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ABSTRACT As an important transmission component of industrial robots, the harmonic reducer
determines the positioning accuracy, bearing capacity and service life of the robot end-effector. Predicting
the performance can grasp the working status in advance and avoid major losses caused by uncertain factors
such as component damage. The current paper focuses on a harmonic reducer performance prediction
algorithm based on Multivariate State Estimation Technique (MSET) and LargeVis dimensionality
reduction. Firstly, an accelerated life test platform is designed to collect multi-dimensional parameters that
can characterize the operating state of the harmonic reducer throughout the life cycle. Afterwards, as far as
the MSET method is concerned, the fault warning threshold is set according to the residual between the
constructed memory matrix of the health state data and the actual observed value. Finally, utilizing
LargeVis to reduce the dimensionality of multi-dimensional features, combining with Mahalanobis distance
to construct a health index degradation model, and then selecting Long Short-Term Memory (LSTM)
network to predict the downward trend of the harmonic reducer. The analysis of the accelerated life test
data of the harmonic reducer demonstrates that the proposed method can send out the fault warning signal
18 minutes in advance in the sample with a life of 5.7 hours, and has a strong ability to predict the
degradation trend of the harmonic reducer.

INDEX TERMS Harmonic reducer, performance prediction, Multivariate State Estimation Technique,
LargeVis, features dimensionality reduction, Long Short-Term Memory network.

I. INTRODUCTION

Industrial robots are the most common type of robots,
which are widely used in intelligent manufacturing. In the
era of Industry 4.0, industrial robots also play an
indispensable role in it [1]. Industrial robots can replace
people to do many things, such as painting of cars and
tightening of screws, which require high stability, low
failure rate and low vibration of industrial robots [2]-[5].
Reducers are an important component of industrial robots
[6], and their life and stability are directly related to the
operating conditions of industrial robots. Precision reducers
are utilized in all joints of industrial robots to improve the
overall stiffness and output torque of the robot. There are
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two main types of precision reducers used in robots, RV
reducers and harmonic reducers. RV reducers are large in
size compared to harmonic reducers and are mainly used in
large joints of industrial robots. Harmonic reducer is small
in size, large transmission ratio, small mass and high
transmission efficiency and transmission accuracy, which is
widely used in wrist and small arm hand joints of industrial
robots. The performance of harmonic reducer is directly
related to the safety and stability of industrial robots.

The model diagram of harmonic reducer is shown in
Figure 1. Harmonic reducer mainly consists of flexible
wheel, rigid wheel and wave generator. As the use time
increases, the harmonic reducer motion accuracy decreases
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and fatigue damage occurs. Damage to the harmonic
reducer occurs in the robot will bring a large economic loss.
At present, the factory uses regular inspection and
maintenance to troubleshoot the harmonic reducer. There is
a certain lag in this troubleshooting method, and it is
important to establish a harmonic reducer health assessment
model to predict its performance [7].

FIGURE 1. Harmonic reducer model diagram

Researchers have conducted some theoretical and
experimental studies on the performance evaluation of
mechanical structures such as reducers. Zhang [8]
investigated the reliability evaluation method of harmonic
reducers using transient finite elements and accelerated life
tests. Qian [9] proposed a multi-failure mode time-varying
reliability analysis method based on a two-loop Kriging
model to analyze the time-varying reliability of reducers.
Liu [10] proposed a simple index indicating the failure
severity based on the ratio between the characteristic
frequency component of the failure and the currently
sampled vibration signal. The fault characteristic frequency
components are identified by applying wavelet packet
decomposition and Hilbert transform to the original signal.
Shiau [11] proposed a nonparametric regression-based
accelerated life stress model for describing the accelerated
degradation curve. An estimate of the mean time to failure
under normal conditions of the product was obtained by
analyzing the relationship between the stress level and the
acceleration factor. Crk [12] proposed a multivariate
multiple regression function parametric analysis method for
applied stresses using a degradation trajectory-based
approach. Doksum [13] proposed a variable stress
accelerated life test model based on the concept of
cumulative degradation with a Wiener process and inverse
Gaussian distribution, which has more flexibility for
nonparametric life models. Li [14] built a performance
margin model based on the hysteresis and transmission
error of harmonic reducer as key parameters, and analyzed
and quantified the multi-source uncertainty to construct a
reliability model. Jun [15] proposed a new n-ARIMA based
equipment performance degradation model method, and
used a non-smooth autoregressive integrated moving

average model to build an equipment performance
degradation model to verify the performance degradation of
OTM650. Riascos-Ochoa [16] proposed a Levy framework
to simulate the effect of degradation sources on the
degraded system, and obtained the moments of reliability
function, probability density and lifetime. The performance
of harmonic reducers is often expressed through multiple
state parameters, such as vibration, transmitted torque,
temperature, etc. These performance evaluation methods,
designed using a single state parameter, do not reflect the
performance of harmonic reducers.

Some scholars have also developed performance
evaluation models through neural networks. Ma [17]
proposed a particle swarm optimization based reliability life
prediction analysis for harmonic reducers. Wang [18]
proposed a hybrid prediction method for remaining service
life prediction of rolling bearings using a correlated vector
machine regression with different kernel parameters to
represent the bearing test dataset and adaptively estimate
the remaining service life using an exponential degradation
model combined with Frechet distance. Prudhom et al [19].
showed that a simple fault severity index using short-time
fourier transform (STFT) information can be proposed
based on the notation over definition of time-frequency
transform instead of fault indicators. Wang [20] proposed a
bearing performance evaluation method based on
topological representation and hidden Markov model,
where a topological network of original features is obtained
by self-organizing mapping, and a hidden Markov model is
used as the evaluation model to assess the bearing
performance degradation trend. These performance
evaluation models established using neural networks are
able to predict the performance state of the mechanism, but
a large amount of experimental data is required to establish
convolutional neural networks and machine learning
models, harmonic reducers have a long service life, and it
takes more than ten years to collect hundreds of data sets to
establish performance evaluation datasets, and the model
training process is complex and prone to overfitting.

In brief, our significant technical contributions are the
following:

(1) A test platform for the accelerated life of harmonic
reducer is built, and multiple sets of multi-dimensional data
parameters such as input speed, output speed, input torque,
output torque, temperature and acceleration in X, Y and Z
directions are collected during the operation.

(2) The designed MSET method can realize the
comprehensive  condition monitoring of the harmonic
reducer, and the fault warning signal can be sent out 18
minutes in advance by setting the fault threshold.

(3) The dimensionality reduction of the characteristic
parameters is realized by the LargeVis technology, and the
performance degradation trend information of the harmonic
reducer is predicted by combining with the LSTM method.
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Il. Accelerated Life Test of Harmonic Reducer

In this paper, a test platform is set up to conduct accelerated
life experiments and collect multidimensional parameters
that can characterize the operation state of the harmonic
reducer during its full life cycle. The test platform consists
mainly of drive frequency conversion motor, harmonic
reducer, torque sensor, magnetic powder brake,
accelerometer, as shown in Figure 2. Among them, the
performance parameters of the drive motor are shown in
Table 1, with a rated power of 1.1kW and a rated torque of

Drive motor Input torque sensor Vibration sensor

3.5 N'm. It is connected with the harmonic reducer through a
coupling to drive the harmonic reducer. The performance
parameters of the measured harmonic reducer are shown in
Table 2. The torque sensor selects a range of 5 N-m and 200
N-m respectively to measure the torque of the input and
output terminals. The TR-3 acquisition instrument matching
the sensor is selected, and the RS232 interface is adopted to
communicate with the computer. The model of the magnetic
powder brake is FZ200J/Y, which can provide a rated torque
0f 200 N-m, all of which meet the test requirements.

Harmonic reducer Temperature sensor

Centering mechanis Platform base /Output torque sensor/ Magnetic particle brake
FIGURE 2. Accelerated life test device
TABLE 1. Drive motor performance parameters
Model Rated power Rated torque Rated speed Maximum allowable Moment of inertia
kW N-m r/min torque N'm kg -m?
QABP 80M2B 1.1 35 2845 2.8 0.00107
TABLE 2. Harmonic reducer performance parameters
Performance Value
Reduction ratio 51
Rated torque (N-m) 32
Maximum load torque (N-m) 69
Maximum average load torque (N-m) 42
Maximum torque (N-m) 121
Maximum input speed (r/min) 6000
Average input speed (1r/min) 3500
Backlash (Arcsec) 20
Design life (h) 10000

In order to obtain the full life cycle data of the harmonic
reducer, several groups of accelerated life tests are designed

and carried out in this paper, and the results are shown in
Table 3.
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TABLE 3. Accelerated life test of harmonic reducer

Serial number Load Sampling time (s) Running time (h) Failure form
1 3 times 30 213 flexible wheel fracture
2 3 times 30 89 flexible wheel fracture
3 3 times 30 9.9 flexible bearing failure
4 3 times 30 69.3 flexible wheel fracture
5 3 times 30 54.4 flexible wheel fracture
6 4 times 1 3.1 flexible bearing failure
7 4 times 1 9.8 flexible wheel fracture
8 4 times 1 5.7 flexible wheel fracture
9 4 times 1 1.1 flexible wheel fracture
10 4 times 1 7.7 flexible wheel fracture
11 4 times 1 18.6 flexible wheel fracture
12 4 times 1 7.0 flexible wheel fracture
13 4 times 1 8.5 flexible wheel fracture
14 4 times 0.05 17.3 flexible wheel fracture

According to 14 groups of accelerated life tests, most of
the failure forms of harmonic reducer are flexible wheel
fracture, and a few are flexible bearing damage. The
operating time ranges from several hours to dozens of hours,
with strong uncertainty. If the traditional method based on
physical model is used, there will be a large error. The
MSET method based on data drive proposed in this paper is
used for condition monitoring and fault warning to inform
the appropriate time for preventive maintenance of
equipment.

In addition, the lifespans of samples No. 6 and No. 9 are
3.1 hours and 1.1 hours, respectively, which is relatively
short. Combine with the analysis of the test site and
consultation with the manufacturer of the harmonic reducer,
the two groups of samples are found to be short in running
time due to manufacturing defects. Therefore, there is no
reference value. At the beginning of the test process, the
harmonic reducer is in an accelerating state, and the data
after the harmonic reducer runs smoothly is intercepted for
analysis. In addition, sensor errors during the test may
cause a large difference between individual data and the
overall sample, which should be discarded in the
subsequent model calculation.

When the harmonic reducer is running, the temperature
in the body rises due to friction heating. Especially in the
later period of use, the vibration intensifies and the input
and output torque cannot be maintained. Therefore, input
speed, output speed, input torque, output torque,
temperature and acceleration in X, Y, and Z directions are
collected in the test to analyze the performance of the
harmonic reducer.

lll. Harmonic Reducer Performance Prediction

Algorithm

Harmonic reducer performance prediction algorithm mainly
includes  condition monitoring and degradation trend
prediction. The realization principle diagram is shown in
Figure 3. The condition monitoring adopts the MSET
method, and compares the residual error between the
memory matrix constructed by the health state and the actual
observation value, thereby realizing the failure warning of
the harmonic reducer. Degradation trend prediction is to
employ LargeVis feature dimensionality reduction and
LSTM network to predict the degradation trend of harmonic
reducer.

Test data
Feature
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FIGURE 3. Process of condition monitoring and degradation trend
prediction
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A. HARMONIC REDUCER CONDITION MONITORING
METHOD

1) MSET method

MSET [21] is a non-parametric statistical modeling method
based on the weighted average of historical data, which is
suitable for failure warning of mechanical equipment with
higher test cost and greater risk factor. For industrial robot
equipment, there is a certain risk in its fault test, and it is
difficult to obtain the fault feature database. Hence, the
MSET technology is utilized to estimate the true state of the
observation vector by learning the mechanical knowledge
contained in the historical monitoring data, and then a fault
warning model is established.

Firstly, the historical memory matrix D is constructed by
utilizing the monitoring data under in normal operation
state, and then the MSET model is established. Assuming
that n variables are collected by the sensor , the observation
vector at a certain sampling time #, can be expressed as:

X (t,) = [x,(t,), %, (6,), x,(1,)s -, x, (t,)] (D

Where x.(tn) is the observed value of variable x, at
sampling time #,. Then the historical memory matrix D can
be constructed as:

D = [X(l‘l),X(l‘z),~~- X(tm)]

x(4) X (1) (1) (2)
x,(6)  x,(t) x,(1,)
xn(tl) xn(tz) xn(tm)

nxm

The memory matrix D is the basis of the MSET model,
and the construction of the memory matrix is the process of
learning and remembering the normal operating
characteristics of the harmonic reducer. Its columns
represent the values of all observed variables at a certain
sampling moment, and its rows represent the values of an
observed variable at different sampling moments.

For a new observation vector Xups, it can be compared
with the historical observation vector stored in the memory
matrix D, and then the prediction vector X.; can be
estimated. X, can be expressed as the product of D and the
weight vector w :

X =Dew=wX()tw,X(,)+-+w, X(1,) A3)

Where X, is the linear combination of the m historical
observation vectors in D. The weight w represents the
similarity measure between the vectors in X.y and D, and the
weight w can be calculated by minimizing the residuals. The
residual formula is as follows:

e=X, -X,, 4)

The optimal weight vector w is selected to minimize the
residual sum of squares between the newly measured vector
Xops and the predicted value Xey. Then the residual sum of
squares can be given by:

Sw)=)" & =¢e'e=(X,,-X,) (X
=(X,,, —Dw)"«(X,,, — Dw)

n . m 2
:Zi=] (X, (D) - Z/‘:i ij’.j)

'_X)s'z
obs = X o) 5)

obs

Take the partial derivatives of S(w) with respect to wi,
wa, -, wu and make them equal to 0. Then the weight w can
be written as follows:

w=(D"®D)'«(D"®X,,) (6)

Where the nonlinear operator ® chooses to use Euclidean
distance operation.

n

®(X,Y)= Z(xi_yi)z ™)
i=l1
When the harmonic reducer works under normal
conditions, the model input value Xops is located in the
normal working space of the memory matrix D, and is close
to the historical observation vector in D. Once a failure
occurs, Xops deviates from the observation vector in the
memory matrix, the accuracy of the output value decreases,
and the residual will increase accordingly. Hence, the
residual between Xes: and Xops can reflect the abnormal state
and fault information. By means of monitoring changes in
residuals and setting reasonable thresholds, fault alarm can
be achieved.
2) Feature selection
In view of the construction of the memory matrix D, different
strategies are employed to construct the rows and columns.
The purpose of feature selection is to transform the raw
data into a more meaningful form, thereby simplifying the
model and improving performance. The feature selection of
the Pearson correlation coefficient method is employed to
screen the rows of the memory matrix. Because it has a
simple process, high computational efficiency, and it is
suitable for large-scale data. The degree of linear
correlation between two variables is calculated by the
Pearson correlation coefficient, and the value range is
generally [-1, 1]. The larger the absolute value, the higher
the degree of linear correlation. Then the overall Pearson
correlation coefficient formula between the two variables is
as follows:
_cov(x,y) Ellx—pu,y—u,)] (8)

X,y

0,0, 0.0,

The formula for calculating the correlation coefficient
between two samples can be expressed as:

2P0 ©)
PICEES N ) WES %

Due to the long sampling time and the huge amount of
data, the memory matrix will be redundant, thereby
reducing the computational efficiency. The commonly used
equal interval sampling method is a typical one-time offline

5

r

X,y
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sample selection method, which can effectively control the
size of the memory matrix. However, considering the
changes of actual machining parameters and operating
conditions, the estimation accuracy of the MSET with a
fixed memory matrix will gradually decrease and frequent
maintenance is required. Accordingly, it is necessary to
improve the flexibility of the fixed memory matrix. In this
paper, a dynamic memory matrix construction method
based on KNN algorithm is adopted to construct the
columns of the matrix, realize online calculation of MSET,
and observe the distance between the vector and each
sample in the training set in real time. Taking variable x; as
an example, the method flow of adding observation vectors
to the memory matrix is shown in Figure 4. Here, ¢ is a
small positive number.

FIGURE 4. Flowchart of memory matrix construction

3) Sliding window method

Within the context of the current paper, the sliding window
method is adopted to eliminate the uncertain factors and
random interference of the harmonic reducer in operation,
thereby improving the reliability of fault warning. By
finding an appropriate sliding window width, the statistical
characteristics of continuously changing residuals can be
quickly captured.

Assuming that in a certain period of time, the sequence
number of residuals estimated by the MSET method can be
given by:

5(Xovaesz):[51952""55N] (10)

Setting the width of the sliding window to N, then the
moving average of N consecutive residual values within the
window can be calculated as:

1 N
= ———-:E:é;[ (]'1)
NT

The threshold of fault warning & is determined by the
maximum average residual value in the sliding window.
Under the condition of normal operation of the equipment,
the maximum residual average value between the normal
observation vector and the estimated vector of the MSET
model is ev. The fault warning threshold can be designed as:

&l

e, =ke, (12)

Where k is the alarm threshold coefficient, which is
determined by the operator according to actual experience,
and the value is generally greater than 1. When the residual
value is greater than the residual threshold er, the system
sends out an alarm signal.

4) Experimental verification

Taking the sample with a lifespan of 5.7 hours in the 8th
test as an example, the total number of samples is 20000
after deleting the data of abnormal and initial acceleration
stage. The magnitude of the correlation between variables is
calculated, and the Pearson feature correlation diagram is
shown in Figure 5. After calculation, it can be known that
the output speed and torque have little correlation with
other variables, as shown in Table 4.

FIGURE 5. Pearson feature correlation diagram

TABLE 4. Correlation of each state variable

State variables Correlation State variables Correlation

input speed 0.73 temperature 0.67

input torque 0.71 X- acceleration  0.76
output speed 0.56 Y- acceleration  0.77

output torque 0.60 Z- acceleration  0.75
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FIGURE 7. Memory matrix
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FIGURE 6. Curve diagrams of each variable

It can be seen that the speed and torque at the output
terminal have little correlation with performance decline, so
other state variables such as input speed, input torque,
temperature and acceleration in the X,Y and Z direction are
selected as the row vectors of the memory matrix. The
curve diagrams of each variable are shown in Figure 6.

The column vector of memory matrix is constructed by
dynamic method based on KNN. For 20000 data samples,
the first 2000 samples are taken as the training set, the
middle 3000 samples are used as the validation set, and the
last 5000 samples are regarded as the test set. A memory
matrix with 6 rows and 100 columns is constructed from
the training set, and the standardized matrix is shown in
Figure 7.

0.988473 0.987032 0.984150 0.984150]
0.996805 0.996957 0.996145 0.995841
1084253 1.079838 1.093451 1.091979
0.202247 0.662921 0.202247 0.123596
0972222 0.960317 0.957341 0.953373
1.812500 1.734375 1.671875 1593750] .,
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The failure threshold is
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determined through the
validation set and the application of fault warning is carried
out on the test set. When the residual exceeds the threshold,

it directly indicates that the current state is abnormal, and
then a fault alarm is issued. The residual distribution on the
validation set is shown in Figure 8.

P

1500 2000 2500 3000

Validation set

FIGURE 8. Sliding window analysis of residual distribution based on validation set

Using the sliding window method to calculate the
maximum residual average value ey, the sliding window
width is set to 200. Through calculation, the maximum
residual average value is 0.4. Setting the alarm threshold
coefficient k to 2.5, then the calculation method of the fault
warning threshold is as follows:

& =ke, =2.5x04=1 (13)

The 5000 sets of operating data before the failure
occurred as the test set, and the residuals are compared with
the estimated vector calculated by MSET. The residual
results are shown in Figure 9. According to the fault
warning threshold, calculate the average residual value in a

204

Residual

o

Threshold

sliding window with a width of 200. The first alarm is
issued at the 3890th sampling point, that is, about 18
minutes before the fault occurs, and the residual value at the
subsequent sampling points increases sharply. The MSET
algorithm can be used to evaluate the residuals between
prediction vector and observation vector, and an alarm can
be issued in time, thereby winning precious time for
troubleshooting. In the meanwhile, the proposed MSET
method can uniformly describe the states of multiple
variables without modeling each variable separately, which
can quickly realize the fault warning and has higher
application value.

Fault warning position

)

T T
0 1000 2000

Test set

FIGURE 9. Fault warning based on residual distribution of test set

B. HARMONIC REDUCER DEGRADATION TREND
PREDICTION

1) LargeVis dimensionality reduction method

The LargeVis technique is a data dimensionality reduction
method for high-dimensional space. The state data of the
harmonic reducer during the operation process contains
abundant state information. The high-dimensional vector is
mapped to the low-dimensional space through the
dimensionality reduction method, and the overall

-
&

3000 4000 5000

distribution law of the observation data is visualized [22].
The basic process is shown in Figure 10.
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(a) High-dimensional feature vectors

(b) K-nearest neighbor graph

(c) Visualization of dimensionality reduction results
FIGURE 10. LargeVis dimensionality reduction process.

The conditional probability distribution of x; to x; in the
higher dimensional space can be written as:
i ’XJHZ/Z"K‘Z

¢ (14)

Z 67 Xi X Hz/zo_’z
k#i

Where pj; denotes the probability that the sample point x; is
a neighbor of x;, and o; represents the variance of the
Gaussian distribution with x; as the center point.

The joint probability in high-dimensional space can be
given by:

Py =

Pt Py (15)
Y 2n
The conditional probability distribution of the low-
dimensional space can be expressed as:

ple; =1 =f(y,-»| (16)

Where y; and y; represent two points in low-dimensional
space, which have a binary edge with weight ¢;= 1 in KNN
graph, where f{x) is:

1

1+e

(17

J(x)=

IZ

The objective function of the LargeVis algorithm can be

written as:
0= p,logple, =D+ Y ylog(l—p(e =1) (18)
(i,j)EE (i,))eE

Where E is the set of positive samples, E is the weight
uniformly set for the negative sample edge.
2) Distance evaluation method
The Mahalanobis distance is adopted to measure the
covariance distance of the data, which is an effective
method to calculate the similarity between two location
sample sets. The dimension reduction feature of the
harmonic reducer in the healthy state is selected as the
baseline data, and the Mahalanobis distance between the
sample data and the baseline data under different working
conditions is compared. The health index is utilized to
measure the health degree of the component. The smaller
the distance between the sample point to be tested and the
baseline, the better the health degree. In this case, the health
index is defined as 1. Conversely, it represents the decline
of health to a very poor state, and the health index is
defined as 0.

H, =g i) (19)

Where the parameter ko is adopted to adjust the density of
the health value distribution corresponding to each state, so
that the health value is evenly distributed in the interval
(0,1). d(x, y) represents the Mahalanobis distance, which
can be described as:

d(xy) = Jx=-9"Y (x=p) (20)

3) LSTM prediction method

LSTM [23] is a special type of RNN network that can solve
the problems of vanishing and exploding gradients of
traditional RNN networks. LSTM adds a memory unit to
the neural nodes of the hidden layer of RNN to record the
historical information. And three gates of input, forget and
output are added to control the use of historical information.
For LSTM, its parameter settings are shown in Table 5, and
the internal structure of neurons is shown in Figure 11.

TABLE 5. Parameter settings of LSTM

Parameters Value
numFeatures 1
numResponses 1
numHiddenUnits 40
Optimizer adam
MaxEpochs 1000
GradientThreshold 1
InitialLearnRate 0.01
LearnRateDropFactor 0.2
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FIGURE 11. Internal structure of LSTM neuron

Observing the picture in Figure 11, where i, f, ¢, and o
represent the input gate, forget gate, unit state, and output
gate, respectively. ¢ and tanh represent the sigmoid and
hyperbolic tangent activation functions, respectively. Then,
at moment ¢, the calculation method of the input and output
values of the LSTM network can be expressed by the
following formula:

i, = sigmoid (W,,x, + Wb, +W,¢, , +b)

S, = sigmoid W x, + W, h_ +W_c,_, +b,)
¢, = fc i tanh(W x, +W, h_,+b.) 20
o, = sigmoid (W x, +W, h_ +W c,_ +b,)

xo”t co~t-1

h, = o, tanh(c,)
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The Root Mean Square Error (RMSE) is the square root
of the ratio of the deviation between the predicted value and
the true value to the number of observations. Here, RMSE
is used as the performance measurement index of the
predicted results, and the formula is as follows:

RMSE= [ 23" 0, -, (22)

Where y,; is the predicted value and y is the actual value.

4) Experimental verification

In order to verify the effectiveness of LSTM method, the
8th and 14th groups of harmonic reducer samples with
lifespans of 5.7 hours and 17.3 hours are used as examples
for analysis. According to the correlation degree calculation
of state variables in the previous section, acceleration
signals in the X, Y and Z directions with the strongest
correlation are selected for research. Similarly, the total
sample size is 20,000 and 1.2 million after deleting the data
of abnormal and initial acceleration phases, respectively.
The mean, peak-to-peak value (ppv), standard deviation
(std), and kurtosis value (kv) of time domain features are
extracted to form the feature vector X, then:
X=[x"x".x"]

x! x! X3 X3 x? x?

mean > “* ppv > ‘X std > kuv:|
(23)
For the two sets of experiments, features are extracted

every minute, and high-dimensional vectors Vi and V> are
constructed respectively, as follows:

=[ X e X,

mean > “* ppv > <X std 2 X kuv o

' o iy
Xmean prv o Xkuv
27 27 21
V _ Xmean prv o Xkuv (24)
1~ . . . .
[333]" [333]' [3337
Xmean prv o Xkuv 333x12
1y iy {17
Xmean prv o Xkuv
121 121 27
V _ Xmean prv o Xkuv (25)
2= . . . .
{10007 {10007 [1000T
X mean X ppv o X kuv 100012

Utilizing LargeVis to reduce the dimension of the
extracted features, and effectively calculate the similarity
between different data sets by means of Mahalanobis
distance. Since the data of the harmonic reducer is
relatively stable in the first 10 minutes of operation, it is
regarded as healthy data. The Mahalanobis distance is
based on the data of the first 10 minutes, and the
dimensionality reduction features in the health state are
taken as the baseline data to calculate the distance between
the sample data to be tested and the baseline data.
Afterwards, the Mahalanobis distance is nonlinearly
mapped, and the health index of each sample point is
calculated according to the health index expression. Then

the change graph of the health values is shown in Figure 12.
For the sake of a simple notation, (a) represents the 8th
group of experiment, (b) displays the 14th group of
experiment, the following experiments are consistent with
the characterization method of this experiment, and will
not be repeated one by one. Here, the value of ko is 1. It can
be clearly seen from the figure that the overall trend of the
health value is on a downward trend, and the results of the
health assessment are consistent with the actual situation. It
is directly proved that the combination of the LargeVis
dimensionality reduction and the Mahalanobis distance
method can better evaluate the performance degradation
state of the harmonic reducer.
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FIGURE 12. Health performance curve

LSTM is employed to predict the performance state of
the harmonic reducer. Figure 13 demonstrates the
comparison between the actual and the predicted
degradation curves of the two groups of experiments.
Where blue indicates the actual degradation curve, and red
represents the predicted degradation curve. It is found that
with regard to the performance degradation, the predicted
results are similar to the actual value, and infinitely close to
the actual value.

10

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3166921, IEEE Access

IEEE Access

Multidisciplinary ; Rapid Review : Open Access Journal

14 T T T T T T

*  True data
: | Predicted data | -
0.9 9
0.8 b
g E
E 0.7 \. 9
5 WAL A
YV A ]
T | ]
\/ vy ]
05F s V’\N\ ,71 "’\:
v
041 | 4
]
0.3F 1 i
0.2 : : : :
0 50 100 150 200 250 300 350
Number of features
(a)
11 T T T T
*  True data
1 Predicted data | 4
0.9 1
0.8 il
E
3
©07 g % 1
c 4
=
To6r %MJ\ —
T
051 b ;v ig " ;\ ]
04r w ]
03 KW’
02 . . . .
0 200 400 600 800 1000
Number of features

FIGURE 13. LSTM-based performance degradation prediction graph
Here, we select the first 80% of the data in the full life
cycle samples as the training set, and the last 20% as the
test set. The training error and test error are shown in
Figures 14 and 15, respectively. As can be obviously
understood from the figures, the training errors of the two
experiments are 0.0004 and 0.0002, respectively, and the
test errors are 0.0188 and 0.0096, respectively. The test
error is slightly higher than the training error. But in general,
there is no doubt that the LSTM method for predictive
analysis has less error and better effect. It directly indicates
that the LSTM method has a greater prediction effect on the
performance decline trend of the harmonic reducer.
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FIGURE 14. LSTM training error

LSTM test error (RSME = 0.0188)
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FIGURE 15. LSTM test error

IV. CONCLUSION

In this study, the performance of harmonic reducer is
analyzed based on multi-variable condition monitoring
method and performance degradation prediction method.
The target includes the following contents: a) The
condition monitoring of the harmonic reducer is carried out
to realize the function of fault early alarm. b) Predict the
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decline trend of harmonic reducer and provide technical
support for preventive maintenance. We consider utilizing
the MSET to realize the fault monitoring of the harmonic
reducer, employing LargeVis to reduce the dimensionality
of the multi-dimensional features, and combining the
LSTM network to solve the prediction of the decline trend
of the harmonic reducer. The accelerated life test verifies
that the proposed method can not only give fault warning
signals 18 minutes in advance in the sample with a life of
5.7 hours, but also has a strong ability to predict the
degradation trend.
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