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ABSTRACT Based on the fractional order sliding mode load observer, this paper presents an anti-

disturbance speed control method of permanent magnet semi-direct drive transmission system for overhead 

manned equipment. According to the Lagrange equation, the dynamic model of semi-direct drive 

transmission system is established. Furthermore, the mathematical model of the permanent magnet 

synchronous motor (PMSM) is established based on the coordinate transformation theory. Subsequently, 

the fractional order sliding mode observer (FOSMO), which combines nonsingular terminal sliding mode 

control and fractional order theory is designed to observe the load disturbance changes in the permanent 

magnet semi-direct drive transmission system. Then, the concept of “active damping” is used to design the 

speed loop PI controller, and combined with the designed FOSMO to construct the composite speed 

controller. The designed composite speed controller is further improved by the anti-saturation design and 

parameter optimization. The results demonstrate that the designed FOSMO can precisely estimate the load 

disturbance on the PMSM output shaft. Additionally, the designed composite speed controller can realize 

stable speed control in the case of complex load disturbance, which meets the anti-disturbance speed 

control requirements of permanent magnet semi-direct drive transmission system, and the robustness of the 

control system is further improved by adding the anti-saturation link. 

INDEX TERMS PMSM, anti-disturbance control, fractional order sliding mode, non-singular terminal 

sliding mode, load disturbance observer 

I. INTRODUCTION 

The overhead manned equipment is a continuous-action 

transport device pulled by the steel wire rope, and its 

schematic diagram is shown in Fig. 1. At present, the 

mining personnel of most coal enterprises go down to the 

downhole by means of the overhead manned equipment [1]. 

The traditional driving system of overhead manned 

equipment is the mode of “asynchronous motor + soft-start 

device + multistage reducer”. As the core component, its 

reliability, stability and efficiency will directly affect the 

productivity and economic benefits of coal enterprises. 

In recent years, the related technology of low-speed high-

torque permanent magnet synchronous motors (PMSMs) is 

becoming more and more mature. Therefore, adopting the 

low-speed high-torque PMSM with better performance to 

replace the traditional asynchronous motor, and the 

multistage reducer can be replaced by single stage reducer. 

At this time, the PMSM, single stage reducer and other 

components constitute the permanent magnet semi-direct 

drive transmission system to shorten the transmission chain. 

This new driving system (as shown in Fig. 2) can not only 

reduce the vulnerable parts such as gears, but also improve 

the operational efficiency and reliability [2]. However, 

since the semi-direct drive transmission system reduces the 

transmission chain, the PMSM output shaft will bear more 

vibration and shock. It can cause speed control fluctuations, 

which in turn affect the stable operation and safety of 

overhead manned equipment. 
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FIGURE 1. Schematic diagram of overhead manned equipment. 
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FIGURE 2. Schematic diagram of the permanent magnet semi-direct 
drive transmission system for overhead manned equipment. 

With the development of PMSM technology and modern 

control theory, scholars at home and abroad have carried 

out a lot of research on speed control, and put forward 

many effective anti-disturbance speed control strategies. 

Petrovic et al. proposed a feedback law with adaptively 

estimating model parameters [3], which effectively 

suppresses the speed fluctuation in the PMSM system. Li et 

al. developed a modified internal model control (IMC) 

scheme based on the two-port IMC method, where a 

feedback control term is added to form a composite control 

structure [4]. It solves the problem of poor tracking and 

interference suppression performance of the standard IMC 

method when the control input is saturated. Yu et al. used 

dynamic surface control to reduce adaptive parameters, and 

combined with neural network to achieve anti-disturbance 

design in the case of parameter uncertainty and load 

disturbance of PMSM [5]. Sadala et al. presented a 

combination robust control algorithm of CNF control and 

super-twisting control (STC) methods [6], which shows 

better performance in tracking error, chattering suppression, 

robustness and so on. By introducing a fractional order 

terminal sliding mode surface, Wu et al. designed a novel 

fractional order terminal sliding mode controller for the 

speed loop to improve the PMSM speed tracking 

performance [7]. Lu et al. proposed a robust speed controller 

that combines the composite nonlinear feedback (CNF) and 

the integral sliding mode (ISM), which improves the 

transient responsive performance and robustness of the 

control system [8]. Xu et al. proposed a novel compensation 

scheme based on the integral sliding mode control (ISMC) 

theory for disturbance elimination. This proposed method 

incorporates the disturbance rejection term in the main 

control loop, which avoids the side effects of the traditional 

parallel external observer-based compensation method [9]. 

The compensation strategy based on disturbance 

identification is another effective anti-interference method. 

Tety et al. proposed a sixth-order discrete-time extended 

Kalman filter method for on-line estimation of speed, rotor 

position, load torque and stator resistance in the PMSM 

system [10]. Yu et al. used the neural networks to 

approximate the unknown and nonlinear functions of PMSM 

drive system [11]. Zhou et al. proposed an anti-disturbance 

robust control method based on the rapid nonlinear tracking 

differentiator (NTD) and disturbance observer (DOB) [12]. 

In the literature [13], a novel finite-time extended state 

observer (FTESO) combined with generalized super-twisting 

technique is constructed to estimate the unknown lumped 

disturbance and compensate the estimated value to the STSM 

speed controller. This method improves the anti-disturbance 

property and tracking performance of PMSM. Sun et al. 

designed a reduced-order observer based on additional 

disturbance state variables in discrete time to predict the 

future stator flux and observe the system disturbance caused 

by parameter mismatch [14]. However, like the full-order 

observer, this method still depends on the parameters of 

PMSM, and the observation accuracy cannot be guaranteed 

when the PMSM parameters are disturbed. The literatures 

[15, 16] designed the extended sliding mode observer (SMO) 

to estimate the load disturbances of PMSM. The SMO is a 

nonlinear method, which has the advantages of fast response 

speed, insensitivity to parameter changes and disturbances, 

strong robustness, and easy physical implementation. But the 

chattering of the sliding mode surface makes it difficult for 

the designed SMO to achieve the desired performance. 

Therefore, it is necessary to solve the chattering problem 

when using the SMO. Zhang et al. used the low-pass filter to 

suppress the effects of buffeting in the SMO [17]. Lu et al. 
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combined the advantages of both high-order sliding mode 

and non-singular terminal sliding mode, designing the 

second-order non-singular terminal sliding mode observer 

(SNTSMO) [18]. It realizes the fast convergence and no 

chattering observation of the load disturbance changes in the 

low-speed high-torque PMSM system. Ke et al. designed the 

SMO with multidimensional sliding mode surface to estimate 

the stator current and the lumped disturbance, and proposed 

the Hurwitz-based power reaching law (HPRL) to eliminate 

the uncertain disturbance calculation of classical power 

reaching law [19]. Compared with exponential reaching law, 

HPRL adopted in the SMO achieves high convergence rate 

and settles chattering. 

The semi-direct drive transmission system reduces the 

transmission chain and vulnerable parts, but it also causes the 

PMSM output shaft to bear greater vibration impact. At the 

same time, the harsh underground environment of coal mine, 

vibration impact and high temperature will also cause the 

perturbation of system parameters, which further affect the 

stability of the control system. According to the above 

analysis, the SMO has the characteristics of strong robustness 

and insensitivity to parameter changes and disturbances. 

Therefore, it is more suitable for the permanent magnet semi-

direct drive transmission system of the overhead manned 

equipment. Inspired by previous scholars’ research, this 

paper presents an anti-disturbance speed control method for 

permanent magnet semi-direct drive transmission system of 

overhead manned equipment, and the main contributions are 

shown as follows:  (a) According to the system structure and 

the coupling relationship between various components, and 

considering the nonlinear factors in the system, the nonlinear 

dynamic model of the semi-direct drive transmission system 

is established based on the Lagrange equation. The complex 

load characteristics on the output shaft of the PMSM can be 

obtained through this nonlinear dynamic model, which 

provides a basis for verifying the effectiveness of the 

designed composite speed controller. (b) On the basis of 

nonsingular terminal sliding mode control and fractional 

order control theory, this paper constructs the FOSMO to 

observe the load disturbance changes in the permanent 

magnet semi-direct drive transmission system, and the 

observed value is used as the compensation control input. 

Moreover, the fast power reaching law with second-order 

sliding mode characteristics is adopted to reduce the 

chattering of the sliding mode surface to improve the 

accuracy of load disturbance observation. (c) Aiming at the 

problem of difficult selection of controller parameters, the 

concept of “active damping” is used to design the speed loop 

PI controller, and the goal of simpler parameter tuning is 

achieved. At the same time, based on the ITAE index, the 

hybrid PSO algorithm is used to optimize the parameters of 

the FOSMO. Furthermore, in order to ensure that the 

permanent magnet semi-direct drive transmission system has 

better anti-disturbance performance, the anti-saturation 

improvement of the composite speed controller is also 

carried out in this paper. Finally, the effectiveness of the 

proposed method is verified based on the load characteristics 

of the permanent magnet semi-direct drive transmission 

system of the overhead manned equipment. 

This paper intends to realize the anti-disturbance speed 

control of the permanent magnet semi-direct drive 

transmission system based on FOSMO. In Section 2, the 

mathematical models of PMSM and semi-direct drive 

transmission system are presented. Section 3 presents the 

design of FOSMO, which is based on the fractional order 

theory and the non-singular terminal sliding mode method. 

According to the designed PI controller and FOSMO in 

Section 4, the anti-disturbance composite speed controller is 

established. Section 5 presents the results and analysis of the 

designed FOSMO and anti-disturbance composite speed 

controller for the permanent magnet semi-direct drive 

transmission system. The brief conclusions are drawn in 

Section 6. 

II. MATHEMATICAL MODELING 

A. MATHEMATICAL MODELING OF SEMI-DRIVE 
TRANSMISSION SYSTEM 

According to the system structure and the coupling 

relationship between various components, the permanent 

magnet semi-direct drive transmission system of the 

overhead manned equipment can be divided into PMSM 

and gear 1 unit, gear 1 and gear 2 meshing unit, gear 2 and 

load unit. Its dynamic model can be simplified into a 

massless spring system with certain stiffness and damping 

through the lumped parameter method. Among them, the 

motor rotor includes 1 rotation degree of freedom, gear 1 

and gear 2 include 4 translational and 2 rotational degrees 

of freedom, and the load includes 1 rotation degree of 

freedom. According to the Lagrange equation, the 

following dynamic model can be established [20]: 
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         (1) 

where Jm, J1, J2 and JL are the rotational inertia of PMSM, 

gear 1, gear 2 and load driving wheel, respectively; m1 and 

m2 are the masses of gear 1 and gear 2 respectively; θm, θ1, 

θ2 and θL is the rotation angle of PMSM, gear 1, gear 2 and 

load driving wheel respectively; x1, y1, x2 and y2 are the 

displacement of gear 1 and gear 2 on the x-axis and y-axis 

respectively; ca and cb torsional damping of the motor 
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output shaft and the semi-direct drive transmission system 

output shaft; cx1, cy1, cx2、cy2 are the support damping of 

gear 1 and gear 2 on the x-axis and y-axis respectively; ka 

and kb are the torsional stiffness of the motor output shaft 

and the semi-direct drive transmission system output shaft 

respectively; kx1, ky1, kx2 and ky2 are the support stiffness of 

gear 1 and gear 2 on the x-axis and y-axis respectively; R1 

and R2 are the base circle radius of gear 1 and gear 2 

respectively; Te and TL are the electromagnetic torque of 

PMSM and the load torque of load driving wheel 

respectively; F12 is the meshing force of gear pair (gear 1 

and gear 2); δ12 is the dynamic transmission error of the 

gear pair (gear 1 and gear 2). 

Dynamic transmission error δ12 of the gear pair in (1) can 

be expressed as follows. 

12 12 1 12 1 12 2

12 2 1 1 2 2 12

cos sin cos

sin

δ α x α y α x

α y Rθ R θ e

   
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              (2) 

where α12 is the gear pressure angle, e12 is the static 

transmission error. 

Due to the existence of manufacturing and installation 

errors, the semi-direct drive transmission system has impact 

phenomenon during gear meshing, which will affect the 

stability of the transmission system. The backlash function 

can be expressed as follows [21]. 
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                          (3) 

where b is the backlash. 

The meshing force F12 of gear pair is composed of the 

elastic force caused by gear meshing stiffness and the viscous 

force caused by meshing damping, expressed as follows. 

 12 12 12 12 12F k f δ c δ                                (4) 

B. MATHEMATICAL MODELING OF PMSM 

PMSM is a typical nonlinear strongly coupled system, which 

contains multiple variable parameters in the mathematical 

model in the natural coordinate system. The Clark 

transformation and Park transformation are applied to 

simplify its mathematical model. Finally, the stator voltage 

equation of PMSM in the d-q synchronous reference frame 

can be established as follows [8]. 

d s d d d e q q
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                 (5) 

where ud and uq are the stator voltage components on the d-q 

axis, id and iq are the stator current components on the d-q 

axis, Ld and Lq are the inductances on the d-q axis, Rs is the 

stator resistance, ωe is the electric angular speed, ψf is the 

flux linkage, respectively. 

The electromagnetic torque of PMSM is shown as follows. 

1.5 [ ( ) ]e n q d d q fT p i i L L                        (6) 

where pn is the number of pole pairs. For the surface-

mounted PMSM, if the control method of id=0 is used, the (6) 

can be simplified as follows. 

1.5e n f qT p i                                          (7) 

The motion equation of PMSM is shown as follows [4]. 

= +e Lm m m m mT T B ω J ω-                              (8) 

where TLm is the load torque of PMSM, Bm is the viscous 

friction coefficient, ωm is the mechanical angular speed, Jm is 

the rotational inertia, respectively. 

III. MATHEMATICAL MODELING DESIGN OF LOAD 
DISTURBANCE OBSERVER 

There are various internal and external disturbances in the 

actual permanent magnet semi-direct drive transmission 

system of the overhead manned equipment, such as load 

torque, damping torque, parameter perturbation, and so on. 

These disturbances more or less affect the control 

performance of the permanent magnet semi-direct drive 

transmission system, and then affect the stable and safe 

operation of the overhead manned equipment. Generally, the 

load torque is much larger than the sum of other disturbances 

and plays a leading role in the disturbances. If the friction 

coefficient Bm is ignored, the speed change of PMSM can be 

expressed as follows [18]. 
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Equation (9) shows that the fluctuation changes of ∆T can 

cause the fluctuation of speed. From the perspective of 

control, the stable speed control of permanent magnet semi-

direct drive transmission system needs to realize the 

electromagnetic torque to track the change of load torque 

well. Therefore, it is necessary to estimate the load 

disturbance and compensate it to the speed control system. 

A. DESIGN OF FOSMO 

Combined with the (7) and (8), and taking the load torque as 

the extended state variable, the extended state equation of 

PMSM can be established as follows [15]. 
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             (10) 

Based on the sliding mode control theory which is 

insensitive to the disturbances and parameter perturbation 

and has fast response speed, the FOSMO is designed to 

observe the load torque of PMSM, and shown as follows [17]. 

 
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ˆ
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m
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J
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   (11) 

where usmo is the switching function of sliding mode control, 

g is the sliding mode coefficient, ˆ
m  is the observed value 

of angular speed of PMSM, and ˆ
LmT  is the observed value 

of load torque of PMSM. 

The observation errors of the FOSMO can be obtained by 

subtracting the (10) from the (11), and shown as follows. 
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where ˆ
m m m     and ˆ Lm Lm LmT T T   are the 

observation errors of the angular speed and load torque, 

respectively. 

The research in recent years has shown that most real 

complex systems have fractional order properties, so it is 

more reasonable and accurate to describe the system in the 

form of fractional calculus. Besides, compared with integer 

order control, fractional order control has stronger anti-

disturbance performance, dynamic and static response 

ability. The fractional calculus combines differential and 

integral operations, which can be expressed by the 

following unified fractional operators [22]: 
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where t0 and t are the lower and upper limits of fractional 

calculus respectively; μ is the order of fractional calculus, 

which can be any real number or complex number; Re (•) 

stands for the real ministry. In this paper, the order μ is a 

real number. From the (13), it can be seen that when μ>0, 

fractional calculus operator represents differential, when 

μ<0, fractional calculus operator represents integral. 

Due to the influence of the switching function sgn in 

SMO, the chattering will occur in the sliding mode plane 

switching process, and the traditional SMO is closer to the 

equilibrium point, the slower the system state converging. 

Therefore, the sliding mode surface is the main determinant 

of the dynamic performance of SMO. The nonsingular 

terminal sliding mode has clear physical significance, 

which can ensure that the system is able to reach the sliding 

mode surface and reach the system zero point in a limited 

time. Compared with the linear sliding mode, the 

nonsingular terminal sliding mode has the advantages of 

smaller sliding mode switching gain, faster convergence 

speed, higher system stability accuracy and stronger 

robustness. On the basis of nonsingular terminal sliding 

mode control [15] and fractional order theory [22], 

according to the speed estimation error m , the sliding 

mode surface is constructed as follows. 
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where β>0, 0<μ<1, p and q (p>q) are positive odd number. 

The derivative of the (14) with respect to time is shown as 

follows. 
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In order to reduce the chattering of the sliding mode 

surface, a fast power reaching law with second-order 

sliding mode characteristics is selected to ensure that the 

better dynamic characteristics in reaching stage [23]. The 

fast power reaching law is shown as follows [24]. 

1 2sgn( )f fslaw k s s k s s


        kf1>0，kf2>0      (16) 

where kf1>0, kf2 >0, α∈(0, 1). 

According to the (14) and (16), the sliding mode control 

law of FOSMO can be designed as follows [25]. 
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B. STABILITY ANALYSIS OF FOSMO 

In order to analyze stability of the designed FOSMO, the 

following Lyapunov function is selected: 

21

2
V s                                            (18) 

The derivative of the (18) with respect to time is shown 

as follows. 
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Substituting the (17) into the (12), the (12) can be 

rewritten as follows. 

1
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                              (20) 

Therefore, the fractional order of the (20) can be 

expressed as follows. 
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Substituting the (21) and (17) into the (19), the (19) can 

be rewritten as follows. 
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   (22) 

Since p and q are odd numbers, and p>q>0, only when 

0 0t mD  , 
/ 1

0( ) 0p q

t mD   , otherwise 
/ 1

0( ) 0p q

t mD   . Equation (22) can be expressed in the 

following two forms [18]. 
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FIGURE 3. Schematic diagram of the designed FOSMO. 
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  (24) 

It is assumed that the 0

1
t Lm

m

D T M
J

  , and M≥0. For 

the (23), when 
1 0fk s M  , then 0V  . According to the 

comparative lemma [26], the designed FOSMO can reach 

and maintain the non-singular terminal sliding mode state 

in a limited time (s=0), so that the system can achieve the 

0m   in a limited time. Therefore, 

2f

M
s

k
                                     (25) 

According to the (24), through the same analysis method, 

it can be obtained: 
1

1f

M
s

k

 
  
 
 

                                   (26) 

According to the (25) and (26), the convergence region 

of sliding mode surface s in a limited time can be expressed 

as follows [23]. 
1

1 2

min ,
f f

M M
s

k k


 
  

    
  
 

                        (27) 

Combined with the (16), the convergence region of the 

first derivative of the sliding mode surface s in a limited 

time can be expressed as follows [23]. 
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   (28) 

It is assumed that the convergence time of the sliding 

mode surface s from the initial value to 0 is tr. When t>tr, 

ωm will enter the terminal sliding mode motion state and 

converge to zero after time ts. The total convergence time of 

the designed FOSMO can be expressed as follows [25]. 

 1 /

0max ( ) p q

r s r t m r

p
t t t t D t

p q

     


       (29) 

According to the (29), the convergence speed of the 

designed FOSMO can be adjusted by selecting the 

parameters β, p and q on the sliding mode surface s. 

The schematic diagram of the designed FOSMO is 

shown in Fig. 3. 

C. PARAMETER OPTIMIZATION OF FOSMO 

Although the selection range of parameters in the FOSMO 

can be determined through stability analysis, the selected 

parameters may not guarantee the optimal performance of 

the FOSMO. Therefore, this paper uses the PSO algorithm 

to optimize the parameters of FOSMO. The ITAE index is 

selected as the fitness function to ensure that the FOSMO 

has good performance [27], and shown as follows. 

0

t

pso Lm
t

F t T dt                                   (30) 

PSO algorithm is a relatively new branch of swarm 

intelligence. It was proposed by Kennedy and Eberhart in 

1995 [28]. It is a method to find the optimal solution by 

simulating the bird colony to find habitat. Its core idea is to 

use the information sharing mechanism to learn from the 

experience of each particle to realize the development of 

the population. Each member of the population in the PSO 
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algorithm is called a particle, and each particle represents a 

potential feasible solution. The flight direction of each 

particle is adjusted by the fitness function value and 

velocity to ensure that the particles can fly to the globally 

optimal position. 

In the D-dimensional search space, the position and 

velocity of the ith particle are expressed as Xi = [xi1, xi2, …, 

xiD], Vi=[vi1, vi2, …, viD], respectively. In the process of 

evolutionary search, the position of ith particle is adjusted 

according to the current velocity, personal history best 

position (pbesti) and global best position (gbest). Among 

them, pbesti = [ pbesti
1, pbesti

2, … , pbesti
d], gbest = [ gbest1, 

gbest2, … , gbestd]. The velocity and position of the ith 

particle in dimension D can be updated through the (31) 

and (32) [29], and the principle is shown in Fig. 4. 

1 1

2 2

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

d d d d d

i i i i

d d d

i

v t w v t c rand pbest t x t

c rand gbest t x t

      

   
   (31) 

( 1) ( ) ( 1)d d d

i i ix t x t v t                                              (32) 

where w is the inertia factor, c1 and c2 are the acceleration 

factors, and 1

drand  and 2

drand  are uniformly distributed 

random numbers within the range of [0, 1]. 

pbesti
d(t)

gbestd(t)

xi
d(t)

vi
d
(t+1)

Optimal 
Position

xi
d(t+1)

vi
d(t)

 

FIGURE 4. Iteration scheme of the particles in the PSO algorithm. 

The above basic PSO algorithm has the advantages of 

easy physical implementation, fast convergence speed and 

few parameters. But, due to the lack of individual diversity 

and high-quality solutions, the basic PSO algorithm may 

converge prematurely and fall into local optimization in the 

face of complex optimization problems [30]. The crossover 

operation is one of the three genetic operations in the 

Genetic algorithm, and it is the key to determine the 

convergence performance of the algorithm [31]. In this 

paper, the crossover operation is mixed into the basic PSO 

algorithm, and it is added after the speed and position 

update respectively, as shown in (33) and (34). The newly 

added crossover operation in the hybrid PSO algorithm 

enables the offspring particles to inherit the advantages of 

the parent particles, and theoretically strengthens the search 

ability of the region between particles. Therefore, the 

particles in the local optimal region can get rid of the local 

optimal, so as to improve the search results. 
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FIGURE 5. Schematic diagram of parameter optimization of FOSMO 

based on the hybrid PSO algorithm. 
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i i i
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
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      (34) 

Based on the above hybrid PSO algorithm, the 

parameters of the designed FOSMO are optimized, and the 

schematic diagram is shown in Fig. 5. 

IV. DESIGN OF SPEED CONTROLLER 

A. DESIGN OF PI SPEED CONTROLLER 

According to the concept of “active damping” proposed in 

document [32], the parameters of the speed loop PI 

controller are designed, and defined as follows. 

*

q q a mi i B                                      (35) 

It is assumed that the PMSM starts under no-load 

condition (TLm=0), the following equation can be obtained 

from the (7), (8) and (35): 

 1
1.5 m

m n f q a m m

m m

B
p i B

J J
                  (36) 

The poles of the (36) are assigned to the desired closed-

loop bandwidth α , and the transfer function of the 

rotational speed relative to the q-axis current can be 

obtained as follows. 

1.5 /
( ) ( )

n f m

m q

p J
s i s

s








                     (37) 

The coefficient Ba of active damping can be obtained by 

comparing the (36) and (37), and shown as follows. 

1.5

m m

a

n f

J B
B

p






                              (38) 

If the traditional PI controller is used, the expression of 

the speed loop controller is shown as follows [33]. 

 

*

*

0d

i

q p r m a m

i

k
i k B

s
  

 

  

    
 

          (39) 

Therefore, the parameters kp and ki of PI controller can be 

set by the following formula [34]. 
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FIGURE 6. Schematic diagram of anti-disturbance speed control strategy for permanent magnet semi-direct drive transmission system. 
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                                (40) 

where α is the desired frequency bandwidth of the speed 

loop. Compared with the typical II system, the parameter 

tuning method in this paper is simpler, and the relationship 

between the parameter adjustment and the dynamic quality 

of the speed is clearer. 

B. DESIGN OF COMPOSITE SPEED CONTROLLER 

Finally, the observed value of the designed FOSMO is used 

as the compensation control input of the speed controller, 

and the load disturbance of PMSM is compensated in real 

time. The schematic diagram is shown in Fig. 6. It is 

assumed that the output of the PI speed controller is iqc, the 

observed value of the designed FOSMO is ˆ
LmT , the 

compensation gain of load disturbance is kt, and the output 

of the anti-disturbance composite speed controller 

(PI+FOSMO) is shown as follows. 
* ˆ

qc q t Lmi i k T                                      (41) 

C. ANTI-SATURATION DESIGN OF COMPOSITE SPEED 
CONTROLLER 

In the actual operation of the permanent magnet semi-direct 

drive transmission system of the overhead manned 

equipment, there are various physical limitations in the 

control system, such as the variation range limitation of the 

motor current and speed. It causes the inconsistency 

between the actual control input and output, leading to the 

saturation phenomenon of the control system, and 

weakening the performance of the speed controller. 

Similarly, the control output iqc of the composite speed 

controller cannot be arbitrarily large. That is to say, the 

control output of the composite speed controller has upper 

and lower limits, and can be assumed as iqcmax and iqcmin 

respectively. In order to protect the control system, a 

saturation limit must be added to the control output of the 

composite speed controller, which can be expressed as 

follows. 

max max

min max

min min

,

,

,

qc qc qc

qo qc qc qc qc

qc qc qc

i i i

i i i i i

i i i

 


  
 

             (42) 

When the saturation limit is added to the (42), the actual 

control input of the current loop will be inconsistent with 

the control output of the composite speed controller. At this 

time, the sudden change of load torque in a wide range may 

cause greater speed control fluctuations, and even cause 

system instability in severe cases [35]. Therefore, in order 

to improve the dynamic performance of the PMSM control 

system, it is necessary to add an anti-saturation link in the 

composite speed controller to reduce the influence of the 

saturation phenomenon. 

The main goal of the anti-saturation design of the 

composite speed controller is to make the system’s 

saturated output performance close to the linear output 

without saturation [36]. Scholars at home and abroad have 

proposed many anti-saturation methods, such as the 

conditional integration method, inverse calculation tracking 

method, anti-reset windup method, etc. Among them, the 

anti-reset windup method is a linear feedback using the 

restricted loop. For the designed composite speed controller, 

the improved anti-reset windup method is used to realize 

the anti-saturation design of the composite speed controller, 

and as shown in Fig. 7. 
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FIGURE 7. Anti-saturation principle of composite speed controller. 

V. RESULTS AND ANALYSIS 

The load torque of the overhead manned equipment is 

applied to the semi-direct drive transmission system output 

shaft through the driving wheel. Assume that the load 

torque of the overhead manned equipment has a constant 

load (800N.m) from 0 to 2s, and there is a sudden load and 

random load with sinusoidal shape at t = 2s, as shown in 

Fig. 8a. The load torques TLm applied to the PMSM output 

shaft are shown in Fig. 8b. Among them, the curve of TLms 

does not consider the nonlinear gear meshing characteristics 

in the semi-direct drive transmission system. The curve of 

TLmc considers the nonlinear gear meshing characteristics 
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which are obtained according to the established dynamic 

model of the semi-direct drive transmission system, and it 

is closer to the actual load characteristics of system. 

Comparing the two curves in the Fig. 8b, it can be seen that 

in the actual permanent magnet semi-direct drive 

transmission system, the nonlinear gear meshing 

transmission leads to the complex load characteristics on 

the PMSM output shaft. This complex load characteristic 

will seriously affect the stability of the speed control system 

of the PMSM, and then challenge the safety of the 

permanent magnet semi-direct drive transmission system of 

overhead manned equipment. 

The parameters of the PMSM are shown in Table I. The 

parameters of the semi-direct drive transmission system are 

shown in Table II. 

According to the vector control principle of PMSM, the 

simulation model of the anti-disturbance speed control 

strategy of the permanent magnet semi-direct drive 

transmission system can be established based on 

MATLAB/Simulink, and as shown in Fig. 9. 

TABLE I 
SIMULATION PARAMETERS OF PMSM. 

 

Rated 

power 

(kW) 

Rated 

speed 

(r/min) 

Rated 

torque 

(N.m) 

Stator 

resistance 

(Ω) 

Flux 

linkage 

(Wb) 

d-axis 

inductance 

(mH) 

q-axis 

inductance 

(mH) 

Pole 

pairs 

number 

Rotational 

inertia 

(kg.m2) 

PMSM 37 300 1209 0.116 1.235 4.28 4.28 8 1.96 

TABLE II 

SIMULATION PARAMETERS OF THE SEMI-DIRECT DRIVE TRANSMISSION SYSTEM. 

 
Teeth 

number 

Modulus 

(mm) 

Teeth width 

(mm) 

Pressure angle 

(°) 

Aperture 

(mm) 

Gear 1 17 6 100 20 80 

Gear 2 105 6 100 20 180 

 

FIGURE 8. Simulated load of permanent magnet semi-direct drive transmission system: (a) simulated load torque of driving wheel of semi-direct drive 
transmission system; (b) load torque of PMSM output shaft. 

 

FIGURE 9. Simulation model of anti-disturbance speed control strategy for permanent magnet semi-direct drive transmission system. 
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A. PI SPEED CONTROLLER 

 

 

 

FIGURE 10. Result curves of PI speed controller without considering the nonlinear gear meshing characteristics: (a) load torque; (b) control output of 
PI speed controller; (c) rotating speed; (d) d-q axis currents; (e) A phase current. 

When the nonlinear gear meshing characteristics of the 

semi-direct drive transmission system are not considered, 

the control effect of the PI speed controller is shown in Fig. 

10. Fig. 10a shows the load torque curve of the PMSM. Fig. 

10b shows the control output curve of the PI speed 

controller. It can be seen that the PI speed controller does 

not reach the output saturation (limiting [-80, 80]), and the 

control output of the PI speed controller is close to the load 

torque curve. Fig. 10c shows the rotating speed curve of 

PMSM. There is a certain overshoot in the starting process, 

and the PI controller can ensure the stability of speed 

control under constant load. When the load changes 

suddenly (at t=2s), there is a significant decrease in the 

speed curve, and the speed curve will fluctuate under the 

subsequent load fluctuation conditions. Fig. 10d shows the 

d-q axis current curves of the PMSM. Fig. 10e shows the A 

phase current curves of the PMSM. 

When the nonlinear gear meshing characteristics of the 

semi-direct drive transmission system are considered, the 

control effect of the PI speed controller is shown in Fig. 11. 

Fig. 11a shows the load torque curve of the PMSM. Fig. 

11b shows the control output curve of the PI speed 

controller. It can be seen that the PI speed controller does 

not reach the output saturation (limiting [-80, 80]). Fig. 11c 

shows the rotating speed curve of PMSM. Compared to the 

Fig. 10c, the complex load characteristic (as shown in Fig. 

11a) causes the speed control to fluctuate all the time, 

which cannot be guaranteed in a stable state. At this time, 
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not only the smooth and stable operation of the overhead 

manned equipment cannot be guaranteed, but the safety of 

the system may even be endangered. Fig. 11d shows the d-q 

axis current curves of the PMSM. Fig. 11e shows the A 

phase current curves of the PMSM. 

According to the above analysis of Fig. 10 and Fig. 11, 

under the condition of constant load, the designed PI 

controller can meet the stable speed control requirements of 

the PMSM. But the disturbances such as load mutation and 

fluctuation seriously affect the stability of the speed control, 

and then challenge the safety of the permanent magnet 

semi-direct drive transmission system of overhead manned 

equipment. Therefore, it is necessary to identify the load 

disturbance and compensate it to the speed control system 

to improve the stability of the control system. In addition, 

compared with Fig. 10a, the load characteristic shown in 

Fig. 11a are more complex and closer to the actual load 

characteristics of the permanent magnet semi-direct drive 

transmission system. So, the following study only uses the 

load characteristics shown in Fig. 11a to verify the 

effectiveness. 

 

 

 

FIGURE 11. Result curves of PI speed controller considering nonlinear gear meshing characteristics: (a) load torque; (b) control output of PI speed 
controller; (c) rotating speed; (d) d-q axis currents; (e) A phase current. 
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FIGURE 12. Parameter optimization results of FOSMO based on the hybrid PSO algorithm: (a) convergence chart of fitness value; (b) optimization 
curves of parameter β and g; (c) optimization curves of parameter α and μ; (d) optimization curves of parameter kf1 and kf2. 

 

 

FIGURE 13. Load disturbance observation curves of the traditional SMO: (a) load torque and observation values; (b) observation error; (c) sliding 
mode surface. 
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FIGURE 14. Load disturbance observation curves of the designed FOSMO: (a) load torque and observation values; (b) observation error; (c) sliding 
mode surface. 

B. LOAD DISTURBANCE OBSERVER 

The designed FOSMO contains parameters α, β, g, μ, p, q, 

kf1, kf2, etc. Among them, p and q are positive odd numbers, 

and 1<p/q<2. Therefore, the p and q parameters are easy to 

be selected by manual methods, and p and q are chosen as 9 

and 7 respectively. This paper uses the hybrid PSO 

algorithm designed in Section 3.3 to optimize the remaining 

parameters (α, β, g, μ, kf1, kf2), and the optimization ranges 

of α, β, g, μ, kf1, kf2 are selected as [0, 1], [1e-5, 100], 

[10000, 80000], [0, 1], [0, 10], [0, 10], respectively. The 

fitness value and parameter change curves of the hybrid 

PSO algorithm are shown in Fig. 12. According to the 

optimization results of the hybrid PSO algorithm, the 

parameters of FOSMO are α=0.7702, β=13.46, g=51800, 

μ=0.4525, kf1=6.37, kf2=4.281, respectively. 

To illustrate the effectiveness of the FOSMO designed in 

this paper, it is compared with the traditional SMO in the 

literature [15-17], and the load disturbance observation 

results of the traditional SMO and the designed FOSMO are 

shown in Fig. 13 and Fig. 14 respectively. From the 

comparison curves of the load torque and observed results 

shown in Fig. 13a and Fig. 14a, it can be seen that both 

SMO and FOSMO can realize the load disturbance 

observation on the PMSM output shaft. Furthermore, the 

load observation curve of FOSMO is smoother and the 

buffeting is smaller. From the load observation error curves 

shown in the Fig. 13b and Fig. 14b, compared with the 

traditional SMO, the observation error of the designed 

FOSMO is smaller. From the sliding mode surface curves 

shown in the Fig. 13c and Fig. 14c, compared with the 

traditional SMO, there is almost no chattering on the sliding 

surface of the designed FOSMO. It proves that the method 

proposed in this paper can effectively suppress the 

chattering of the sliding mode surface and improve the load 

observation accuracy at the same time. 

C. COMPOSITE SPEED CONTROLLER 

Through the above analysis, the FOSMO with better 

performance is selected to observe the load disturbance of 

the PMSM system. According to the principle shown in Fig. 

6, the observed value of load disturbance is used as the 

compensation control input of the speed controller, and the 

results are shown in Fig. 15. Fig. 15a shows the comparison 

curves between the load torque and the observation values, 

which proves that the FOSMO realizes the load disturbance 

observation on the PMSM output shaft. Fig. 15b shows the 

load observation error. Fig. 15c shows the sliding mode 

surface. Fig. 15d shows the control output of the composite 

speed controller (PI+FOSMO), and it also does not reach 

the output saturation (limiting [-80, 80]). From the speed 

curve shown in Fig. 15e, it can be seen that the designed 

composite speed controller (PI+FOSMO) can realize the 

stable speed control of the PMSM under complex load 

disturbance conditions. Therefore, the load disturbance 

compensation method is effective and can ensure the 

dynamic performance and operational safety of the 
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permanent magnet semi-direct drive transmission system of 

the overhead manned equipment. Fig. 15f shows the d-q 

axis current curves of the PMSM. Fig. 15g shows the A 

phase current curve of the PMSM. 

 

 

 

 

FIGURE 15. Result curves of anti-disturbance composite speed controller: (a) load and observation values; (b) observation error; (c) sliding mode 
surface; (d) control output of composite speed controller; (e) rotating speed; (f) d-q axis currents; (g) A phase current. 
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D. ANTI-SATURATION OF COMPOSITE SPEED 
CONTROLLER 

In order to verify the effect of the designed anti-saturation 

composite speed controller under control saturation, the 

load torque of PMSM shown in Fig. 11a is increased by 

33%, and the comparison curves between the composite 

speed controller and the anti-saturation composite speed 

controller are shown in Fig. 16. Fig. 16a shows the 

comparison curves between the load torque and the 

observation values, which proves that the accurate load 

observation can still be achieved under the control 

saturation condition. Fig. 16b shows the load observation 

error. Fig. 16c shows the sliding mode surface. Fig. 16d 

shows the control output of the composite speed controller 

and anti-saturation composite speed controller. It can be 

seen that the output of the composite speed controller is 

limited to -80-80 due to the effect of control output limiting. 

From the speed curves shown in Fig. 16e, it can be seen 

that the composite speed controller will not have speed 

overshoot when the control output is saturated. The added 

anti-saturation link improves the performance of the 

composite speed controller and achieves the expected 

purpose. Fig. 16f shows the d-q axis current curves of the 

PMSM. Fig. 16g shows the A phase current curve of the 

PMSM. 
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FIGURE 16. Comparison curves of composite speed controller and anti-saturation composite speed controller under control saturation: (a) load and 
observation values; (b) observation error; (c) sliding mode surface; (d) control output of composite speed controller; (e) rotating speed; (f) d-q axis 

currents; (g) A phase current. 

VI. CONCLUSIONS 

In this paper, an anti-disturbance composite speed control 

method based on the PI speed controller and FOSMO is 

proposed for the permanent magnet semi-direct drive 

transmission system of overhead manned equipment. The 

designed FOSMO combines the advantages of nonsingular 

terminal sliding mode and fractional order theory, reducing 

the chattering of the sliding mode surface, which accurately 

observing the load disturbance of the permanent magnet 

semi-direct drive transmission system. Subsequently, the 

speed loop PI controller is designed with the concept of 

“active damping”, and the FOSMO is combined to build the 

composite speed controller (PI+FOSMO). Furthermore, the 

designed composite speed controller is further improved by 

anti-saturation design and parameter optimization. Finally, 

the effectiveness of the proposed method is verified based 

on the load characteristics of the permanent magnet semi-

direct drive transmission system of the overhead manned 

equipment. 

Under the load characteristics of the permanent magnet 

semi-direct drive transmission system of the overhead 

manned equipment, the designed PI speed controller can 

ensure the safe operation of the PMSM, but there is a large 

speed control fluctuation in the case of load fluctuations. 

Then, the hybrid PSO algorithm is used to optimize the 

parameters of the designed FOSMO. Comparing the results 

of FOSMO and traditional SMO, it can be seen that the 

designed FOSMO can realize the observation of complex 

load disturbances, and the observation error is smaller. The 

sliding mode surface of FOSMO is smoother and there is 

almost no chattering. Therefore, the designed FOSMO has 

better performance, which can effectively suppress 

chattering and ensure the accuracy of load observation. 

Subsequently, the designed composite speed controller 

(PI+FOSMO) realizes the speed stability control of the 

permanent magnet semi-direct drive transmission system 

under complex load disturbance, which proves that the 

scheme of compensating the observed value of load 

disturbance into the speed controller is effective, and makes 

up for the shortcomings of speed control fluctuation caused 

by load disturbance. After that, the comparison results 

under the control output saturation condition show that the 

improved composite speed controller with anti-saturation 

link has less speed fluctuation and better performance. 

Therefore, the method proposed in this paper realizes the 

anti-disturbance ability of the permanent magnet semi-

direct drive transmission system, and improves the dynamic 

performance while ensuring the stability of the control 

system. 
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