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ABSTRACT The presence of natural ambient noise interferes with the system for locating and identifying
underwater targets. This paper suggests that a Dual-Path Transformation Network(DPTN) reduces ambient
noise in underwater acoustic signals. First, the input acoustic signals’ higher-order non-linear features are
extracted using a multi-scale convolutional encoder neural network. Second, sub-vectors with the same
length are created according to the time dimension from the higher-order non-linear features. The sub-
vectors are stitched together to form a three-dimensional tensor. Third, a neural network transformer based
on the feed-forward network is constructed. Further, to capture long-term series features and separate the
target signal from the noisy signals, the three-dimensional tensor is used as the input of the transformer-
based masking network. Finally, overlap-add and transpose are used to obtain discernible target signals. The
experimental results verify the effectiveness of the proposed underwater acoustic signal denoising algorithm
and demonstrate that the proposed DPRN method can obtain higher output signal-to-noise ratio (SNR) and

the scale-invariant signal-to-noise ratio (SI-SNR) compared with the other classical algorithms.

INDEX TERMS Deep learning; Underwater acoustics; Dual-Path transformer network

. INTRODUCTION

The study of underwater acoustics is a crucial foundation
for the passive sonar systems used by underwater vehicles
to detect, track, localize, and identify targets in the marine
environment [1]. However, the feature extraction of underwa-
ter acoustic signals by modern sonar systems is fraught with
challenges due to the complex natural environment, variable
acoustic sources, and high noise intensity. Multi-target sig-
nal mixing, complex spectral components, and interspersed
noise signals are the leading causes of these issues because
they lower the signal-to-noise ratio of the sonar acceptance
signal. Therefore, it is necessary to implement noise reduc-
tion processing for the signals. At this stage, conventional
denoising methods usually use transformation analysis meth-
ods and time-to-frequency conversion methods to achieve
signal enhancement [2] [3]. For example, Amplitude-Aware
Permutation Entropy [4] Wavelet and Block Thresholding
[5] [6], multi-directional filters [7], Minimum Variance Dis-
tortionless Response [8], Variational Approach [9], Wavelet
Transform [10], Empirical Mode Decomposition [11] [12]

[13], Linear Spectrum [14], Singular Value Decomposition
[15].

Conventional methods for improving underwater acoustic
signals have apparent drawbacks in terms of signal-to-noise
ratio. Large-scale data and ocean environment parameters
cannot be modeled using the constrained conditions of con-
ventional methods. It is not easy to iteratively update the data
after system deployment, making the underwater acoustic
signals detection for a long time dependent on manual in-
terpretation. The background noise characteristics vary with
the ocean scene and can produce considerable dynamic de-
viations at different times. Underwater acoustic signals are
subject to ambient and machine interference, which can cause
propagation attenuation and distortion, resulting in a rela-
tively low signal-to-noise ratio of the signal received by the
detection system. conventional methods in fitting the model
need to know the frequency range of the signal affected
by propagation characteristics, target interference, transient
signals, and many other factors. There is a significant gap
between the frequency range of different noises, which often

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3224752

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

leads to the model and noise type being unsuitable. The
emergence of these problems makes conventional algorithms
face many challenges.

Deep learning-based models have great potential for de-
noising applications compared with conventional methods.
Deep learning can learn correlations before and after time
series through neural networks. In addition, the introduction
of filters allows the network to automatically capture the
underlying features of the signal. This process eliminates
manual extraction and automatically compiles the sequence
in a coded fashion. This process eliminates manual extraction
and automatically compiles the sequence in a coded fashion.
The model’s noise reduction effect can be improved by
adjusting the parameters and modifying the network archi-
tecture. For example, Zhou [16] proposes the Denoising Rep-
resentation Recognition (DRR) model that converts the spec-
trum to a correlation coefficient to generate data for parallel
training in the convolutional denoising autoencoder(CDAE)
model. Wang [17] proposes a novel stacked convolutional
sparse denoising autoencoder (SCSDA) model to complete
the blind denoising task of underwater heterogeneous in-
formation data. The stacked sparse denoising autoencoder
(SSDA) was constructed by three sparse denoising autoen-
coders (SDA) to extract overcomplete sparse features. The
output of the last encoding layer of the SSDA was used
as the input of the convolutional neural network (CNN) to
extract the features.Othman [18] proposes a residual deep
neural network(Resnet), which works onlIR Wiener filter
integration to reduce noise. Alberto [19] proposes a novel
approach based on a computationally and energy-efficient
deep convolutional denoising autoencoder to reduce the noise
interference. Qiu [20] proposes a reinforcement learning
system that requires sophisticated design and critical pa-
rameter choice to meet its oscillatory condition to keep the
balance among signals, noise, and the nonlinear system. Li
[21] proposes an approach based on relativistic conditional
generative adversarial networks (RCGAN) to resolve the
conditions of complex marine ambient noise and scarce data.
Xing [22] trains and updates the noisy signal via orthogonal
matching pursuit (OMP) and method of optimal directions
(MOD). The signal reconstruction is completed according to
the updated dictionary and sparse coefficients. To summarise,
the underwater acoustic signal denoising methods can be
broadly classified into three processing modes, time-domain
processing, spectrogram mapping, and mask separation, as
shown in Figure 1.

The mask separation method is now the dominant ap-
proach compared to the first two methods, as shown in Figure
2. Firstly, a set of features (e.g., Mel Frequency Cepstrum
Coefficient, MFCC) is learned from the underwater acoustic
signal using the auditory properties of the human ear. A
filter is used to encode the features into a masking network
to estimate the mask parameters for each source. Finally,
a decoder is used to recover the masked higher-order fea-
tures into the underwater acoustic signal. Recurrent neural
networks (e.g., Long Short-Term Memory and Gated Recur-
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rent Unit) can be used in many areas of signal processing.
Deep learning methods built on recurrent neural networks
are essential to modern signal processing. They are often
used as a vital module for mask separation in the field of
underwater acoustic signal noise reduction [23] [24] [25].
However, the inherent sequential processing sequence mode
of the Recurrent Neural Network (RNN) prevents the model
from parallelizing the computation during training. After the
model feeds the audio file to the encoder via the index log,
the RNN-based masking process takes up most of the CUDA
memory space. When the natural ambient noise loudness
masks the target signal, gradient disappearance and explosion
are often encountered during training using RNN models. It
is challenging to calculate the multiplicative gradients, which
can vary exponentially with the number of layers due to the
difficulty in capturing long-term dependencies with RNN.

In order to obtain the denoised acoustic signal, we con-
struct a Dual-Path Transformer Network (DPTN) based on
the abovementioned analysis. This network combines the
techniques of multi-head attention transformer [26] and
Dual-path framework processing. This paper has three con-
tributions:

1. The one-dimensional convolutional neural network is
built to construct the encoder module, and a chunking op-
eration is used to convert the feature vector into a three-
dimensional tensor. We cascade the encoder and chunk oper-
ation as a feature extraction module for underwater acoustic
signals.

2. The multi-head attention converter and Dual-path
framework construct the separation network to extract the
feature mask of the target signal. Further, the denoised signal
tensor is restored to the original signal format using overlap-
add and transposition network.

3. The Dual-Path transformer network (DPTN) can si-
multaneously focus on the complete underwater acoustic
sequence information and process all time step points in par-
allel. Relevance between far-off sampling points is achieved
by adding a feedforward network and residual connections to
the masking network, making it more straightforward for the
model to learn the long-term dependencies of the signal.

The specific content is arranged as follows: the Section.2
details the flow of the method, namely Dual-Path Trans-
former Network (DPTN). The Section.3 uses the ablation
experiment and comparison test to analyse the influence of
each step of the method in this paper, and the conclusion is
in Section.4.

Il. MATERIALS AND METHODS

The proposed model is based on the learned-domain masking
approach and employs a feature extraction module, masking
separation module, and signal reconfiguration module, as
shown in Figure 3.

The feature extraction encode module is a one-dimensional
convolutional neural network that estimates a learned repre-
sentation for the input signal. It learns a complete set of state
changes and the dynamic parameters of the filter from the
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FIGURE 1. A brief description of the acoustic signal denoising methods
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FIGURE 2. A brief description of the mask separation method

existing knowledge. Afterward, the feature vector is sliced
into sub-sequences of the same size without changing the
dimensionality of the features. Finally, the subsequence is
built into a 3D tensor using chunking as the input to the
masking network. The masking network employs two trans-
formers embedded inside the Dual-path processing block.
The masking network can be divided into two main parts:
intra-transformer and inter-transformer, which rely on short-
term dependencies and long-term dependencies to learn the
target signal and ambient noise, respectively. Moreover, the
different characteristics of the signal are learned by short-
term and long-term dependencies, respectively. The mask
of the target signal is extracted by matrix amplification
and compression operations. The mask and the higher-order
features of the signal are point multiply calculations by
Hadamard functions.Finally, the signal reconfiguration de-
code module reconstructs the underwater acoustic signals in
the time domain.

A. FEATURE EXTRACTION ENCODE MODULE

The encoder takes in time-domain mixture underwater acous-
tic signal * € RT (where T is the time duration of the input

4

signal) as input, which contains target signal and ambient
noise signal. It learns an high-dimensional representation
h € RFXT (where F is the feature dimension of the
input signal) using the one-dimensional convolutional neural
network (Conv1D) and Relu activation function :

h = Relu(ConvlD(x)) (1)

B. SIGNAL RECONFIGURATION DECODE MODULE

The decoder uses a transposed convolution network, with
the same stride and kernel size of the encoder. The input to
the decoder is the element-wise multiplication between the
mask Mqrger and the output of the encoder h. Therefore, the
transformation of the decoder can be expressed as follows:

Starget = TransposeConvlD(Myiarger * h) 2)
Where Sqrge¢ denotes the clearly target underwater acous-

tic signal.

C. TRANSFORMER BLOCK
The Dual-path approach is used in the transformer block to
model both short-term and long-term dependencies. Figure 4
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FIGURE 3. A brief description of Dual-Path Transformer Network (DPTN)

illustrates our model’s transformer block, intra-Transformer
for modeling short-term dependencies and inter-Transformer
for modeling longer-term dependencies.

Intra-Transformer processes the second dimension of &' €
RFXCXNe  and thus acts on each chunk independently,
modeling the short-term dependencies within each chunk.
Next, we permute the last two dimensions (which we de-
note with P) and the inter-Transformer is applied to model
the transitions across chunks. This scheme enables effective
modelling of long-term dependencies across the chunks. The
overall transformation of the transformer is therefore defined
as follows:

h” — finter (P (fintra (h/))) (3)

where finter 1S the inter-Transformer operation and fi,1q
is the intra-Transformer operation. Figure 5 shows the archi-
tecture of the multi-head attention used to build for both the
intra-Transformer and inter-Transformer blocks.

Assume that the feature tensor g is the input to intra-
Transformer. First of all, sinusoidal positional encoding (PE)
function is added to the input g:

g/ = g + PEPOS (4)
—ain (PO
PE(pos,2i) = sm (1000(2i)/dmodez ) (5)
B oS
PE(0s,2i41) = €08 (m) ©)

We must introduce some information about the relative
or absolute position of the tokens in the sequence since our
model lacks recursive operations and convolution kernels that
act on the sequence order. Then, several layers of deformers
are applied, and inside each transformer layer L(.), we first
apply layer normalization, followed by the multi-head self-
attention (MSA):
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g" = MSA (Layer Normalazation (g')) )

The attention allows the model to jointly attend to infor-
mation from different representation subspaces at different
positions. Each attention head computes the scaled dot-
product attention between all the sequence elements. The
input consists of queries (@), keys (K), and values (V') of
the dimension. We compute the dot products of the query
with all keys, divide each by and apply a softmax function
to obtain weights on the values. We simultaneously compute
the attention function on a set of queries packed into a matrix
Q. The keys and values are also packed into matrices K and
V. We compute the parameters matrix of outputs as:

Attention (Q, K, V) = soft (QKT> @®)
ention (Q, K,V) = softmax
Vi,

The multi-head self-attention (MSA) (9) allows the model
to jointly attend to information from different representation
subspaces at different positions. With a single attention head,
averaging inhibits this, which enhances the expressiveness
of each attention layer without changing the number of
parameters.

MSA(Q, K,V) = Concat(heady, ..., head; ) W°  (9)

head; = attention (QWS, KWK, VI/IQV> (10)
Where the projections are parameter matrices WiQ C
RmodetXdr WK — RdmodetXdr and WV  R9moderXdk
’ 7 ) '3 .
To enhance gradient backpropagation, we add residual con-
nections between transformer layers and across the trans-
former architecture. Last but not least, the transformer uses
a feed-forward network (FFW), which is applied to each
position separately:
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FIGURE 4. Transformer block

g" = FeedForward (Norm(g" +¢')) +¢" + g/ (11)

A fully connected feed-forward network is present in each
layer of the encoder and decoder, and it is applied to each
transformer network layer identically and separately. This is
composed of two linear transformations with an activation
function called ReLU in the middle.

FeedForward(a) = max(0, Wiz 4+ b1)Wa + by (12)

The network structure of the linear transformation is the
same on different modules when faced with different under-
water ambient noise, but the model can be designed with
different parameters at different layers.

lll. EVALUATION

The experimental results will be presented and discussed in
this section on the ShipsEar dataset [27] and the Deepship
dataset [28]. Some ablation experiments and comparison
tests show some of our explorations for underwater acoustic
noise reduction.

6

A. DATASET

The ShipsEar dataset was collected with recordings made by
hydrophones deployed from docks to capture different vessel
speed noises and cavitation noises corresponding to dock-
ing or undocking maneuvers. The recordings are of actual
vessel sounds captured in a natural environment. Therefore,
anthropogenic and natural background noise and vocalization
are present in marine mammals. The ShipsEar comprises 90
recordings in wav format with five significant classes. Where
each primary class contains one or more subclasses (e.g.,
Class A is composed of fishing, trawlers, mussel, tugboats,
and dredgers), the duration of each audio segment varies from
15 seconds to 10 minutes. Each class is divided, as shown in
Table 1.

The Deepship dataset consists of 47 h and 4 min of real-
world underwater recordings of 265 different ships belonging
to four classes, as shown in Table 2. The dataset includes
recordings from different sea states and yearly noise levels.
The dataset is beneficial for evaluating the performance of
existing algorithms and researching deep learning methods.

To better verify the performance of the model. All signals
were segmented according to a fixed time of 5 seconds. We
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TABLE 1. ShipsEar Dataset
Ship Type Targets(Seconds)
Class A Dredger(262s), Fishboat(514s), Musselboat(730s), Trawler(163s), Tugboat(206s)
Class B Motorboat(1014s), Pilotship(138s), Sailboat(408s)
Class C Passengers(4270s)
Class D Oceanliner(942s), Roro(1483)
Class E Natural Noise(1160s)
TABLE 2. DeepShip Dataset
Ship Type Targets(No.of Ships)  Total Time)  Total Recordings
Cargo Ship 69 10 h 40 min 110
Tug 17 11 A17 min 70
Passenger ship 46 12 h22 min 193
Tanker 133 12 h45 min 240

set up three tasks to verify the denoising effect of the model:

Task 1: Samples without noise classes are randomly se-
lected from the ShipsEar, and the noise classes in ShipsEar
are superimposed with these extracted samples. The signal-
to-noise ratio of the mixed signals is adjusted by the signal
fusion method to 0 dB. The dataset is then divided into a test
set, validation set, and training set according to the ratio of
6:2:2.

Task 2: The first 20% of each audio file in ShipsEar and
DeepShip is extracted and used as the training set, and the
remaining 80% of the segments of the audio files are divided
into two parts: the validation set and the test set. In Task 2,
noise is added the same way as in Task 1.

VOLUME 4, 2016

Task 3: Debug the denoising model individually by train-
ing all the data in the ShipsEar. The dataset in DeepShip is
used as a test set and input to the trained denoising model
according to the predefined classes to achieve signal noise
reduction. Use the evaluation metrics to compare the change
in the signal-to-noise ratio of the signal after noise reduction.
In Task 3, noise is added the same way as in Task 1.

The difficulty from Task 1 to Task 3 gradually increases
and at the same time it also becomes more suitable for
practical applications.
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B. OPTIMISATION

Table 3 shows the Dual-Path Transformer Network (DPTN)
model used in this article compiled by CUDA11.3 [29]. The
encoder is based on 256 convolutional filters with a kernel
size of 4 and a stride factor of 2. The decoder uses the same
number of permutation convolution filters. The encoder was
chosen to have the same kernel size and move a step to
maintain consistency before and after the audio duration. In
ablation experiments, where the input and output channels
of the network are kept the exact size before and after the
feature tensor transfer, we test the number of repetitions
necessary for the transformer process in the masking network
to fit the denoising network better. We applied 8 parallel at-
tention heads and 1024-dimensional positional feed-forward
networks within each transformer layer. The learning rate is
initialized to le-5 and decays for every 10 epochs by 0.98
Early stop training is introduced when there has been no
improvement for 5 epochs. The weight decay has defaulted
to an L2 penalty. Adam [30] is used as the optimizer, and
the dynamic mixing (DM) [31] is introduced as the data
augmentation. The gradual increase in the difficulty of the
two tasks exercises the generalization ability and robustness
while making the model conditions more realistic. The mask-
ing network processes chunks of size C' = 250 with a 50%
overlap. We employ N1 and N2 layers of transformers in
both intra-Transformer and inter-Transformer.

C. TRAINING OBJECTIVE

The objective of training the end-to-end learning framework
is to maximize the signal-to-noise ratio (SNR) [32]and the
scale-invariant signal-to-noise ratio (SI-SNR) [33]. They are
commonly used as the evaluation metric for signal noise re-
duction. SNR requires both the target signal and the enhanced
signal to know. It is an energy ratio expressed in dB between
the energy of the target signal contained in the enhanced
signal and the energy of the error. SI-SNR uses a single
coefficient to account for scaling discrepancies compared to
SNR. The scale invariance is ensured by normalizing the
signal to zero-mean before the calculation. So the higher it
is, the better. SNR and SI-SNR are defined as:

S arge 2
SNR = 10l0gsg—1araetl” g5
HStarget - Starget
0 arge 2
ST — SNR = 10l0gyg—03taraetl (14)

||/8\target - estarget ||2

</S\ta'rget ) 3target>

g = \2target; Starget] (15)

2
[$targe|

Where Sigrger € RV and sigrger € RY™7T are the
estimated and original clearly sources and ||S|*> = (S, )
denotes the signal power.
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D. RESULTS

1) Waveform and spectrum display before and after noise
reduction in Task 1

The waveform and spectrum display before and after noise
reduction in Task 1 are shown in Figures 6 through 10. The
original signals of various classes(Class A to D) are allowed
to become distorted by ambient noise(Class E) using the Luo
method [34]. It is clear that when the various underwater
acoustic signals are interfered with by ambient noise, the
characteristics of the underwater acoustic signals themselves
are significantly altered. After using the proposed DPTN
algorithm, most of the noise is eliminated, and the underwater
acoustic signal retains the detailed information of the original
underwater acoustic signal.

2) Comparison of ablation experiments in Task 1

In Task 1, we investigate the effects of various hyperparam-
eters and network structures on the Dual-Path Transformer
Network (DPTN) performance. Table 4 provides a summary
of the findings, and the experiment is used for the test set
noise reduction.

We note that the number of intra- and inter-transformers
significantly impacts the performance. When both transform-
ers are iterated 8 times, the best result is obtained. Instead,
we find a slight reduction in the model’s effectiveness after
16 iterations on each transformer. When we examine the
cause, we can see that when the model design is too complex,
the Dual-Path Transformer Network (DPTN) may overfit.
After training, the model loses some generalization ability
but retains a robust fitting ability. In addition, we let the
inter-transformer use a single-time transformer, which has
a performance of 15.59dB. We can observe a significant
weakening of the model effect when using a single-layer
transformer for the intra-transformer, indicating that local
processing, or the intra-transformer, has a more significant
impact on the denoising performance. The intra-Transformer
is the initial transformer of the masking network. It has the
ability to modify the model’s hyperparameters to alter the
performance of the subsequent network structure in addition
to learning the mask. Therefore, the effectiveness of the
DPTN depends on selecting the proper network structure
for each layer. Finally, it is clear that this paper’s positional
coding was beneficial. We notice a slight performance differ-
ence between 8 and 16 heads when considering the number
of heads. In order to make the model more lightweight, the
proposed DPTN selects an attention technique with 8 heads.

We test the Dual-Path Transformer Network’s (DPTN)
signal enhancement speed with various network structures
during training. The training curve for the model in Task 1 is
depicted in Figures 11 and 12. We plot the performance ver-
sus time for the first 150 training iterations on the validation
set. We utilized the same computer and GPU for every model
to ensure an accurate comparison. Additionally, a batch size
of 1 was used for training all systems. When the hyperparam-
eters are selected to make the model more lightweight, the
model converges faster during training. However, the model
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TABLE 3. Dual-Path Transformer Network Structure

Intra-Transformer  Inter-Transformer  Masking network DPTN
Positional Encoding  Positional Encoding  Intra-Transformer Encoder
Normalization Normalization Inter-Transformer Chunking
Multi-head attention ~ Multi-head attention Masking network
Normalization Normalization Overlap-add
Feedforward Feedforward Decoder
PReLu PReLu
Linear Linear
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FIGURE 7. The waveform and spectrum of fishship

TABLE 4. Ablation experiment of the DPTN(NV; ¢, is the number of the intra-transformer, N, .+, is the number of the inter-transformer, Heads is the number of
the multi-head, D is the dimension of feedforward, PE is the positional encoding.)

Model SNR/SI-SNR Nintra  Ninter Heads D PE
DPTN 16.68/15.82 8 8 8 1024  Yes
DPTN(No PE) 14.61/13.28 8 8 8 1024 No
DPTN(D=2048) 14.69/13.25 8 8 8 2048  Yes
DPTN(Heads=4) 14.37/13.05 8 8 4 1024 Yes
DPTN(Heads=16) 15.61/13.09 8 16 4 1024 Yes
DPTN(Ninter=1) 15.59/13.89 8 1 8 1024 Yes
DPTN(Nintra=1) 13.73/10.2 1 8 8 1024 Yes
DPTN(N=4) 15.07/12.26 4 4 8 1024 Yes
DPTN(N=16) 14.81/12.89 16 16 8 1024 Yes
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FIGURE 10. The Waveform and spectrum of passenger
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TABLE 5. Results of different noise reduction methods.

Method Task 1(SNR/SI-SNR) Task 2 Task 3
RNN 10.21/9.9 8.37/8.6 7.89/6.67
FCN 9.68/10.93 8.25/8.8 7.30/7.62
DPTN 16.68/15.82 13.71/12.53  10.37/11.69
Wavelet denoising 9.64/8.98
Interval-dependent denoising 8.67/7.33

SNR

—— DPTN(No PE)
—— DPTN(D=2048)
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FIGURE 11. The SNR variation cure of ablation experiment
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FIGURE 12. The SI-SNR variation cure of ablation experiment
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testing results are not as good as DPTN. For example, the
denoising effect of DPTN is improved by 1.09 over DPTN
(Ninter=1), but the model convergence time is prolonged by
about 3 hours. Therefore, different collocation methods can
be invoked according to different experimental needs.

3) Comparison of the denoising performance of different
models in Task 1,2 and 3

Table 5 compares the performance of the Dual-Path Trans-
former Network (DPTN) with other deep learning-based
approaches to three tasks in noise reduction. The denoising
methods include Recurrent Neural Network (RNN) [25],
Fully Connected Neural Network-based model (FCN) [16],
wavelet denoising method [12] and interval correlation de-
noising method [13]. Since the wavelet denoising and interval
denoising methods feed the noisy signal directly into the
model and reduce the noise by transform decomposition
methods, so the whole process can be implemented without
training the model. By evaluating three tasks on the test
dataset, the signal-to-noise ratio improvement of our pro-
posed DPTN model is 16.68db, 13.71db, and 10.37db in task
1, task 2, and task 3, respectively.

4) RMSE, Spectral entropy, and Phase diagram display
before and after noise reduction by DPTN
To more thoroughly assess the results of the denoising under-
water acoustic signal using DPTN and the change in features
before and after denoising. We calculated the change in the
short root mean square error (RMSE) before and after signal
denoising, which is a way of responding to the change in
signal energy. By comparing the changes of RMSE before
and after noise reduction, we know that the clear underwater
acoustic signal will not change drastically in a short period.
However, when ambient noise is added, it will cause the
RMSE of the signal to change. As shown in Figure 13 and
Figure 14, we can find that the value of RMSE of the noisy
signal is around 0.1 in the first 2 seconds. The value of RMSE
can increase to about 0.15 when the change in RMSE from
4S to 5S is significant. On the other hand, the RMSE of
the denoised signal is approximately 0.075 in the first two
seconds and can continue to be approximately 0.075 when
the change in RMSE is minimal in the period between 4 and 5
seconds. The results show that the RMSE of the target signal
can be maintained in a relatively stable state after using the
DPTN method for noise reduction.

Further, we use spectral entropy to investigate the changes
in underwater acoustic signals before and after denoising.
Spectral entropy reflects the relationship between the power
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spectrum and entropy rate. Entropy is a measure of the degree
of uncertainty of various random tests. The natural ambient
noise in the underwater acoustic signal experiments has a
high degree of randomness and confusion, which causes the
spectral entropy to fluctuate widely. As shown in Figure 15,
the noisy signal’s spectral entropy fluctuates between 0.3 and
0.9, and when the DPTN denoising method is applied, it
fluctuates between 0.6 and 0.8.

Finally, we compared the phase diagram’s transformation
before and after denoising. The phase diagram is an essential
feature in identifying the signal of the underwater acoustic
signal. In the identification task, the signal’s phase change
can be used to determine the type of underwater acoustic
signal. As shown in Figure 16 and Figure 17, the two
original signals fall under the same class (Class A) in the
ShipsEar data. However, different phase change is produced
when natural ambient noise is added. Phase change makes
it difficult for the signal classification system to differentiate
between the classes of two signals. The phase change of the
two denoised signals is similar after using the DPTN model
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to eliminate background noise, allowing us to distinguish
between the two denoised signals that belonged to the same
class.

IV. CONCLUSIONS

This paper proposes an end-to-end method of masking pat-
tern denoising. First, the method reconstructs the noisy signal
by coding and learns the feature mapping by deep learning.
Then, in the high-dimensional feature space of deep neural
networks, the transformer between features allows the model
to acquire more knowledge. Finally, the denoised signal is
recovered by decoding. To validate the effectiveness of our
method, we verify the model’s performance on the ShipsEar
and DeepShip datasets. The experimental results show that
our proposed model is more competitive than other deep
learning techniques. The signal-to-noise ratio improvement
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of our suggested DPTN model is 16.68 dB, 13.71 dB, and
10.37 dB in Task 1, Task 2, and Task 3, respectively. In
future work, we apply migration learning methods and GAN
to underwater acoustic signal denoising.
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