the accuracy of material 
decomposition[7]. In the process of imaging, quantum noise, 
electronic noise and reconstruction noise introduced by 
hardware devices and algorithms will degrade our imaging 
results. As well as the development of equipment, optimizing 
algorithms and parameters are critical in the field of medical 
imaging to improve the accuracy of material decomposition 
and maintain image quality. 

In recent years, there are two categories of methods to 
reconstruct the material-specific images: two-step methods 
and one-step methods. Furthermore, the two-step methods can 
be divided into image-domain and projection-domain based 
methods. The image-domain based approaches[8-11] firstly 
reconstruct CT images from the polychromatic projection data, 
and then obtain the corresponding material images by a 
decomposition step on CT images. Unfortunately, the quality 
of material results is always severely affected by beam 
hardening artifact and noise explosion caused by direct matrix 
inversion-based decomposition, especially when there are 
more than two materials to be separated[12]. On the other hand, 
for projection-domain based methods, the multi-energy 
projections are first separated or decomposed into material-
specific projections, and then reconstructed through 
conventional algorithms[13-15]. However, it requires the 
projection in multi-energy measured under strictly consistent 
and identical imaging geometry (i.e., the same source, object 
and detector positions), which limits its application in fast kVp 
switching[16] or multi-source-multi-detector[17] systems. In 
addition, the material-specific results of two-step methods is 
dependent on the quality of the first step, and it is difficult for 
the second step to compensate for the errors caused by the first 
step. 

To avoid these problems for dual material imaging in dual 
spectral CT, several methods aiming at directly obtaining 
material-specific images from the nonlinear observation 
measurements have been proposed, called one-step iterative 
methods above mentioned, which typically combines forward 
models of the reconstruction with the material separation 
process. For instance, Zhao et al. utilized the first-order Taylor 
expansion of nonlinear observations and proposed an 
extended algebraic reconstruction technique (EART)[18] for 
DECT. For the consideration of the convergence efficiency, a 
couple variants of EART have been proposed in recent years, 
e.g., the simultaneous EART (ESART)[19], the 

monochromatic images guided iteration method[20] for dual-
energy, which accelerates the convergence but needs to 
manually determine the optimal values of reference energy. 
And the oblique projection modification technique 
(OPMT)[21] for the inconsistent scanning to acquire the 
material-specific maps. In addition, since the photons emitted 
by X-ray source often contain some statistical significance, 
different statistical iterative methods have emerged. Xu et 
al.[22] developed a penalized-likelihood algorithm to 
implement the basis materials decomposition for DECT. Long 
et al.[23], Weidinger et al.[24] and Mechlem et al.[25] 
designed the separable quadratic surrogates of spectral CT 
statistical models to achieve the one-step material 
decompositions. Barber et al.[26] applied the primal-dual 
prototyping framework to material imaging of spectral CT. 
Very recently, they further proposed to investigate the 
convergence theory of the nonconvex alternating direction of 
multipliers method (NcADMM)[27] and conducted the 
reconstruction of PCD system for the purpose of reducing 
beam-hardening and metal artifacts[28]. It is more difficult to 
solve the inverse problem when the occasion comes into 
inconsistent scanning system. 

Moreover, since the CT inverse problem is always ill-
conditioned, it is often necessary to incorporate prior 
knowledge as regularization term to suppress the noise of basis 
material images. Some sparsity-based methods are applied to 
improve the reconstruction quality. For example, Cai et al.[29] 
adopted Huber function[30] as the regularization term in a 
Bayesian approach. Chen et al.[31, 32] applied the convex 
indicator function of the gradient image to enforce an upper 
bound on the material images and monochromatic images. 
Zhang et al.[33] proposed a direct material reconstruction 
method that combined total variation (TV) and block-
matching and 3D filtering for DECT. However, for the above 
one-step iterative method, some methods are even susceptible 
to noise due to lack the ability of noise suppression or one need 
to adjust the parameters of the regularization terms manually 
when the number of materials increases. Direct extensions and 
applications of the above-mentioned one-step methods to 
multi-material reconstructions are unstable or will even cause 
failure, due to the increase of the ill-posedness for the case of 
inconsistent geometry. Therefore, it is a key issue to design an 
efficient and accurate one-step method based on an 
appropriate optimization model for multi-material imaging in 
spectral CT. 

In this work, for multi-material reconstruction under 
inconsistent geometry, a statistical reconstruction model is 
established combining different material-specific image 
regularization priors. For the case where the number of 
spectrums matches the number of materials, a gradient sparsity 
TV based prior and a convolutional neural network, denoising 
convolutional neural network (DnCNN)[34], based prior are 
incorporated into the statistical model. For the case where the 
number of spectrums does not match the number of materials, 
a new volume conservation constraint (VCC) is developed to 
improve the ill condition of the inverse problem. Moreover, an 
efficient Newton descent algorithm based on the simple 
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surrogate function. To verify the practical performance of the 
presented method, a series of numerical experiments have 
been conducted and shown that the proposed algorithms have 
an improved results of noise suppression compared with the 
state-of-the-art one-step material reconstruction methods. 

The organization of this paper is as follow. Section 2 
introduces the physical model, and describe the proposed 
reconstruction algorithms. Section 3 presents the numerical 
verifications of the proposed method and experimental 
comparisons with typical competing methods. Discussions 
and conclusions are subsequently presented in Section 4 and 
Section 5, respectively. 

II. MATERIALS AND METHODS 

A. STATISTICAL MULTI-MATERIAL RECONSTRUCTION 
MODEL 
Spectral computed tomography (spectral CT) utilizes the 
attenuation differences of different materials when passing 
the polychromatic X-ray. The attenuation of object ( , )x Ef  
at ray l under spectrum ( )sS E  follows the formula: 

, ( )exp( ( , ) ) ,s l s l
y S E x E dl dE   f  (1) 

where , 1,2,...,sl s S  . Further, ( , )x Ef  can be 

decoupled into a linear combination of energy-dependent 
term ( )k E  and basis material-dependent term ( )k xf , i.e., 

1

( , ) ( ) ( ),
K

k k
k

x E E x

f = f  (2) 

where K  is the total number of basis materials. In general, 
the discrete form is utilized to establish the transmission 
model: 

, , , ,
1 1

exp( ),
sM K

s l s m m k s l k
m k

y S A
 

   f  (3) 

where ,s mS is the sampling point of the energy spectrum 

( )sS E , and ,
1

1
sM

s m
m

S


 . ,s lA  represents the line integral of 

basis material kf  and the path of the ray l . For the photon 

counting detector, the measurements is assumed to follow 
the Poisson model: 

, , , ,
1 1

( exp( )),
sM K

s l s m m k s l k
m k

y Poisson S A
 

  f  (4) 

For the inconsistent scanning geometry, the path of the 
measured ray under one spectrum do not coincide another 
spectrum. In other words, the intersection of any two sets of 
ray l  is empty ( 1 2 , 1, 2 {1,..., }s s s s S      ). Assuming 

that the measured photons ,s ly  follow Poisson statistical 

model. Given the measurements ŷ , the negative log-
likelihood function with respect to the photons is  

1 2 , 1 2 , , 1 2
,

ˆ( , , ) ( , , ) ln ( , , ).K s l K s l s l K
s l

L y y y          f f f f f f f f f  (5) 

However, minimizing the negative log-likelihood function 
for the polychromatic measurements is always ill-posed due 
to the severe noise. It is need to combine with some prior 
knowledge as regularization term to improve the condition 

of solution. Therefore, the multi-material reconstruction 
model is descripted as 

1 2
1 2 1 2

, ,
min ( , , ) ( , , )

K
K KL R


      

f f f
f f f f f f  (6) 

where 1 2( , , )KR   f f f  is the mathematical symbolic 

representation of prior knowledge, such as gradient sparsity 
of reconstructed images and other material-specific 
knowledge.   is a scaling nonnegative factor to balance the 
regularization term. 

B. PRIORS BASED METHODS FOR INCONSISTENT 
POLYCHROMATIC PROJECTION 
From the definition of 1 2( , , )KL   f f f , there is the operations 

of summing first and then taking logarithm, it is difficult to 
obtain the analytical solution directly. One intuitive idea is 
to find a simple representation of the complex function that 
is easier to solve. Before the final representation obtained, 
we first rewrite the equation (5) as 
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 (7) 

where 1 2 , ,
1

( , , ) exp( )
K

K m k s l k
k

t A


    f f f f , and ( )n  is a 

nonnegative parameter. To get a more explicit expression of 
parameter , it is necessary to state that  satisfies 

the assumption ( ) ( ) ( )
1

1 1

( ,..., ) 1
s sM M

n n n
K

m m

 
 

   f f . Combining 

with the fact that ( ) lnh x x y x   is a convex function, the 
above equation (7) transformed into finding its upper bound 
by Jensen’s inequality 

1 2

, ,( ) ( )
1 2 , 1 2( ) ( )

, 1 1
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1 2 , 1 2( ) ( )

, 1
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f f f

f f f f f f

f f f f f f

 (8) 
If the equality holds, the upper bound close to the original 

objective function 1 2( , , )KL   f f f . Therefore, we need to 

construct a proper ( )n  to make the equality holds, i.e., the 
equality holds if and only if the value is a constant. Hence, 
the following equation at point ( ) ( )

1( ,..., )n n
Kf f  is established 

, ( ) ( )
1( )

( ,..., ) ,s m n n
Kn

S
t c


f f  (9) 

where c  is a constant. According to ( )

1

1
sM

n

m




 , we get the 

explicit formula of ( )n  as 

( )n ( )n 
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where 
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And , 1 2
1

ˆ( , , )
sM

s m K
m

S L


   f f f  is the desired final representation 

mentioned at the beginning of the subsection. Although the 
original objective function  is approximated, 

the simple function is equivalent to  at a 

certain point from the construction process. 

C. GRADIENT SPARSITY-BASED ALGORITHM 
In this subsection, the total variation (TV) is utilized to 
characterize the material maps sparsity, i.e., the 

regularization term 1 2 1
1

( , , )
K

K k
k

R


    f f f f , where 

: ( , )k x k y kf f f =   denotes differential operator along the 

x and y directions. And the TV term is defined as 

1 1 1
.k x k y k    f f f  (12) 

Therefore, the gradient sparsity based reconstruction model 
can be illustrate as 

1 2
, 1 2 1, ,

1 1
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s

K

M K

s m K k
m k

S L 
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To solve the optimization problem, the Newton method is 
applied to get new iterations in the following equation 
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 (14) 
where ( )diag x  denotes the diagonal matrix of x . Note that 

the continuous function 
1
  is not differentiable, but for a 

discrete digital two-dimensional image, the symbols of the 
first and second derivatives here represent operations pixel-
wised. The overall description of gradient sparsity-based 
method is summarized in Algorithm 1. 

Algorithm 1. TV-based method 
Input: measured projection data ,ˆs ly , parameter 

max, n . 

Initialization: (0) ( 1,2,..., )k k Kf , 0n  . 

While maxn n  

Update ( ) ( 1,2,..., )n
k k Kf  via (14). 

End while 
Output: , ( 1,..., )k k Kf  

D. DEEP PRIOR-BASED ALGORITHM 
Rather than the TV penalty, we also consider a deep prior, 
DnCNN, as a flexible module under the plug-and-play (PnP) 
framework[35]. The deep prior-based multi-material 
reconstruction model is 

1 2
, 1 2

, ,
1 1
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m k
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f f f

f f f f  (15) 

where ( )k f  is the DnCNN deep prior in terms of k -th 

basis materials. Furthermore, auxiliary variables 1 2, , K  g g g  

are introduced to transform the problem as 
2

, 1 2
,

1 1 1 2

ˆmin ( , , ) ( )
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s
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f g

f f f g f g ,  

 (16) 
where k  is the Lagrangian multiplier, and k  is the 

nonnegative penalty parameter. The alternating directions 
method of multipliers (ADMM) is adopted to solve problem 
(16), it is divided into two sub-problems 
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g

g g f g

f=   

 (18) 

In the implementation of sub-problem 1 2, , K  g g g , it is a 

denoising process based on a pre-trained DnCNN network. 

1 2( , , )KL   f f f

1 2( , , )KL   f f f

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3261661

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

5  VOLUME XX, 2017 

Feeding 
( )

( 1)
n

n k
k

k
 
f  into the denoiser DnCNN network, 

we obtain the solution ( 1)n
k
g . The parameter 

k


  is 

related to the error estimation between the clean and noisy 
images. The summary of deep prior-based material 
reconstruction (DnCNN-based) method is listed in 
Algorithm 2. 

Algorithm 2. DnCNN-based method 
Input: measured projection data ,ˆs ly , parameter 

max, , ( 1,..., )kn k K   . 

Initialization: (0) (0), ( 1,2,..., )k k k Kf g , 0n  . 

While maxn n  

For 1,2,...,k K  
1. Update ( )n

kf  via (17). 

2. Update ( )n
kg  via (18). 

3. ( 1) ( ) ( 1) ( 1)( ).n n n n
k k k k k      f g  

End while 
Output: , ( 1,..., )k k Kf  

E. VOLUME CONSERVATION CONSTRATINT-BASED 
ALGORITHM 
If the numbers of the basis material and spectrums are not 
same, i.e., the known spectrums is less than the number 
material, the nonlinear inverse problem can be described as 

1
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It means that the nonlinear equation system about the 
unknown basis materials , 1, 2,...,k k Kf  is more ill-posed 

and the existence of noise will aggravate the difficulty of 
solving problem. Similar to the previous two subsections, the 
intuitive idea is to introduce regularization terms to suppress 
the adverse effects of noise. In addition, we further assume 
that the volume of basis materials in a voxel or pixel is 
conserved. Under this assumption, the volume conservation 
constraint is proposed for the first time to reduce the 
difficulty through adding nonlinear equations, which 
formulation is derived as (20). Therefore, the minimization 
is reformulated as 

1 2
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where 0T  is a template and its pixel is 1 when the materials 

is present. We try to integrate this equality constraint in the 
descent step of basis materials. First, we convert the 
constraint into projection data at an auxiliary normalized 
spectrum TS , i.e., 

0 0 0, , , ,
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         f  (20) 

where ,H lA  denotes the path of l -th ray under the high 

energy scanning geometry, HM  is the total number of 

sampling at high energy. ,
1
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  and it should be point 

out that ,T mS  of the auxiliary spectrum can be equal to 

1 HM  and the we get pre-computed 
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Finally, we establish the surrogate function of 
0Ty , 
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And other derivations are similar to the previous descriptions. 
Similar as the previous update, Newton's method is applied 
to obtain the iterative form of the main formula as well while 
the regularization term is chosen as TV penalty: 
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The overall description of the volume conservation 
constraint based method is summarized in Algorithm 3. 

Algorithm 3. VCC-based method 
Input: measured projection data ,ˆs ly , parameter 

max, n . 

Initialization: (0) ( 1,2,..., )k k Kf , 0n  . 

While maxn n  

Update ( ) ( 1,2,..., )n
k k Kf  via (19). 

End while 
Output: , ( 1,..., )k k Kf  

III. RESULTS 
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In this section, the performance of the proposed method will 
be validated through a simulated walnut data[36] and an 
industrial QRM phantom dataset. The comparison methods 
are chosen as the three-material EART, the three-material 
OPMT, the TV-based method listed in Algorithm 1, the 
DnCNN-based method listed in Algorithm 2, and the VCC-
based method listed in Algorithm 3. To further clarify the 
effectiveness of the proposed algorithms, the root mean 
square error (RMSE), the peak signal-to-noise ratio (PSNR), 
and the structural similarity index (SSIM)[37] are employed 
for quantitative assessment. In addition, to accelerate the 
algorithms, the ordered subsets (OS) technique[38] is 
adopted to implement experiments, and the OS number is set 
to 33 for our proposed methods in the numerical experiments. 
In the simulation experiments, the regularized penalty 
parameters   of the proposed methods are set to 1. And in 
the real dataset, the corresponding   of the proposed 
methods are set to 10-2, 1, and 10-3, respectively. The 
parameters of comparison methods also modified according 
to the condition of different datasets. And the total numbers 
of iterations are set to 3000 and 30 for noisy simulation and 
real experiments, respectively. 

A. SIMULATION EXPERIMENTS 
The simulated walnut dataset with size of 512×512 pixels 
contains three materials, i.e., tissue, bone, and iodine, which 
is shown in Figure 1(a1)-(a4). And the concentration of 
iodine contrast agent is 15 mg/mL. The attenuation curves of 
three materials are shown in Figure 1(b). The distances of 
source-to-object and source-to-detector are 300.0 mm and 
600.0 mm. The three source spectrums for the simulation 
data are generated by the SpekCalc software[39] at 80 kVp, 
110 kVp, and 140 kVp, the distributions are shown in Figure 
1(c). Projections of each spectrum are acquired from 363 
views uniformly distributed in the 360° range under a fan 
beam scanning geometry. And the number of detector units 
is 1024 with size of 0.124 mm. The ray paths of three 
spectrums are inconsistent to obtain the measured 
projections in the fast kVp switching scanning. In the 
experiments, the initial images for all methods are set to zero, 
and the spectrums used in VCC-based method are the high 
and low voltages, i.e., 80 kVp and 140 kVp. 
 

 

Figure.1 (a) Simulation walnut phantom that consists of (a1) tissue, 
(a2) bone, and (a3) iodine and (a4) represents the simulated object. 
(b) Three normalized spectrums used in the simulation experiments. 
(c) Linear attenuations of different materials. 

B. NOISE-FREE DATA VERIFICATION 
In this subsection, the ideal noise-free walnut data are first 
applied to verify the performance of the proposed methods. 
Figure 2 shows the materials maps reconstructed by the 
proposed method, where columns (a) to (d) represent the 
ground truth (Reference), the TV-based method, the 
DnCNN-based method, and the VCC-based method, 
respectively. Rows from up to bottom are the distributions of 
tissue, bone, and iodine materials. According to the results 
shown in Figure 2, the material maps reconstructed by the 
proposed methods are close to the given phantom maps in 
most areas. Since DnCNN is a pre-trained network, it is easy 
to overfit when the number of iterations is too large. This is 
also shown by the results reconstructed by DnCNN-based 
method. For example, it shows some bone structures in the 
tissue map, as shown by purple arrows in Figure 2 (b1). We 
further plot the RMSE curves of different materials for the 
three proposed methods. 

As shown in Figure 3(a), the proposed VCC-based method 
has a faster descent trend compared with the TV-based 
method and the DnCNN-based method. The reason for this 
phenomenon is that the former only utilize two spectrums to 
update, while the latter requires three energies to acquire 
three material maps. Meanwhile, DnCNN based method has 
an upward trend with the increase of iteration due to the 
overfitting. In addition, three different forms of the volume 
conservation constraint are test. 

 
Figure 2. Results of noise-free simulation dataset obtained by the 
proposed methods. Columns (a) to (d) represent the Reference, the 
TV-based method, the DnCNN-based method, and the VCC-based 
method, respectively. Rows from top to bottom indicate three 
materials: tissue, bone, and iodine, respectively, where the display 
windows of the first two columns are [0.02 1], [0.01 1], and [0.01 
1], respectively. 

 
In Figure 3(b), the high spectrum represents the high 

energy (140 kVp) used in the simulation experiments. The 
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equal spectrum means that the normalized spectrum used in 
VCC-based method is discretized into 140 sampling points, 
and the intensity of every point is equal. And 2-equal 
spectrum indicates that we computed two volume 
conservation constraints in the implementation with two 
equal spectrums at 140 sampling points and 80 sampling 
points. The results of RMSEs shows that the high spectrum 
and equal spectrum have the same positive effect on the 
algorithm. Their curves overlap in Figure 3(b). And the 2-
equal spectrum also declined, and at a faster rate than the 

other two tested spectrums. The reason for this phenomenon 
is that the two equality constraints at two spectrums are 
enforced to accelerate the convergence. From these results, 
it demonstrates that the introduction of the volume 
conservation constraint in the VCC-based method plays an 
important role in multi-material reconstruction and it does 
not require additional estimation of spectrum. Note that the 
results of VCC-based method obtained by the usage of two 
equality constraints. 

 

 
Figure 3. (a) The RMSE curves of the proposed three methods, (b) The verified RMSE curves of different spectrums used in the VCC-based 
method. Columns from left to right represent tissue, bone, and iodine materials.
 

C. COMPARISON EXPERIMENTS WITH NOISY DATA 
In this subsection, comparison with the state-of-art 
algorithms will be carried out to further verify the 
performance of the proposed method. To make the data more 
realistic, different Poisson noise levels are added to obtained 
projections to simulate image noises. In this work, Poisson 
noise is generated and injected into the projections to 
simulate noisy measurements as 

00
0, exp( ),

!

k
I

i
I

P e P
k

   p p  (24) 

where 0I  stands for the number of incident X-ray photons, 

p p0,  are the measured projection data and the photons of 

adding noise collected by the detector unit i , respectively. 
k  is the index of detector unit. In this work, we set 

= 1e50I  and = 1e70I  to validate the effectiveness of 

the proposed algorithm. 
Figure 4 and Figure 5 show the materials results and 

virtual monochromatic image at 75 keV reconstructed by 
different methods at two different noise levels, where the 
columns (a) to (f) represents the images of Reference, EART, 
OPMT, TV-based method, DnCNN-based method, and 
VCC-based method, respectively. Compared with Reference, 

the results of the EART method is relatively inaccurate, 
especially in the imaging of tissue, there are still parts of 
bone in tissue images. The results of OPMT method have a 
considerable improvement. But at the high noise level, the 
tissue map of OPMT has obvious noise due to the lack of 
noise suppression capability, especially in the area marked 
by purple arrow in Figure 5 (c4). Compared with EART and 
OPMT methods, the three prior-based methods have the 
ability of suppressing noise, which have been indicated in 
the reconstructed material maps. In particular, there are some 
misclassifications in the tissue and iodine basis materials of 
DnCNN-based method. The reason is that DnCNN method 
is derived under the ADMM framework and its decreasing 
trend is slower than that of Newton method with the same 
iterations. Furthermore, the last rows of Figure 4 and Figure 
5 demonstrate the virtual monochromatic images of different 
methods. The results show that the proposed methods have 
the ability of suppressing noise when compared with the 
EART and OPMT algorithms. 

Quantitative evaluations are list in Table 1. Taking the 

high noise level = 1e50I  as an example to illustrate the 

overall performance of different methods. It can be seen 
from Table 1 that the averaged PSNRs for three materials of 
the proposed three algorithms are 32.951 dB, 42.009 dB and 
47.173 dB, respectively. And the highest value is obtained 
by the VCC-based method, which increased PSNRs by 
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20.924 dB and 18.283 dB compared with those of the EART 
and OPMT methods, respectively. And the averaged SSIMs 
for the proposed three algorithms are all over 0.94, where the 
VCC-based method obtains the highest SSIM index 0.999, 
while the SSIMs of EART and OPMT are below 0.94. In 
addition, the highest averaged RMSE among the three 
proposed algorithms is 0.00592, which reduced RMSEs by 
89.65% and 88.79% compared with those of the EART and 

OPMT methods. The line profiles of different materials, 
drawn from the pixels along the white dashed line in Fig. 4 
(a1) and Fig.5 (a1), are further plotted in Fig.6. It 
demonstrates that the TV-based method and VCC-based 
method obtain more accurate structures and details than 
EART and OPME methods, especially in the areas pointed 
by the purple arrows. 

 

 

 
Figure 4. Results of simulation dataset obtained by different methods with noise ( = 1e70I ). Columns (a) to (f) represent the Reference, 

EART method, OPMT method, the TV-based method, the DnCNN-based method, and the VCC-based method, respectively. Rows from top 
to bottom indicate three materials: tissue, bone, iodine, and virtual monochromatic image at 75 keV, respectively, where the display windows 
of the display windows are [0.02 1], [0.01 1], [0.01 1], and [0.001 0.055], respectively. 
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Figure 5. Results of simulation dataset obtained by different methods with noise ( = 1e50I ). Columns (a) to (f) represent the Reference, 

EART method, OPMT method, the TV-based method, the DnCNN-based method, and the VCC-based method, respectively. Rows from top 
to bottom indicate three materials: tissue, bone, iodine, and virtual monochromatic image at 75 keV, respectively, where the display windows 
of the display windows are [0.02 1], [0.01 1], [0.01 1], and [0.001 0.055], respectively. 

Table 1. Quantitative results of different methods. 
  Noisy( = 1e70I )  Noisy( = 1e50I ) 

Algorithm Materials PSNR SSIM RMSE  PSNR SSIM RMSE 

EART 
Tissue 19.677 0.882 1.04e-1  19.665 0.866 1.04e-1 
Bone 32.460 0.942 2.38e-2  31.105 0.934 2.78e-2 
Iodine 27.950 0.899 4.00e-2  27.976 0.899 3.99e-2 

 Averaged 26.696 0.908 5.59e-2  26.249 0.899 5.72e-2 

OPMT 
Tissue 22.043 0.855 7.90e-2  18.721 0.817 1.16e-1 
Bone 30.568 0.952 2.96e-2  30.847 0.942 2.87e-2 
Iodine 27.335 0.847 4.30e-2  37.103 0.959 1.40e-2 

 Averaged 26.649 0.884 5.05e-2  28.891 0.906 5.28e-2 

DnCNN-
based 

Tissue 35.312 0.943 1.72e-2  27.088 0.901 4.42e-2 
Bone 40.833 0.991 9.09e-3  32.182 0.981 2.46e-2 
Iodine 42.551 0.969 7.45e-3  39.582 0.948 1.05e-2 

 Averaged 39.566 0.968 1.12e-2  32.951 0.943 2.64e-2 

TV-based 
Tissue 41.939 0.967 8.00e-3  31.662 0.932 2.61e-2 
Bone 47.096 0.997 4.42e-3  45.671 0.998 5.21e-3 
Iodine 49.864 0.981 3.21e-3  48.694 0.973 3.68e-3 

 Averaged 46.299 0.981 5.21e-3  42.009 0.968 1.17e-2 

VCC-based 
Tissue 53.669 0.999 2.07e-3  39.026 0.995 1.12e-2 
Bone 58.151 1 1.24e-3  45.837 0.999 5.11e-3 
Iodine 61.447 0.999 8.47e-4  56.656 1 1.47e-3 

 Averaged 57.756 0.999 1.39e-3  47.173 0.998 5.92e-3 
 

 
Figure 6. Profiles of different methods at different noise levels 

 

D. REAL QRM DATA EXPERIMENT 
In this section, the performance of the proposed methods are 
investigated by an industrial QRM phantom, which consists 
of five different materials including cortical mandible bone, 

spongious bone, muscle, CT water, and adipose. The 
diameters of the phantom and each cylinder are 100.0 mm 
and 20.0 mm, respectively. It should be pointed out that two 
different densities of bone are considered to bone basis 
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material, CT water and adipose are seemed as water basis 
material with impurities, which is shown in Figure 7. 

The QRM phantom data is obtained using an industrial CT 
system in our laboratory under a cone beam system, which 
mainly composes of an X-ray rotary stage with an object 
holder and flat panel detector (4030E, Varian, USA). The 
QRM are scanned repeatedly at tube voltages 60, 80, and 100 
kVp along a circular line and the tube current is set to 220 
A for every scanning. The central slice of each two-
dimensional projection is extracted and down-sampled as 
512 detector bins for the materials reconstruction in this 
experiment. The source to object and detector distances are 
245.0 mm and 808.0 mm, respectively. The projections 
corresponding to the three X-ray scanning are obtained in an 
alternating mode, i.e., the paths of ray are geometrically 
inconsistent. A total 720 projection views are collected in 
360° range for each scanning. 

 
Figure 7. QRM phantom consists of five materials: cortical 
mandible bone, spongious bone, muscle, CT water, and adipose, 
where (a) represents the real QRM object; (b) represents the 
schematic diagram of five materials. And (c) plots the estimated 
three spectrums, (d) draws the linear attenuations of three basis 
materials.  

The pixels of reconstructed image are 512×512 with each 
size of 0.252×0.252 mm2. And the spectrums are estimated 
by the expectation-maximization (EM) method[40], which 
are shown in Figure 7 (c). The linear attenuations of three 
basis materials used in our experiments are drawn in Figure 
7 (d). Some regions of interest (ROIs) (denoted in red dotted 
squares Figure 8) are chosen to make quantitative evaluation 
of the mean value of attenuation coefficients and standard 
deviation (STD), which is calculated as follows 

2

1

1
( ) ,

roiN

r
rroi

STD x x
N =

= -å  (25) 

where rx  denote the value of r -th pixel. x  is the pre-

computed mean value of all roiN  image pixels of the 

selected ROI. And Some ROIs (denoted in yellow dotted 
squares in Figure 9) are magnified to assess the noise 
suppression across the different algorithms. Furthermore, the 
projection views are downsampled to 360 to assess the 
performance of the proposed methods. 

Figure 8 shows the reconstructed results of all methods, 
where columns from (a) to (e) represent EART method, 
OPMT method, DnCNN based method, TV-based method, 
and VCC-based method, respectively. Rows from up to 
bottom represent the three materials, i.e., water, muscle, and 
bone. Note that the proposed VCC-based method chooses 
the spectrums generated by tube voltages 60 kVp and 100 
kVp. As shown in Figure 8, all the five methods can obtain 
the maps of three materials. However, due to the lack of 
denoising ability, some noises appear in the results 
reconstructed by EART and OPMT methods, which can be 
obviously seen from the reconstruction results of water basis 
material in Figure 8 (a1) and (b1), marked by purple arrows. 
And there are some other structures of muscle and water in 
the bone maps, as denoted by purple arrows in Figure 8 (a3) 
and (b3). The remaining three methods are all the methods 
proposed in this paper, and they have the advantages in noise 
suppression to a certain extent. To further illustrate the 
effectiveness of one-step method in eliminating beam-
hardening, virtual monochromatic images are further shown 
in Figure 9. Figure 9 displays the results of virtual 
monochromatic images between the five iterative methods at 
single energy 70, and 110 keV, respectively. The results of 
EART and OPMT show that the reconstructed images is not 
smooth and uneven due to the existence of noise, especially 
in the region marked by purple arrows. Compared with the 
results reconstructed by EART and OPMT, the other three 
iterative one-step methods has abilities of suppressing noises, 
as can be observed from the ROIs in Figure 9. The 
downsampled results of 360 projection views, shown in 
Figure 10 and 11, also have the similar opinions. 

Table 2 further list the quantitative evaluations of different 
methods under 720 projection views, where the mean value 
is measured to assess the accuracy of the results, while the 
STD value evaluates the noise suppression ability of 
different methods. The STD values of the proposed methods 
also demonstrate that the proposed methods are superior in 
suppressing noises. The reference values of three ROIs are 
computed according to the threshold segmentation results of 
filtered backprojection algorithm reconstructions. From the 
Table 2, the proposed methods have similar mean values in 
ROI 3 with other methods, indicating the accuracy of 
reconstruction results, while the STD values show the 
advantages of the proposed methods in ROI 1 and ROI 3 
compared with other methods.
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Figure 8. Reconstructed three material images of different methods under 720 projection views. Columns from (a) to (e) represents the EART 
method, OPMT method, DnCNN based method, TV-based method, and VCC-based method, respectively. Rows from up to bottom represent 
water, muscle, and bone. And the corresponding display windows are [0 1.1], [0 0.5], and [0 0.04]. 

 

 
Figure 9. Virtual monochromatic images and the corresponding enlarged areas of different methods under 720 projection views. The first 
row represents the images at 70 keV and the second row represents the images at 110 keV. And the display windows are [0 0.04] and [0 
0.03]. 
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Figure 10. Reconstructed three material images of different methods under 360 projection views. Columns from (a) to (e) represents the 
EART method, OPMT method, DnCNN based method, TV-based method, and VCC-based method, respectively. Rows from up to bottom 
represent water, muscle, and bone. And the corresponding display windows are [0 1.1], [0 0.5], and [0 0.04]. 

 

 
Figure 11. Virtual monochromatic images and the corresponding enlarged areas of different methods under 360 projection views. The first 
row represents the images at 70 keV and the second row represents the images at 110 keV. And the display windows are [0 0.04] and [0 
0.03]. 

Table 2. The comparison of mean values and standard deviations for different methods 
 ROI Reference EART OPMT DnCNN-based TV-based VCC-based 

720 
views 

1 1.005 0.063 1.005 0.063 1.005 0.063 0.9901 0.033 1.036 0.025 1.019 0.014 

2 0.284 0.211 0.282 0.214 0.283 0.214 0.324 0.246 0.323 0.245 0.317 0.240 

3 0.014 0.010 0.014 0.010 0.014 0.010 0.012 0.009 0.013 0.010 0.013 0.010 

 
 

IV. DISCUSSIONS 
In this paper, we consider the multi-material reconstruction 
problem in the case of each energy spectrum has 
inconsistent scanning path. Note that the ill-condition of 
the multi-material reconstruction problem will be 
intensified with the increase of the number of materials, 
especially under inconsistent scanning geometry. The 
projection-domain methods don’t work for the inconsistent 
path. It is more difficult to obtain accurate distributions of 
basis materials based on image-domain approaches when 
basis materials have similar attenuations. Aiming at this 
situation, a statistical multi-material based one-step 
reconstruction model is considered to describe a more 
realistic distributions of photons. The model is firstly 
simplified by incorporating the statistical upper bound. 
Then, fidelity data term further combines sparsity-based 
TV regularization term and deep prior-based regularization 
term to integrate the noise suppression in each iteration of 
material reconstruction when the number of energies 
matches the number of material. In addition, when the 
number of energies and number of materials do not match, 
a new volume conservation constraint is developed to 
improve the ill-condition of the inverse problem. Moreover, 
several numerical experiments are carried out to verify the 
effectiveness of the proposed methods. The results show 
that the practical performance is consistent with the 
original design, and it can obtain a relatively stable 
solution while suppressing noise. The monochromatic 

imaging results, as shown in Figure.9, further indicates the 
proposed method has the ability to suppress noise. 

Although the proposed algorithms show that it is useful 
for the multi-material reconstruction, model-driven 
methods based on certain assumptions cannot fully express 
the physical mechanism for the realistic application of CT 
imaging, for example, the response of detector units are 
different for certain spectrum, and noise in the measured 
projections is easily multiple amplified in the 
reconstructed process of basis materials. The disturbance 
of noise is a huge instability factor for the convergence of 
the algorithm. As a result, data-driven methods for 
materials reconstruction have also been developed, such as 
Zhang et al.[41] proposed a butterfly network to realize 
material decomposition based on image-domain under 
dual-energy. Fang et al. applied the unsupervised 
denoising method called Noise2Noise[42] as the prior 
knowledge to estimate the material maps directly from the 
raw projection data[43]. And other researcheres also find 
the deep learning based method has certain advantages in 
medical image analysis[44-47]. These methods also 
encourage us to combine model-driven and data-driven 
methods to achieve accurate decomposition of materials by 
eliminating the influence of beam-hardening artifacts 
while suppressing noise in the future. 

V. CONCLUSIONS 
For the inconsistent material-specific reconstruction, this 
paper applies a statistical model with different prior to 
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establish material reconstruction model. First, the gradient 
sparsity-based and deep prior-based regularization terms 
are incorporated into the optimization problem to update 
the material maps when the numbers of materials and 
energies are consistent. Then, the volume conservation 
constraint is further added to improve the convergence rate 
when the numbers of materials and energies are not 
consistent. Furthermore, the ordered subsets are applied to 
accelerate the proposed algorithms. The simulation and 
real data experiments verify the effectiveness of the 
proposed methods in basis material reconstruction, and 
also the capabilities in suppressing noise. 
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