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ABSTRACT Countries are collaborating to make agriculture more efficient by combining new tech-
nologies to improve its procedure. Improving irrigation efficiency in agriculture is thus critical for the
survival of sustainable agricultural production. Smart irrigation methods can enhance irrigation efficiency,
specially with the introduction of wireless communication systems, monitoring devices, and enhanced
control techniques for efficient irrigation scheduling. The study compared on a wide range of study subjects
to investigate scientific approaches for smart irrigation. As a result, this project included a wide range
of topics related to irrigation methods, decision-making, and technology used. Information was gathered
from a variety of scientific papers. So, our research relied on several published documents, the majority
of which were published during the last four years, and authors from all over the world. In the meantime,
various irrigation initiatives were given special attention. Following that, the evaluation focuses on the key
components of smart irrigation, such as real-time irrigation scheduling, IoT, the importance of an internet
connection, smart sensing, and energy harvesting.

INDEX TERMS Smart irrigation, Soil monitoring, Smart agriculture, IoT, Energy harvesting.

I. INTRODUCTION

Irrigation is considered an artificial utilization of the water
on the soil using different methods such as pumps, tubes
and sprays. Usually, the need for irrigation appears in places
where the rainfall is irregular, in dry times, or in places where
dehydration is regular [1]. Too many irrigation systems are
available with different types according to the environment
of the soil. The water used in irrigation has many resources,
such as underground water, through wells or springs; the
surface water, from lakes, rivers; or other several sources,
for example, the treated wastewater or desalinated seawater
[2]. Therefore, Therefore, farmers have to save and protect
their agricultural water sources by minimizing the potential
of diseases. Since with any groundwater extraction, users of
irrigation water need to be careful not to drain groundwater
out with a rate greater than it is being regenerated [1].
There are two methodologies of modern irrigation systems,
the traditional irrigation methodologies and the intelligent
irrigation methodologies .Traditional irrigation is such as
surface irrigation, drip irrigation and sprinkler irrigation.

In the future, several severe and complicated problems will
be met by irrigated agriculture. An example of a significant
problem is the low efficiency of the water resources for
irrigation. A relevant safe approximation is that more than 40
% of the redirected irrigation water is spent earlier at the level

of the farm, either through deep percolation or at the surface
runoff [2]. However, often these losses represent missed
opportunities for water, as they prevent water from arriving at
the downstream diversions. One of the most visible coming
problems is the extension of different water requirements
resources, such as manufactural and urban needs. These are
used to give water resources a higher value, so as a result,
researchers favour giving more attention to practices with a
high wasteful rate. In the upcoming years, irrigation science
obviously, will face problems to maximize usage efficiency
[2]. There are three major categories of irrigation systems:

• Pressurized distribution: The pressurized systems’main
components are a trickle, sprinkler, and array of the
same systems, where water is carried and spread along
the land surface within networks of pressurized pipes.
Besides, many individual systems configurations are
presented by novel features, such as centre-pivot sprin-
kler systems.

• Gravity-flow distribution: Systems based on gravity-
flow carry and distribute the water at the field level
through the overland, free-surface flow regime. These
mentioned surface irrigation methods are split based on
the operational specifications and configuration.

• Drainage flow distribution: An irrigation system using
drainage control-sub-irrigation is not commonly used.
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Comparatively huge quantities of irrigation water are
percolate within the root zone and form drainage, or
underground water flow [3].

In places where water is rare, water management is vital.
Agriculture is also impacted, as a significant amount of water
is used. Water adaptation techniques are being studied due
to the probable repercussions of global warming to make
sure that there is water accessible for food both produc-
tion and consumption. As a consequence, the number of
studies focused on lowering irrigation water demand has
steadily risen over time. However, sensors on the market
for farming irrigation systems are expensive, making this
device unsustainable for small-scale farmers. On the other
hand, companies are producing low-cost sensing devices that
may be linked to nodes to construct cost-effective agriculture
monitor and irrigation management systems.

The main objectives of irrigation systems are minimizing
labour and resources requirements and maximizing the effi-
ciencies [3]. The management practices with the most effects
depend on irrigation systems type and design. Several well-
known problems determine how far the irrigation system
succeeds, such as determining when to irrigate the soil, what
is the suitable quantity of water, and the ability to improve
efficiency. When selecting an irrigation system, many con-
siderations must be taken into account. Such as crop type,
location of the farm and farmer, and the time of the year.
Generally, all these factors must cover the system compati-
bility with the best services of the farm, the topographic and
properties of the soil, crop specs, economic feasibility, and
some social constraints [4].

Sensors made with technological innovations are con-
stantly evolving and designed to be intelligent, integrated,
and smaller, thanks to the widespread application of IoT
technology in agriculture, influenced by the growth of the
digital technology, and embedded sensors. Soil, weather,
water, and crop sensors are examples of agricultural sensors
with highly varied functionalities. These sensors that sense a
variety of offer invaluable assistance in collecting agricultural
production data.

Several studies have focused at the use of smart technol-
ogy in agriculture, such as IoT,Wireless Sensor Networks
(WSNs), and smart sensors [5]–[8]. Other survey studies on
improving water productivity in agriculture [9]–[13].

The studies fail to demonstrate how monitoring and control
systems improve the accuracy of agriculture water produc-
tivity. This study adds to the current knowledge by merging
intelligent crop water monitoring systems with irrigation con-
trol methods to enhance water productivity. Different smart
irrigation systems building layers described by Figure 1.

II. IRRIGATION DEVELOPMENT
This section shows how irrigation has changed through
time from 1970 through 2022, in four separate periods.
Researchers were interested in irrigation optimization from
1970 to 1985 because of the introduction of intelligent mon-
itoring systems and water limitations for irrigation. Water

FIGURE 1: Smart Irrigation Systems Building Layers

usage efficiency and information were introduced in the late
1970s when water demand began to rise with population
growth and natural resource depletion. The scenario necessi-
tated the improvement of the irrigation technique, The stress
day index (SDI), Factors of normalised crop susceptibility
(NCS), the evapotranspiration (ET) crop canopy, and climate
variables were all recognised as important in achieving irri-
gation optimization [14]–[23] . After 1989, when the Internet
became available to the general public, it sparked the devel-
opment of control systems based on the internet and web-
based data storage [24]–[29]. IN 2000 WSNs have begun to
gain traction as a simple and effective solution for monitoring
the environment. Actuators and sensors for many WSN appli-
cations, including agricultural, have been developed. WSNs
value existing irrigation systems by giving the grower in-
stant input on the crop’s water requirements. Also, construct
WSNs that can monitor and regulate irrigation water applica-
tions using different methods, and efficient routing protocol
[30]–[34]. Precision agriculture researchers have been paying
close attention to smart applications and approaches for
irrigation, soil fertilization, insect management, and disease
forecasting [35]–[39] by employing cutting-edge advanced
technologies including Machine Learning (ML), Artificial
Intelligence (AI), Unmanned Aerial Vehicles (UAV), and
the Internet of Things (IoT). [40]–[43]. Fig. 2 shows this
progression.

III. REAL TIME IRRIGATION SCHEDULING SYSTEMS
Through the regulation of soil moisture, Irrigation schedules
that are updated in real-time aim to reduce to increase harvest
yields and reduce crop water stress. Evaporation (E) and
transpiration (T), sometimes known as evapotranspiration
(ET), require water for crops. However, too much water is
detrimental to a variety of plants. The quantity of water
needed by plants is evaluated by their growing stage, climate,
and crop kind. So, Irrigation solutions that improve water ef-
ficiency are scheduled [44]. In arid sandy soils, determine the
effects of various irrigation scheduling methods on corn yield
and water productivity and provide irrigation scheduling
suggestions that optimize marginal profit per unit of applied
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FIGURE 2: Irrigation development from 1970 to present

water. Statistics that measure the degree of fit were calculated
by comparing dry matter, crop phenology, soil moisture, ET,
and grain yield simulation and observation. Three irrigation
scheduling options were tested in this study: (i) irrigation
scheduling based on soil water, (ii) watering schedules based
on ET thresholds, and (iii) irrigation scheduling based on
growth stage ET. The long-term model results showed that
it is more effective to schedule watering at regular intervals
for greater yield than varied intervals based on ET, and
the widely accepted threshold of 50% available soil water
content (AWC) in the Production of crops was found to be a
practical irrigation scheduling choice for Production of corn
on arid sandy soils. In the system of soil-land-atmosphere, AI
algorithms are used to understand the soil moisture dynamic
behaviour,which would then be implemented in a low-cost
controller to create efficient irrigation timelines. In order to
conserve water and maintain yield, a neural network(NN)
model ensemble was evaluated and proven to boost the
accuracy and moisture resistance in the soil forecasting and
scheduling performance. The effectiveness of the ensemble-
based NN irrigation organising approach was comparable to
that used in the RZWQM2-WS technique, and that outper-
formed the ET-based technique and improved water balance
by up to 20

A. ARTIFICIAL INTELLIGENCE IRRIGATION
SCHEDULING SYSTEM

Artificial intelligence algorithms might be used to compre-
hend the dynamics of soil moisture in the soil and crop
atmosphere framework, Which could then be implemented
in a low-cost control system to develop efficient irrigation
time slots [45]–[47]. This research looked at [48], a NN
model to gain knowledge from the Root Zone Water Quality
Model (RZWQM2), an agricultural systems model based
on processes to forecast soil moisture in the plant roots

during the growing crops season. When the soil moisture
content falls a certain threshold defined by the supplier of
allowed control depletion calculated by multiplying by the
water depth obtainable for the crop, The irrigation is started
using the NN-based irrigation methodology. The irrigation
rate was chosen to bring the soil water in the root zone
amount back to the capability of the field. The NN approach
was compared to the RZWQM2-based Reported water stress
(WS) technique. The study found that while the developed
NN model accurately soil moisture estimation variations with
minimal errors throughout the primary crop cycle, lower soil
moisture error was more significant, lowering scheduling
performance.

Forecasts of evapotranspiration (ETo) can help with ir-
rigation scheduling and water resource management. For
forecast ETo, three cutting-edge deep learning algorithms
were tested: long short-term memory (LSTM), convolutional
LSTM (ConvLSTM), and one-dimensional CNN (1D-CNN)
[49]. Table 1 represent different smart scheduling irrigation
systems from the type of crop and scale that it made on also
the benefits of each one.

IV. IRRIGATION SYSTEM TECHNIQUES

Water can be collected from various sources and used in a
variety of irrigation methods. However, the ultimate goal is
to distribute water evenly across the entire field, ensuring that
each plant receives an adequate amount of water [3]. The
modern irrigation systems are to supply water to the crops
or the root zone directly. Modern methods efficiently reduce
wasted water, uniformly distribute the provided amount of
water and energy conserved and efficiently manage the irri-
gation phase. The diagram in Fig. 3 shows the modern and
traditional irrigation techniques.
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TABLE 1: smart scheduling irrigation systems

Type of crop Scale of Field irrigation scheduling technique contribution Ref.

wheat
open Field
experiment
for 16 years

Net groundwater depletion
Irrigation water performance (IWP),

water performance (WP),
Total yearly water consumption (ETa)

Improving water use efficiency
while reducing

groundwater pumpage for irrigation
[50]

plants open Field

Raspberry Pi and xbee devices to collect data
and

used to define irrigation time
using membership functions

permits the
Volumetric Water Content in

the soil is close to
the field capacity value,

soil moisture is
towards the optimal value.

[51]

root zone
of plant open Field

NN model accurately predicted
Moisture in the soil variations
occurred with low error rate

during the principal harvest period
the error was greater at lower

soil moisture, lowering scheduling performance.

With minimal errors,
the NN model estimates
soil moisture changes

during the main crop cycle.

[49]

olive orchard The Smart Photovoltaic Irrigation
Manager (SPIM)

By solar panels, the photovoltaic
water system deliver

to meet Irrigation of crops needs,
avoiding the emission of 1.2 tn CO2 eq

[52]

bean

Field data and the
CROPWAT model

were used to
test the model.

Using climatological, agricultural,
and soil data as input,

a daily water balancing approach is used.

Irrigation scheduling model
user-friendly

and adaptable.
[53]

FIGURE 3: Different techniques of irrigation.

A. SURFACE IRRIGATION SYSTEM
The surface irrigation system is expected to supply the root
zone reservoir uniformly and efficiently to avoid plant stress
and ensure resources conservation such as water, nutrient,
energy, and labour. Other usages for the irrigation system are
cooling the climate around some sensitive fruits and vegeta-
bles or warming the climate to save the plants from damage
by frost in freezing areas. In addition, an irrigation system has
to leach salts expanding in the root region. Besides, it might
be used to soften the soil in preparation for better farming or
to fertilize the field and distribute insecticides [3].

Because of its simplicity and minimal energy use, one of
the most common types of irrigation is surface irrigation
extensively used method of irrigation. Although deep per-

colation and unequal irrigation water distribution are most
commonly associated with poor irrigation application effi-
ciency, some studies try to solve this problem to make surface
irrigation more efficient [54]–[58].

Assessing Irrigated farming land resource elements output
on a long-term basis Physical soil features, such as Soil level,
drains, and texture, in addition to land ramp, land utilize,
and nearness to water sources [54], [55]. In [54] there are
two goals: (1) to evaluate acceptable surface irrigation land
and (2) to evaluate suitable areas for irrigation purposes on a
small, medium, and wide scale. An Analytic Hierarchy Pro-
cess incorporating a Geographic Information System (GIS)
based multi-criterion (MCE) making decisions was used to
determine the soil’s suitability for irrigation systems. Highly
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appropriate (S1), mildly appropriate (S2), mildly appropri-
ate (S3), and presently not appropriate (N) were the four
categories used to classify irrigation land suitability. In [56]
Using Remote Sensing (RS) and GIS techniques, analyze
land surface water availability and suitability for surface
irrigation in the Gilgel Gibe watershed. The availability of
surface water was assessed by creating a flow duration curve
(FDC), and assessing the Gilgel Gibe River’s 90% available
flow. The appropriateness of the land surface was estimated
using an MCE technique that took into account the communi-
cation among important land suitability characteristics such
as Slope, type of soil, river closeness, and land utilization. To
determine the importance of one element over another using
a couple comparison matrix in order to favour one above the
other for physical land viability.

Simulation optimization models help determine the best
system performance. The primary goal of this study was to
create and verify the Evaluation, Design, and Optimization
of Irrigational Model (EDOSIM), such as a surface irrigation
model of simulation optimization. The quantity estimate ac-
curacy was applied to simulation, which included designing
or evaluating basin, furrow, and border irrigation. Twenty
meta-heuristic techniques were used to optimize the results.
The quantity of water that has entered into the soil was
determined in this irrigation-based model without obtain-
ing advanced or recession data [59]. When the EDOSIM
technique’s simulated results were compared to those of the
SIRMOD software’s Hydrodynamic technique, it was found
that the proposed method for estimating the volume of infil-
tration and the EDOSIM model performed well, with CRM
= 0.005, NRMSE = 4.2 %, RMSE = 0.068, and R2 = 0.988.
In addition, the Shuffled Complex Evolution (SCE) method
has been discovered to become the most effective approach
to improve field performance; the objective function was
lowered in all fields [59].

This study [57] increased surface irrigation efficiency up to
86.6 %. An IoT-based system was established and tested in a
layout of a level basin with a fixed end in sandy loams soil
using a wireless link between the soil moisture sensors and
an auto checkpoint that can be remotely managed using data
from real-time soil moisture conditions. Aiming to improve
irrigation efficiency, an effort was made to place the sensor
in the most appropriate place in the basin layout. To control
the water flow, an aluminium automatic-check gate with a
steel framework was installed in the water supply system con-
centration. Three soil moisture sensors based on capacitance
were put at 37.5, 15, and 7.5 cm depths at 25%, 50%, and
75% of the field’s length. There are three distinct operational
schedules based on the location of the soil moisture sensors
that were investigated under 40 %, 30 %, and % soil moisture
deficiency situations. The study found that sensors should be
put at 37.5 cm depth and 25 % distance from the injector in
increased moisture in the soil deficit conditions. When there
is a lack of moisture, sensors shall be placed at 7.5 cm depth
and 75 % length from the entrance. [57]

B. DRIP IRRIGATION
Drip irrigation is a critical method for dealing with the
world’s scarcity of water. Trickle irrigation is another name
for drip irrigation. Drip irrigation is a type of irrigation in
which water is given drop by drop to the root region of plants.
Because evaporation and runoff are reduced, this technique
can be the most water-efficient type of irrigation. In modern
agriculture, drip irrigation is frequently used in conjunction
with organic or inorganic (plastic) mulches, which provide
additional benefits such as reduced evaporation, increased
soil warmth, weed control, etc. The issue of drip irrigation
emitter blockage, on the other hand, has a significant effect on
irrigation uniformity and efficiency, even causing the system
to be disabled and crop productivity to be reduced [58].

This research [60] presents an automated drip irrigation
system. The technology is tested on a paddy field for three
months. In comparison to conventional flood and drip irri-
gation systems, it saves roughly 41.5 % and 13% of water,
respectively, according to the experimental setting.

This study [61] shows the consequences of surface drip ir-
rigation (DI), subsurface drip irrigation (SDI), and alternating
drip irrigation (ADI) on tomato yield and soil microbes in the
roots reactions. The homogeneity of moisture distribution in
the soil in the root region (0–60 cm depth) was diminished
according to the sequence SDI > DI > ADI . The SDI
procedure in lengths of tomato roots 4.83 and 3.94 times
larger than the ADI and DI methods. Root length was 1.23
times longer in the ADI treatment than in the DI treat-
ment, resulting in different root-soil microbial interactions.
The SDI treatment had the most positive root-soil–microbe
interactions, then came ADI and DI. Variations in root-
soil–microbe reactions controlled tobacco yield. Compared
to the DI and ADI methods, the SDI method boosted tomato
field outcomes by 9.77 % and 7.77 %. Tomato yields were
24.09 % greater in the ADI method than in the DI method.
As a result, various drip watering systems can govern tomato
productivity by influencing root-soil-microbe reactions. The
findings can be used to improve the drip irrigation method to
control root-soil microbe reactions and boost tomato yield.
Compared to previous irrigation methods, the modern drip
irrigation system saves a large quantity of water. Moreover,
some crops, such as paddy, require a varying quantity of
water as they grow.

This research [62] is to assess evaluate production effi-
ciency (WP), economic water productivity (EWP), and land
productivity levels (LEP) ) in cotton using various amounts
of irrigation water and drip system(SDI and subsurface drip
irrigation (SSDI)).The results of an experiment conducted
during the growing of cotton seasons for two years, 2016
and 2017, were evaluated. SSDI reduced water need and
increased the productivity of water by using an irrigation
water quantity based on plant water requirements. As a result,
this method was more relevant to farming methods. Finally,
WPIng, EWP,WP, and LEP all need to be taken into account
to enhance water productivity and save water savings for
farmers and irrigation techniques [62].
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This study [63] used pear to see two years of irrigation
studies, taking into account the two aspects of drip irrigation
systems pipe design and soil moisture lower rate. Five drip
irrigation modes and control techniques were used to inves-
tigate the impact of drip irrigation techniques on the water
productivity of the field and enhance the effective utilisation
of water resources. As a result, it was found that the SSDI
with two points under a soil moisture lower level of 60 %
FC was the optimal irrigation method in a pear field after
considering all factors.

C. SPRINKLER IRRIGATION
The concept of sprinkler irrigation is to spray water into the
air and fall as a rainfall pattern. The spray output water is
controlled by the pressure of the water and passes via a net-
work of pipes, which comes out through tiny nozzles. Nozzle
sizes should be selected carefully depending on the sprinkler
formatting and operating pressure. The quantity of water
required for crop irrigation and refill the root region can be
used almost uniformly at a reasonable rate, the leakage rate of
the soil [64]. Many crops can be planted under the sprinkler
irrigation method, such as vegetables like Onion, Potato,
Carrot, Garlic, Lettuce, and others; spices like cardamom
and pepper; flowers like jasmine and carnation; oilseeds like
sunflower, groundnut and safflower; and fibres like Cotton
and Sisal [65]. Sprinkler irrigation is appropriate for different
types of soil except for heavy clay [3]. Also, it provides
mobility to the system as well as saving water. Appropriate
for irrigating plants where the plant population for every
unit area is high and is most appropriate for oilseeds and
vegetables [3]. There are many types of sprinkler irrigation
based on portability, like fully portable, semi-portable, semi-
permanent, and fully permanent sprinkler systems.

Reduced sprinkler working pressure can significantly re-
duce the energy required for sprinkler irrigation. How-
ever, the sprinkler’s hydraulic performance changes are un-
avoidable as working pressure is reduced and nozzle shape
changes. Therefore, experiments were carried out to examine
the impact of operating pressures, injector shape, and injec-
tor diameter on the rate of flow, the throw radius, irrigation
water rate, droplet dimensions, droplet speed of the rotating
sprinkler, and kinetic energy of water droplets that influence
the surface soil to assess the spray properties of various
non-circular sprinklers. The watering similarity coefficients
for circular and non-circular injectors were calculated by
varying rectangular sprinklers’ spacing and operating pres-
sures. Under the same operating pressure and nozzle size, the
circulation flow rates and non-circular injectors were equal,
while the circular nozzle’s throw radius was greater than that
of the non-circular nozzle. In addition, the circular nozzle
generates larger droplets than the non-circular nozzle [66].

On the other hand, the sprinkler heads, which are split into
three types, are based on how they are used to distribute the
water over the entire land and how much.

In Table 2 a brief comparison between different irrigation
methods is provided; the comparison is according to several

parameters that directly affect the choice of the irrigation
method, such as soil type, suitable slopes, suitable crops,
suitable irrigation water, and the layout of each system.

V. SMART IRRIGATION SYSTEM MONITORING
It is necessary to keep track of specific factors influencing
plant development and growth to improve water use effi-
ciency. Contextual monitoring of intelligent irrigation ne-
cessitates the accumulation of actual data on soil status,
plant health, and climatic variables in the cropped region via
cutting-edge communication technologies [67].

The IoT, AI, cloud computing, and edge computing play
essential roles in increasing agricultural land productivity and
irrigation efficiency. Technologies such as crop and soil mon-
itoring using IoT, data analysis using artificial intelligence
to make appropriate decisions, irrigation systems that work
automatically, and weather measurement and predicting are
in high demand to enhance the quality of crops and recognize
diseases in insects and plants, leading to increased crop
efficiency with a significant reduction in farmers’ reliance
on human labour. The plant field can be monitored using
sensors and IoT devices. Edge computing gathers Sensor data
is gathered inside the field and sent to the cloud, where it
is processed and analyzed to determine the best course of
action based on the analysis. As a result, crop production will
increase while water, fertilizer, and pesticides will be used
less in the field crop [68]. WSN are an exciting and important
technology that has made remarkable progress in recent
years and can be used in various fields; agriculture is one
of the fields where WSN are broadly used and successfully
deployed [69]–[71]. The utilization of WSN technology to
manage and control irrigation methods is a perfect scenario
for ensuring rational and effective water use, which con-
tributes to the gravity of the global crisis of water [5]. Figure
4 shows the possible monitoring types in intelligent irrigation
systems.

FIGURE 4: Monitoring techniques in smart irrigation.

Soil quality (SQ) evaluation is required to track changes
in soil performance as a result of management practices. Soil
quality measurement also warns of the potential effects that
various primary land use activities may have on long-term
soil quality. In addition, it can assist in determining whether
soil quality is deteriorating over time and what factors may be
able to contribute to soil degradation. This data is then used
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TABLE 2: Comparison between different of irrigation.

Drip Irrigation Surface Irrigation Sprinklers Irrigation

Basin Irrigation Border Irrigation Furrow Irrigation Spray type
sprinklers

Rotor type
sprinklers

Rotate
Nozzles

Soil Type Most of the soil types. It mainly depends
on the crops.

Preferred clay
soils with medium

infiltration rates
or deep

homogenous loams.

Most of soil types

Sandy soils with increased
flow rates,

though adaptable to
most soil types.

Suitable slopes Can be adapted to
any farmable slope.

Flatter land
surfaces are

easier to
construct basins.

Suitable slopes have
to be uniform slopes

0.05% : 2%
to avoid soil erosion.

Uniform-flat or
the tiny slopes

with a max
slope of 0.5%,

Any farmable slope,
whether flat or rippling.

small
ground

and
landscape.

wide areas

wide areas
and

limited
water

resources
areas.

Crops

Row crops
(vegetables, soft fruit),

tree and vine crops
are all suitable.

Suits many
field crops

as paddy rice

More suitable with
close-growing

crops like
alfalfa or pasture.

Many types
of crops,

especially
the row crops

and the growth
of the tree crops.

Field, and tree crops.
And water can be sprayed over

or under the crop canopy.

Sutable Water
The irrigation

water should be
free of any sediments.

Two methods:
Direct method,

Cascade method.

Normal water like the
traditional irrigation systems

The irrigation water should
be clean

and free of sediments to avoid
any problems in the

sprinkler nozzle.

System Layout

Pump unit, Control head
Main and sub-main lines

emitters, drippers,
or laterals

The dimensions and the shape of basins, borders,
or furrows depend on the stream size, soil type, slopes,

irrigation depth, and other parameters such as
the farm size.

Pump unit
Mainline or sub-mainlines

Laterals

to support us manage our soil resources more sustainably in
the future.

1) Soil Moisture Monitoring

The temporary storage of water in soil is known as soil
moisture inside a shallow level of the earth’s top surface in
comparison to the quantity of freshwater resources world-
wide. It is vital in all spatial scales, agricultural, hydrological,
and weather forecasting processes. It is critical in detecting
water stress and managing irrigation. Soil moisture data can
also be used to forecast natural disasters like dryness and
flooding, as well as environmental changes like sandstorms
and erosion. Accurate estimation of soil moisture through in
situ measurement, on the other hand, is prohibitively expen-
sive because it necessitates a replication sampling process
to evaluate the periodic change in soil moisture. Because
soil moisture is extremely dynamic, both temporally and
spatially, it must be monitored continuously. There are sev-
eral methods to ascertain the moisture status of the soil;
the techniques can be summarized in Fig. 5. All of these
methods have advantages and disadvantages and should be
used with caution depending on the project’s requirements
and demand [72]. The accuracy level depends on weighing
accuracy, though these errors are negligible compared to soil
variability in the field. This technique is pretty accurate, but
there are practical issues, such as the fact that measurements
are not instantaneous and results must be obtained at least
48 hours after sampling, which precludes its use for real-
time irrigation scheduling. Because estimations of soil water

content are not instantaneous, this method is primarily used
as a guide [73].

Farmers frequently use the feel method. This method in-
dicates how well the soil is irrigated based on the feel and
appearance of the soil. A person with experience may be
able to judge things more accurately and provide guidance
for scheduling irrigation events. This method, however, lacks
precision when it comes to deciding how much to irrigate and
when to irrigate. As a result, while this method is inaccurate,
it is useful when no other options are available. The direct
method entails collecting soil from the field, weighing it, and
oven drying it at 105 °C to calculate the moisture of the soil.
The total soil water content is determined by the difference
in mass between wet and dry soil samples. This method
is also known as the Thermo Gravimetric or Gravimetric
method. The bulk density of the soil can be used to convert
a weight-based estimate of soil water content to a volumetric
assessment [73].

Volumetric techniques determine indirectly, soil mois-
ture content by measuring some variable in the soil profile.
As a result, these techniques are more useful for real-time
irrigation management decisions. These techniques employ
a variety of principles, based on which they are broadly
classified (i) Dielectric sensors and (ii) Neutron moderation.

(i) Dielectric sensors operate by determining the soil’s
dielectric constant. It measures a nonconducting material’s
ability to transmit electromagnetic waves or pulses. Because
the dielectric constant of dry soil is lower than that of
water, even small changes in soil quantity have a significant
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FIGURE 5: Techniques for measuring soil moisture indirectly

influence on the electromagnetic properties of soil water. An
alternating electric field is generated in the surrounding do-
main medium by dielectric sensors. The cumulative complex
electrical impedance of the media is determined by monitor-
ing the currents and voltages influenced in the measuring rods
by this field. The form and volume of the electric field are
determined primarily by the form and size of the electrodes
used for the sensors. Dielectric sensors are classified into
several types based on the output signal, which include Time
Domain Reflectometry (TDR), Capacitance or Frequency
Domain Reflectometry (FDR), Time Domain Transmission
(TDT), Amplitude Domain Reflectometry (ADR), and Phase
Transmission sensors (PT), different in aspects of the use,
maintenance, measurement requirements, accuracy, and cost
[74].

(ii) Neutron moderation There are two types of neutron
moderation methods to monitor the soil water content. The
neutron scatters method is determined by the interplay of
high energy (fast) neutrons in the soil with the nuclei of
hydrogen atoms. The other technique determines the at-
tenuation of gamma rays as they travel through soil. Both
methods make use of portable devices to collect measurement
invariance at fixed monitoring sites and necessitate accurate
calibration, better with the soil where the devices are to
be used [74]. When properly calibrated, neutron probes are
highly accurate. They not affected by salts, have a large
measuring radius, and can measure at various depths. They
are, however, extremely costly radiation hazards (requiring
certified personnel), which can be hard to calibrate and
install. Table 3 shows the advantage and disadvantages of
dielectric and Neutron moderation sensors.

Tensiometric sensors are those that measure the potential
of soil matrices. Tensiometers, electric resistance sensors,
thermal conductivity sensors, and psychrometers are some
of the most commonly used. The most common resistance
types are electric and tensiometers. A tensiometer is a water-
filled tube designed to mimic the movement of a plant root.
A porous cup with negative pressure (vacuum) measured

at the other end is buried in the soil. As the soil dries,
water is drawn out of the tensiometer, causing the pressure
reading to fall, indicating that the soil moisture decreases.
When the cup is irrigated, soil water returns and the pressure
decreases. Tensiometers are sensitive to conditions in a large
soil volume and are simple to install and maintain.

New techniques several researchers have captured, rep-
resented and discussed some new techniques, which are
discussed below. The majority of these techniques are highly
advanced and used at various scales.

(i) Temperature distribution this method employs fibre
optics to evaluate changes in soil thermal conductivity in
terms of soil moisture and ambient temperature. In this
paper, In [75] they use the active distributed temperature
sensing (A–DTS) method that advances ground heat transfer
efficiency, which detects soil moisture through a thermal
behaviour caused by an active electrical charge. In that order,
the correlation in both thermal conductivity and soil water
content was formed using this method for silt, clay, natural
soil, and sand.

This paper [76] proposes a new approach for determining
evaporation rates of underground water that combines the
actively heated fiber-optic (A-HFO) technique with vadose
zone technique, with the evaporation front remaining at the
soil surface. The A-HFO approach produced soil moisture
characteristics assessments with a locative resolution of 6.5
mm and an inaccuracy of 0.026 m3 m-3. The calculation
produced a somewhat different soil moisture profile than the
measured one, with the greatest changes occurring near the
soil surface.

(ii) Microwave Moisture monitoring has remained a chal-
lenge for agricultural outcomes with high water content.
In [77] a brand-new microwave detecting system based on
a technique of multi-frequency sweeping was constructed
using components purchased off-the-shelf and implemented
for the moisture collected data from sweet corn. To collect
enough data moisture, a signal with frequency sweep (in-
cludes 41 frequencies ranging from 2.60 to 3.00 GHz) was
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TABLE 3: Volumetric soil moisture sensors.

Types of
sensors pros. cons.

TDR Independent of soil texture temperature
or salt content.

i) Small sensing volume.
ii) Requires soil calibration.
iii) High cost.

FDR i) Can determine water content at any depth.
ii) Can provide the exact soil water content.

i) Small sensing sphere.
ii) Require perfect conduct
with soil to get accurate results.

Resistive
sensor

i) Can provide the exact soil water content
ii) High precision when the soil’s ionic
concentration doesn’t change

Calibration is required as soil,
and ionic concentrations change.

ADR
i) Because of standard circuitry, it is
inexpensive.
ii) With proper calibration,it is accurate.

i) Small sensing volume,
ii) Soil specific calibration,
iii) Measurement affect
of air gaps and stones

TDT
i) Accurate with large scale
ii) Because of standard circuitry,
it is inexpensive.

Soil disturbance during
installation necessitates
permanent installation.

PT

i) Inexpensive
ii) Accurate with large scale
iii) Accurate with soil
specific calibration

Need to permanently installed
Soil specific calibration

Neutron
moderation

i) Water can be measured
at any phase
ii) Accurate with large volume
at any depth

i) High cost
ii) Hazard radiation
iii) Insensitivity to small variation

Gamma
attenuation

Can measure mean
water content with depth

as well as moisture
content changes over time

i) High cost and difficult to use,
ii) Measurement in highly
stratified soil produces
large errors
iii) Changes in soil bulk density
have an impact.

used as the earliest detected signal.

VI. CONTROL
Soil moisture sensor device handheld with an integrated
controller for controlling a soil moisture sensor. To generate
an electrical signal of precise frequency, an oscillator is
used, and to get the moisture content of the soil used; a
sensing unit is used. The controller could be an 8051, AVR,
PIC, or another microcontroller. It controls the sensor circuit
in accordance with the software system dumped into the
controller. The soil moisture sensor could be a capacitance
sensor, a granular matrix sensor, or something similar. De-
pending on the type of controller, the oscillator may be a
crystal oscillator, a Hartley oscillator, or another type of
oscillator to provide clock signals. The sensing unit could
be a gravimetric probe, a neutron probe, or other similar
sensing units, and the sensing unit’s material may be a
conducting material such as copper, metal, aluminium or
another such material. The sensing unit is inserted into the
soil to determine the moisture content, which is displayed
with a precise value. The invention comprises a portable soil
moisture sensor and a single display unit. This allows the user
to monitor the soil’s moisture level in multiple locations from
a single conveniently placed display unit.

VII. CONCLUSION
This is a review of intelligent irrigation control and mon-
itoring strategies to improve irrigation efficiency in smart

agriculture. The study has been built around monitoring tech-
niques for irrigation scheduling and control. Furthermore,
a discussion on future research chances based on study
gaps has also been organized. In this relation, it is noted
that a mixture of soil-based, weather-based, and plant-based
monitoring techniques, combined with a discrete forecasting
control method, should be studied in open fields. In contrast
to environmentally controlled agriculture research, open-
area agricultural-irrigation systems face uncertainties that
must be investigated. Thus, future studies will focus on the
development of process dynamics approaches for irrigation
systems, as well as the impacts of intelligent controlling and
monitoring techniques on irrigation productivity in open field
agricultural systems.
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