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ABSTRACT Artificial Intelligence (AI) is increasingly finding acceptance in the space community, especially Machine 
Learning (ML), a subdomain of AI.  ML algorithms now find numerous applications in autonomous navigation, spacecraft 

health monitoring and operational management of satellite constellations. However, a large number of surveys on the 

applications of AI in space missions can be classified into two categories. The first category suffers from the limitation of being 

old and not covering some crucial and recent developments in the field; such as the contributions of Deep Learning (DL) and 

bioinspired AI algorithms. The challenge with the second category lies in its being too detailed with respect to the development 

and application of specific AI techniques or algorithms. These limitations have necessitated the need to have a concise survey 

with a wider scope for those interested in the applications and challenges of AI in the space industry, especially those with 

technical backgrounds in other fields. In this paper, we surveyed the use of traditional AI techniques in various domains of 

space missions without delving into formal methods. Some bioinspired AI algorithms were also surveyed and their potential 

application areas highlighted. Unlike similar surveys that focus only on technological challenges, we also addressed some 
crucial legal drawbacks that emanate from the reliance and use of AI in space. Summarily, while discussing future directions we 

reviewed some advancements in Internet of Things (IoT) and Blockchain technologies. Our review prioritized three application 

domains positioned to benefit immensely from the inevitable AI-Blockchain convergence in the space community. These 

include the Internet of Space Things (IoST), Satellite Communication and Spacecraft Data Security. 

INDEX TERMS Artificial Intelligence, Machine Learning, Autonomy, and Space Missions

I.  INTRODUCTION 

AI has witnessed a growing interest in the space 

community over the last two decades. In [1] the authors 
presented an anatomy of AI spanning over the first 16 years 

of the 21st Century (2000-2015). Coincidentally, both AI and 

space exploration had their beginnings in the 1950s. In 1955, 

Newell Shaw and Simon developed Information Processing 

Language (IPL-11), the first AI language. On October 4, 

1957, the Soviet Union launched Sputnik into space—the 

first human-built spacecraft. In 1958, McCarthy introduced 

LISP, which soon became the programming language of 

choice for AI applications after its publication in 1960. In the 

same year, precisely on January 31, the United States 

launched and sent into orbit her first satellite—Explorer 1 
[2]. The two fields, AI and Space Exploration, continued to 

develop independently until 1972 when the Jet Propulsion 

Laboratory (JPL), belonging to the National Aeronautics and 

Space Administration (NASA), began AI research on her 

Mars rover. AI is currently being researched in the domain of 

satellite operations, especially in supporting the operational 

apparatus of vast satellite constellations and rovers [2]. 

Considering that it takes about twenty-two minutes for radio 

waves to travel between Mars and Earth, rovers like NASA‘s 

Curiosity rely heavily on AI to make decisions and navigate 

on their own without commands from mission control. 

Computer Vision (CV) techniques applied to satellite 
imagery still remains one of the most promising applications 

of AI in the space sector. 

In space robotics two key factors have contributed to 

making AI more applicable. First, owing to the rapid 

advancement in hardware, the improved computational 

power of smaller form-factor devices has made it possible for 

them to run sophisticated algorithms [3]. Furthermore, 

autonomy and big data are converging to solve new problems 

in new domains. Robots are making rapid and considerable 

progress in the field of perception. They are beginning to 

hear, see, read, and touch in ways not previously possible [4]. 
As a result, they need to collect far richer data sets than 

traditional, strictly passive, or even active (viewpoint-

changing) sensors to enable them to interact with the 

environment [4].  Although ML is a core technology within 

robotics, robot learning has suffered considerable challenges 

due to the theoretical advancement at the boundary between 

optimization and ML. Currently, one of the biggest 

challenges facing humanity's space exploration quest is not 

visiting where no one has visited before, but managing the 

data generated from space missions. In light of the above, the 

paramount questions to ask are: How can AI help with the 
optimization of space missions? Are there technologies that 

we can leverage to resolve challenges with AI in space? 
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While multiple surveys on the applications of AI in space 

missions have been published, many of them are old and do 

not cover some crucial and recent developments in the field; 

such as the contributions of Deep Learning (DL) and 
bioinspired AI algorithms. Few others, although recent, focus 

on specific domains like remote sensing, Fault Detection 

Isolation and Recovery (FDIR), and space exploration.  

The survey in [5] focused mainly on autonomous planning 

and scheduling of operations, Anomaly Detection (AD) and 

FDIR. Izzo et al. [6]  surveyed the recent developments in 

the area of spacecraft guidance dynamics and control, with a 

focus on evolutionary optimization, tree searches and ML 

(including DL and RL) as the principal drivers and 

technologies for current and future research in the field. 

Similarly, in [7] Kunze et al. surveyed and discussed AI 

techniques as ‗enablers‘ for long-term robot autonomy, 
current advancement in integrating these techniques within 

long-running robotic systems, and the future challenges and 

opportunities for AI in Long-Term Autonomy (LTA). 

Application of Al to remote sensing was reviewed in [8], 

including onboard data processing and the promise of Al 

techniques for improving our capability to perform 

automated analysis of multispectral imagery. Zhu et al. [9] in 

a more recent review underscore recent advances in remote-

sensing data analysis with a main focus on analyzing the 

challenges of employing DL for remote-sensing data 

analysis. Some major DL concepts pertinent to remote-
sensing were introduced in [10] and more than 200 

publications in this field, most of which were published 

during the last two years, were reviewed and analyzed.  

There exist publications with a different scope in close 

proximity to our work. For example, the use of AI with 

distinct focus on Deep Neural Networks (DNNs) onboard 

spacecraft was discussed by Furano et al. [11] and the 

possible benefits analyzed in terms of bandwidth downlink. 

Berquand et al. [12] demonstrated that AI could be employed 

at the start of the space mission life cycle via an Expert 

System (ES) deployed as a Design Engineering Assistant 

(DEA). Girimonte and Izzo [13] provided an overview of AI 
for space applications and discussed: distributed AI for 

swarm autonomy, distributed computing for enhanced 

situation self-awareness and for decision support in 

spacecraft system design. The state of the art in data mining 

of satellite telemetry was reviewed in [14] and a framework 

of necessary processes on data mining to resolving various 

problems  in telemetry data was presented. In [15], DL in 

space was identified as one of the development directions for 

mobile and embedded ML and the role of on-device DL in 

significantly improving spacecraft operation was discussed.  

Summarily, most studies surveying AI with respect to 
space applications have either been reviews concerning 

closely related aspects of space missions (([5], [7]) or 

detailed topical reviews with respect to the development and 

application of specific AI techniques or algorithms ([15],  

[11] and [16]) to a specific field ([17]).  

This paper, contrastingly, surveys four unrelated 

application areas of space missions: Spacecraft Health 

Monitoring, Remote Sensing, Satellite Communications and 

Robotic Autonomous Systems (RAS) for space. Challenges 
and Future Directions were also discussed, especially with 

respect to the inevitable AI-Blockchain convergence in the 

space industry. Considering the need to have a simple but 

concise review, this survey focused more on communication 

and remote sensing satellites. Furthermore, conscious efforts 

were made to exclude complex mathematical formulas and 

abstractions.   

The remainder of this paper is organized as follows; 

Section 2 highlights the need for AI in space missions and 

provides an overview of AI, ML and Autonomy.  In this 

section we identified nine recently developed bioinspired 

optimization algorithms and their potential application areas 
in space missions. Section 3 highlights and discusses four 

application areas: Spacecraft Health Monitoring, Remote 

Sensing, Satellite Communications and RAS for space.  

Challenges and Future Directions are addressed in Section 4 

and Section 5 respectively. Finally, Section 6 presents the 

Conclusion.  

II. BACKGROUND: THE NEED FOR AI 
 

FIGURE 1. US Challenger Accident [18]  

 

Current satellite architectures are built for missions and 

operations in the hostile environment of space. Usually, 

satellite operations post-launch are tightly constrained by an 

 

 

 

 

 

 

 
 

 

 

 

 

 
FIGURE 2. A Russian Soyuz Rocket Failure [19] 
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inability to access. Except for software upgrades and 

telecommands from operators in ground segments, satellites'  

inaccessibility makes them vulnerable to failures before  

reaching End of Life (EOL) [20].  When the 9% failure rate 
of satellites during their operational lives is combined with  

the 4–5% failure rate of launch vehicles it can be statistically 

stated that approximately one out of every seven satellites 

launched will fail before reaching EOL [21].  

On January 28, 1986, NASA space shuttle Challenger 1 as 

shown in Fig. 1 broke apart 73 seconds into its flight, killing 

all seven crew members roughly two minutes after blastoff.  

The accident was later attributed to the failure of two rubber 

O rings designed to seal a section of the rocket  booster [18]. 

On October 11, 2018, the world witnessed a Russian Soyuz 

rocket failure as shown in Fig. 2, roughly two minutes after 

blastoff [19]. Given the ever-increasing number of sensors 
and actuators on modern spacecraft, manual operation 

scheduling and planning becomes less efficient and 

complicated. This challenge necessitates the introduction of 

sophisticated autonomy mechanisms, which have been 

proven to exceedingly improve the efficiency of several 

missions in terms of science output, reliability, and required 

operational effort [5]. In addition, there is a growing urge to 

reduce the overall cost of operating in space, and it is logical 

to believe that significant savings can be realized by 

automating maintenance and space vehicle operations [22]. 

Considering that AI provides one of the few possible 
approaches to reach autonomy, we shall briefly introduce AI 

and its role in achieving autonomy.  

AI could be defined as the study of intelligence present in 

computer systems, in contrast to the natural intelligence 

observed in humans and other living species [23]. Meß et al. 

[5] showed five  categories of problem statements in AI:  

Knowledge Representation—is concerned with the storage 

of information about the world (or a model thereof) such that 

a computer can efficiently process it. 

Perception—is the capacity to extrapolate aspects of the 

world given sensor input. Amongst others, this includes 

Natural Language Processing (NLP), AD, and CV. 
Reasoning—generates conclusions from available 

knowledge using logic and probability theory. 

Planning and Scheduling—finds and realizes strategies for 

reaching a specific goal or maximizing a given utility 

function. 

ML—means the improvement of an algorithm's performance 

through experience. 

All the above-mentioned categories find application in 

modern spacecraft and space missions. For example, AI is 

being utilized in trajectory and payload optimization to make 

space exploration much more efficient [24]. 

B. OVERVIEW OF MACHINE LEARNING 

ML is a core technique of AI and at the same time a 

multidisciplinary domain involving multiple disciplines such 

as: probability theory, optimization theory, statistics and 
computational theory [25]. In 1959, Arthur Samuel coined 

the term ML and defined it as a field of study that provides 

learning capability to computers without being explicitly 

programmed [26, 27]. More recently, Tom Mitchell defined 

it as: ―A computer program is said to learn from experience E 
with respect to some task T and some performance measure 

P, if its performance on T, as measured by P, improves with 

experience E [28]. Generally, ML can be divided into three 

key categories: Supervised Learning, Unsupervised 

Learning, and Reinforcement Learning (RL) [29]. Table 1 

summarizes the three categories and provides a brief 

description of each. Fundamentally, an ML model has two 

core components: learning element and performance element. 

Therefore, the key objective of ML is to make agents 

simulate or execute human learning behaviors. With the help 

of ML algorithms, a machine agent is capable of learning 

from training data to implement different tasks such as image 
or speech recognition. 

 

TABLE 1: ML Categories of Learning 

ML Learning Category Description 

Supervised [30, 31] A learning model is trained 

on a labeled data set and 
predictions are made on new 

inputs. 

Unsupervised [32, 33] Unsupervised learning 
analyzes unlabeled 

datasets without the need for 
human interference. 

Semi-supervised [31, 34] Defined as the hybridization 
of the above methods, as it 

operates on both labeled and 
unlabeled data. 

 Reinforcement [35, 36] Model takes decisions and 
learns from its actions. 

 

In supervised learning what a correct output looks like is 

already known [29]. Fundamentally, a learning algorithm is 

trained on a given data set, after which it generalizes to give 

accurate predictions to all possible inputs [37]. Popular 

supervised learning algorithms include but are not restricted 

to: ANN [38, 39] as shown in Fig. 3, Support Vector 

Machines (SVMs) [40] and Linear Regression [39]. 

 

 
FIGURE 3. Artificial Neural Networks  
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Conversely, in unsupervised learning, the algorithm derives a 

structure from the data after identifying similarities in the 

inputs. What the results should look like is not known [29]. 

The principal goal of unsupervised learning is to discover 
hidden and interesting patterns in unlabeled data. Unlike 

supervised learning, unsupervised learning uses unlabeled, 

unclassified, and categorized training data [41]. Popular 

unsupervised learning algorithms include but are not limited 

to K-Means Clustering [42] and Dimensionality Reduction 

Algorithms [39]. In K-Means Clustering, variables in the 

data are grouped together based on relationships among 

them. An example of Dimensionality Reduction Algorithms 

is Principal Component Analysis (PCA) algorithm. The goal 

of this algorithm is minimizing the dimensionality of large 

data sets, by transforming a large set of variables into a 

smaller one while preserving as much ‗variability‘ (i.e. 
statistical information) as possible [43].  

Summarily, RL differs significantly from both supervised 

and unsupervised learning. An  RL agent has the goal of 

learning the best way to accomplish a task through repeated 

interactions with its environment [44]. In RL, no labeled 

dataset is received by the machine. Instead, information is 

collected after interacting with the environment through 

different actions. The agent is rewarded after each action; 

hence its objective is maximizing this expected average 

reward where the action would become optimal [29]. The 

Markov Decision Process (MDP) represents a notable 
example of an RL model [45]. Other ML algorithms, though 

with less widely usage, exist [29]. They include: Naïve Bayes 

[39], Decision Trees [46], Bayesian Regularization [47], 

Kriging [48], Boosting [49] and more [39]. 

C. BIOINSPIRED ALGORITHMS AND OPTIMIZATION 

Optimization could be defined as the process of finding an 

optimal set from the set of all possible solutions for a given 

problem [50]. An algorithm known as the optimization 

algorithm is conventionally developed to find such a 

solution. However, many real-life problems can be 

characterized as multi-objective problems involving multiple 

conflicting objectives that should be considered 

simultaneously [51, 52]. They usually contain contradictory 

criteria, where optimization of one objective might also have 

negative influence on other objectives.  In recent years, new 

Bioinspired Algorithms (BIAs) have been developed to help 
overcome the limitations of traditional AI algorithms, 

especially when it concerns the optimization of multi-

objective problems [53].  These algorithms naturally tend to 

have a higher efficiency than the traditional AI methods; with 

the two most widely accepted categories being evolutionary 

and swarm algorithms [54, 55]. In ML, bioinspired 

optimization algorithms have been found to address the 

optimal solutions of complex problems in various science 

and engineering fields [55].  For example, mobile robot 

control (a critical aspect of rover design) is one of the main 

application fields of BIAs. Traditional AI algorithms are 
usually met with developmental constraints such as the 

reliance on high-precision sensors and complex computing 

[54] in this field. BIAs can be also hybridized together to 

solve the slow convergence speed, low prediction accuracy, 

and trapping in local optima problems for anomaly detection 
of artificial satellites [14]. In our survey of BIAs we 

summarized in Table II eight types of BIAs and domains 

were they could be potentially relevant in space missions; or 

used to overcome the limitations of traditional AI techniques.  

Ashraf in [55] noted nine recently developed optimization 

algorithms inspired by the biological behavior of some 

animals when fighting for food and mates: 

 
a. Genetic Bee Colony (GBC) algorithm [56] is a new 

optimization algorithm that  integrates the 

advantages of the Genetic Algorithms (GA) and 

Artificial Bee Colony (ABC) for optimizing 

numerical problems. 

b. Fish Swarm Algorithm (FSA) is a novel 

population-based/swarm intelligent algorithm 

inspired by the natural schooling behavior of fish 

[57, 58].  

c. Artificial Algae Algorithm (AAA) is a population-

based optimization algorithm inspired by the 

behavior of microalgae cells microalgae lifestyles 

such as the algal tendency, reproduction, and 

adaptation to the surrounding environments [55, 

59]. 

d. Whale Optimization Algorithm (WOA) [60] is a 

swarm-based meta-heuristic algorithm that emulates     

the bubble-net hunting maneuver technique of 

humpback whales.  

e. Grey Wolf (GWO) [61]  is a new meta-heuristic 

that mimics  the hunting technique and social 

leadership hierarchy of grey wolves the leadership 

hierarchy and hunting mechanism of grey wolves.  

f. Chicken Swarm Optimization Algorithm 

(CSOA) is a recent optimization algorithm that 

mimics the behaviors of the chicken swarm and 

their hierarchal order [55, 62]. 

g. Cat Swarm Optimization (CSO) [63] is a Swarm 

Intelligence (SI) algorithm that was inspired by the 

natural behavior of cats. 

h. Moth Flame Optimization (MFO) is a novel 

nature-inspired optimization paradigm inspired by 

the navigation method of moths in nature called 

transverse orientation [64]. 

i. Elephant Search Algorithm (ESA) [65], was 
inspired by the behavioral characteristics of 

elephant herds and. It divides the agents into two 

groups: male and female elephants.   .
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Table II BIAs with Potential Application Areas in Space Missions 

 

 
Despite the merits of bioinspired optimizers, solving multi-

objective problems is a huge challenge as demonstrated in  

different application domains (e.g. robotics [66], 

bioinformatics [67], energy and power [68]). According to  

the No Free Lunch (NFL) theorem [69], the superior 

performance of an optimizer on a class of applications or 

problems cannot guarantee a similar performance on other 

problems. In other words, an optimization algorithm may 

perform well in a set of problems and fail to solve a different 

set of problems. For a multi-objective problem no single 

optimal solution exists, but rather a set of alternative 

solutions represent the optimal solutions [70]. These 
solutions are optimal when all objectives are considered and 

no other solutions in the search space are superior to them. 

These best trade-off solutions are also known as Pareto 

Optimal (PO) solutions [71], a concept that was first 

proposed by Edgeworth and Pareto [72]. 

It has been shown that evolutionary algorithms such as 

Non-Dominated Sorting Genetic Algorithm  (NSGA-I) [73]  

and Multi-Objective Evolutionary Algorithm based on 

Decomposition (MOEA/D) [74], can approximate the true  

 
PO solutions of multi-objective problems [70]. Recently 

Grasshopper Optimization Algorithm (GOA) was proposed 

and it has been proven to show very fast convergence speed 

toward the optimal solutions [75]. 

D.  AUTONOMY 

Autonomy could be defined as the ability of an agent to 

accomplish goals through logical decision making based on 

its knowledge and comprehension of the world, itself, and the 

situation [114]. An intelligent agent capable of autonomy 

must exhibit some fundamental properties such as reasoning, 

learning, and problem-solving [115] . Over the years, the 

investment in and application of autonomy has yielded 

significant breakthroughs in areas such as: Power Systems, 

Mission & Flight Operations, On-Orbit Assembly & 

Docking  [116]. Past missions have demonstrated that using 

onboard autonomy to enable faster response times improves 
operational efficiency,  optimizes costs and increases system  

reliability [117].  For example, by using the Autonomous 

Sciencecraft Experiment to automatically plan and adaptively  

Name 

 

Domains Potential Application Areas in 

Space Missions 

References 

Invasive Weed Algorithm Image clustering problem; parameter 
estimation problem; numerical 

optimization; time-modulated linear 
antenna array synthesis, cooperative 

multiple task assignment of Unmanned 
Aerial Vehicle (AV) 

 

Autonomous Flight, Remote 
Sensing, Satellite Communication 

[76-78],[79, 80] 

Bacterial Foraging 
Algorithm 

Robot path planning; Image 
segmentation; optimum job 

scheduling; optimal power flow; 
pattern recognition 

Remote Sensing, Image Processing,  
Robotic and Autonomous System 

(RAS) 

[81-86], [87] 

Artificial Immune 

System 
AD; Fault Diagnosis (FD); clustering 

/classification; robotics 
 

Spacecraft Health Monitoring, 

FDIR, 
On-orbit Operations (O3) 

[88],[89],[90-96] 

Culture Algorithm Pattern recognition; multi-robot 
coordination; fault classification; 

engineering design problem 

Guidance, Control and Navigation 
(GNC), Remote Sensing 

[88],[97-100],[101] 

DNA Computing Robotic control; Information  security; 
task assignment problem; clustering 

problem 

Robotic and Autonomous System 
(RAS) 

[102],[103-106],[93] 

Genetic Bee Algorithm Multi-objective layout optimization; 
network optimization 

Satellite communication,  
Distributed Computing 

[107, 108] 

Fish Swarm Algorithm Fault identification; software testing; 
synchronous optimization; packet 

routing 
 

Spacecraft Health Monitoring [109, 110] 

Chicken Swarm 
Optimization 

High global optimization; feature 
selection; improving bit error rate 

performance 

Re-entry trajectory optimization,  
Image Processing [111] 

[112, 113],[111] 
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re-plan observations as required the EO-1 spacecraft was 

able to cut operational costs by $1 M per year, with a 50% 

increase in science return [118]. However, as far as 

decisional capacity is concerned, a fundamental difference 
exists between automated and autonomous systems. An 

automated system does not make choices for itself, but relies 

on potentially sophisticated scripts where choices have both 

already been made and encoded, or they must be made 

externally. In contrast, an autonomous system can make 

informed choices on its own, even when  encountering 

uncertainty or unanticipated events within its environment 

[119]. In [22], Johnson et al. propose the following necessary 

conditions for autonomy: 

1) AGENCY  

Autonomy embodies a range of behaviors associated with 

agents. Therefore, an autonomous system must possess the 

traditional qualities of agency, which is the ability to sense, 

think, and act. It must be able to sense its environment and its 

state; make decisions about what to do, and act on the 

decisions through their action. Going by this definition, the 

chess-playing program Deep Blue is not an autonomous 

system, even if it exhibits quite an impressive level of 

intelligence in chess-playing. Given that its range of 

behaviors is solely limited to the moves of a chess game, it 

cannot be said to meet all the requirements for agency. 
 

TABLE III.  Autonomy Levels According to ECSS [5].  

 

2) GOAL-DRIVEN 

An autonomous system must be capable of achieving a set of 

goals by transforming the goals into sequences of actions that 

accomplish each goal. Instead of just responding to its 

immediate environment, it should be able to make decisions 

to achieve a prescribed goal. Based on the above condition, a 

teleoperated robot would not fall under the classification of 
an autonomous agent, though it could exhibit a range of goal-

directed behaviors.  This is because it is command-driven 

rather than goal-driven. 

3) FLEXIBILITY 

Finally, an autonomous system should have the flexibility to 

respond to off-nominal situations by adjusting its actions to 

enable it to reach a goal successfully. This condition refers to 

a system's robustness with respect to its environment.  Based 

on this condition, a system that is goal-directed but prone to 

failure in accomplishing its goals due to unpredicted changes 
in its immediate environment is not autonomous. Robustness, 

to some extent, will require the decentralization of control 

[22, 120]. 

Summarily, the architectures for autonomy consist of a 

planning layer, a task sequencing layer, and a reactive layer. 

These three layers are often referred to as deliberative, 

executive, and functional layers; which can be distinguished 

in terms of their abstraction from the hardware and their 

response-time requirements [120]. The European 

Cooperation for Space Standardization (ECSS) expounds 

four levels of autonomous capabilities, with level E4 being 

the most autonomous. The architectures and their 
descriptions are listed in Table III. Only systems compliant 

with level E4 can be regarded as genuinely autonomous, 

whereas levels E1 to E3 deal with manually controlled or 

automated systems [5]. In general, autonomy is distributed 

across a system in three ways: no autonomy, partial 

autonomy and, full autonomy. 

III. APPLICATIONS 

I. SPACECRAFT HEALTH MONITORING 

Safety and reliability are among some of the most critical 

concerns to be addressed when planning space missions. In 

[121], Atkinson et al. describe briefly the spacecraft and 

ground systems monitoring process at the Jet Propulsion 

Laboratory, California Institute of Technology, and highlight 

some of the challenges associated with existing technology 
used in mission operations.  

 

 
 

FIGURE 4.  Impact of Space Environment on Spacecraft 

Level Descriptions Functions 

E1 Mission execution 
under ground 

control with 
limited onboard 
capability for 

safety 
issues 

Real-time control 
from ground for 

nominal operations 
Execution of time-tagged 

commands for 
safety issues 

 

E2 Execution of 
preplanned, 

Ground defined, 
mission 

operations 
onboard 

Capability to store 
time-based commands 

in an onboard 
scheduler 

E3 Execution of 
adaptive 
Mission 

operations 

onboard 

Event-based 
autonomous 
operations 

Execution of onboard 

operations control 
procedures 

E4 Execution of 
goal-oriented 

mission 
operations 
onboard 

 

Goal-oriented mission 
re-planning 
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Due to the limitations of existing technology, Spacecraft 

Health Automated Reasoning Prototype (SHARP), a new 

automated system based on AI technology was designed to 

automate health and status analysis for multi-mission 
spacecraft and ground data systems operations. By 

performing real-time analysis of spacecraft and ground data 

systems engineering telemetry, SHARP effectively detected 

and analyzed potential spacecraft and ground systems 

problems. 

Recent progress in data mining techniques has also made it 

possible to use archived spacecraft telemetry data to produce 

advanced spacecraft health monitoring applications for AD 

and FD [122]. In his paper, Quan et al. introduced some 

conventional approaches for AD and FD before proposing 

feasible approaches using data mining technology. We shall 

be taking a look at only two of the conventional approaches.  

A. ANOMALY DETECTION & FAULT DETECTION 

In spacecraft design the technique of identifying faults and 

isolating them is known as FDIR [123].  Due to the harshness 

of space environment and the complex structure of a 
spacecraft it is practically impossible to utterly eliminate the 

possibility of anomalies or faults that might jeopardize the 

mission. From the deterioration of electrical circuits and solar 

cells as a result of high radiation particles to orbital decay 

due to drag, the spacecraft is also prone to collision with 

meteoroid debris. Fig. 4 illustrates the impact of radiation 

particles, drag, and meteoroid debris on a spacecraft. 

FIGURE 5.  NigComSat 1 (Courtesy of NASRDA) 

 

The extreme difficulty or near impossibility of directly 

repairing or replacing a damaged component necessitates that 
serious attention is paid to FD and diagnosis. Therefore, it is 

not an exaggeration to state that designing and implementing 

FDIR techniques are among the most complex tasks in 

spacecraft development. All subsystems and their modes of 

operations must be factored into the design process. It is also 

essential to factor in safety and reliability at the early stages 

of mission design.  Unfortunately, current FDIR processes 
are built on the results of Failure Modes, Effects, and 

Criticality Analysis (FMECA) and Fault Tree Analysis 

(FTA) [5]. One of the drawbacks of these two approaches is 

that they can only be applied late in the development process, 

prohibiting FDIR to become an integral part of the system. 

[124-126] present an extensive survey of the current state of 

the art of FDIR approaches and emerging techniques, and 

how to overcome their limitations. 

Failures, when not timely and adequately resolved, can 

result in mission jeopardy. Fig. 5 shows Nigerian Sat1, which 

was lost because of a failure that prevented one of the solar 

arrays from deploying after launch. Consequently, the 
amount of available solar power for recharging the batteries 

after an eclipse phase was limited. The failed satellite was 

subsequently replaced with NigComSat-1R (See Fig. 6). 

Given that most people tend to confuse the term fault with 

failure, it is pertinent for us to define what we mean by fault 

and failure as used within the scope of this work.  A fault in 

simple terms is the deviation of at least one system parameter 

from its desired value. On the contrary, failure is the 

manifestation of a fault in terms of system functionality that 

leads to the partial loss of system services [5]. An example of 

a fault is when a temperature or pressure value is out of limit. 
In contrast, the inability of a battery charging unit to charge 

the spacecraft‘s battery is an example of a failure that could 

lead to the loss of power to critical subsystems; thereby 

resulting in the loss of one system service or more. 

 

 
 

FIGURE 6.  NigComsat Sat-1R [127] 

 

Therefore, to guarantee system availability, reliability, and 

performance faults must be correctly handled so that they do 

not lead to failure. However, it is not enough for a system to 
detect a fault without taking further action. Following 

detection, the fault should be traced to an exact location (e.g., 

subsystem or memory area) and isolated, after which the 
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system in the recovery step tries to transfer to a safe state of 

execution in which the fault has been mitigated [5, 128]. 

B.  CONVENTIONAL APPROACHES TO ANOMALY 
DETECTION IN SPACECRAFT  

1) LIMIT CHECKING 

Although there have been many conventional approaches to 

FD and diagnosis, limit checking remains the most 

fundamental and widely used technique in spacecraft AD. It 

is used to monitor whether the various values of sensor 

readings such as current, voltage, and temperature are in the 
proper ranges, which are predefined by the spacecraft 

engineers and specified by lower and upper limits [122]. 

Given the simplicity of this technique, it can only check one 

sensor value at a time and might be herculean for engineers 

and operators to build or change the predefined ranges. 

Though the most significant advantage of this approach is its 

simplicity, it lacks flexibility and cannot check some small 

anomalies that occur without violating the limits on the 

variables [122]. To overcome these limitations Yari et al. 

proposed a new data-driven health monitoring and AD 

method for artificial satellites [129]. 
 

2) MODEL-BASED DIAGNOSIS 

Given the need to overcome the limitations of limit checking 

techniques some rule-based expert systems and model-based 

reasoning methods were developed [130]. The model-based 

approach to automating AD encodes human knowledge into 

a model, which is then used to automatically detect faults 

[131, 132]. The core idea behind model-based diagnosis is 

establishing the mathematical model of the spacecraft's 

subsystems (e.g., thermal control model, propulsion 
subsystem model) and detecting the possible anomaly or 

fault through the comparison between the real-time telemetry 

data and the model output data [122]. However, one major 

disadvantage of this AD approach is that building models can 

be labour-intensive. Modeling every subsystem of a highly 

complex system such as a spacecraft may not be feasible 

[131]. It also may not be realistically possible to model all 

possible failure modes mathematically. Furthermore, it may 

not be able to recognize faults that involve relationships 

among large numbers of parameters. In summary, all 

traditional approaches of AD/FD rely heavily on prior 

knowledge of the system, such as the range of sensor value, 
mathematical model, and fault rules. With these approaches, 

it is challenging to acquire accurate and complete models and 

knowledge of the spacecraft systems beforehand. 

C.  ANOMALY DETECTION AND FAULT DETECTION 
BASED ON DATA MINING   

The traditional approaches to AD and FD are labourious, 
hence the need to adopt a data-driven approach that seeks to 

build a model for detecting anomalies directly from the data, 

rather than building it based on human expertise. Spacecraft 

telemetry data involves thousands of sensor values from 

different subsystems, making it difficult for human experts to  

pick up faults that involve the relationships among large 

numbers of variables. However, with the recent 

advancements in data mining and ML technologies, this new 

intelligent monitoring approach utilizes the history telemetry 
data to obtain the knowledge of the system or build the 

system model dynamically [122, 131].  

Recent developments in data mining techniques have also 

made it possible to use archived spacecraft system data to 

generate advanced system health monitoring applications. In 

addition to complementing existing approaches, "data-

driven" applications are capable of characterizing and 

monitoring interactions between multiple variables to 

provide valuable decision support for engineers and mission 

controllers [131, 133].  

In contrast to common individual parameter monitoring 

and model-based schemes, several data-driven software tools 
have been practically and successfully applied by NASA and 

JAXA to mission operations for both the Space Shuttle and 

the International Space Station (ISS).  Orca1, a data-mining 

tool that searches for abnormal data points in multivariate 

data sets by calculating each data point's distance from 

adjacent points, has been applied in the shuttle. Similarly, the 

Inductive Monitoring System (IMS) has been deployed in the 

ISS. The IMS tool2 uses clustering to analyze archived 

spacecraft data and characterizes nominal interactions 

between selected parameters [122, 131, 133].  

Using expert-labeled telemetry anomaly data from the 
Mars Science Laboratory (MSL) Curiosity rover and the Soil 

Moisture Active Passive (SMAP) satellite, a team of 

researchers at NASA demonstrated the effectiveness of Long 

Short-Term Memory (LSTMs) networks (a type of Recurrent 

Neural Network (RNN)) in overcoming issues associated 

with traditional AD methods for spacecraft telemetry [134]. 

In [122], Quan et al. proposed five feasible approaches 

using data mining technology for spacecraft AD/FD. We 

would look briefly at Adaptive Limit checking and Expert 

System (ES) based on data mining. The reader is hereby 

referred to Table IV for a summary of the remaining 

approaches. 
 

1) ADAPTIVE LIMIT CHECKING   

Conventional limit checking techniques require the 

predefinition of the lower and upper limit of sensor value, 

which can be quite herculean. In contrast, Fig. 7 shows a 
simplified workflow of the Adaptive Limit Checking method 

using ML techniques. This method uses ML  algorithms (e.g. 

Gray System Theory, SVM, Rough Set Method, and GA)  to 

dynamically and automatically produce the range limits for 

sensor value [122]. For training the algorithms the historical 

spacecraft telemetry data are used as training data. However, 

different algorithms will use different historical telemetry 

data and have different efficiency.  

2) EXPERT SYSTEM BASED ON DATA-MINING 
In an ES based on data mining as illustrated in Fig.8, the  
knowledge database is not static or predefined. Instead, it is 
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Table IV. PROPOSED ML APPROACHES TO AD/FD

 

produced by the data mining application and dynamically  

added to the database [122]. At the core of this procedure is a 

learning algorithm used to extract useful rules for the 

diagnosis expert system. Though the authors of [122] 

acknowledge that a diagnostic method based on data mining 

can maximize the use of the historical data to enhance the 
conventional diagnosis approach, they fear many problems 

still need to be solved before they are used in the actual 

engineering practice. One of such challenges includes the 

building of the status vector. 

 

 
 

FIGURE 7.  Adaptive Limit Checking using ML Techniques [122] 

 

 
FIGURE 8.  Expert System Based on Data Mining [122] 

 

In [128], Gao et al. presented a new FD and diagnosis  

approach hinged on PCA and SVM as illustrated in Fig. 9.  

The framework of their approach is divided into two phases: 
the training phase and the real-time detection phase. First, in 

order to reduce the dimensionality and complexity of the 

input data PCA is used to extract feature vectors from input 

data. This is followed by the use of binary SVM to detect 

fault.  After the FD, a multi-class SVM is used to identify 

fault type.  

S/N Approach Summary 

1 Bayesian Belief 
Network 
(BBN) 

A probabilistic graphical model employed to represent a set of arbitrary variables whose conditional 
independencies probabilities can be computed via a directed acyclic graph. 

2  
ANN 

Neural networks are non-linear statistical data modeling tools; which can be used to model the 
complex associations between inputs and outputs or to find patterns in data. 

3 Distance-Based 
Diagnosis 

Distance computed according to the real-time telemetry, and the historical data can be used to 
determine whether there is some fault in the spacecraft in distance-based diagnosis method. 

4 Expert System  (ES) 
Based on Data-Mining 

In the ES based on data mining, the knowledge database is dynamic and not predefined or static. 
Given that the data mining application has its learning algorithm it can produce new rules without 

operator interference, and knowledge can always be added to the database. 

5 Adaptive-Limit 
Checking 

Adaptive limit checking techniques utilize some ML algorithms like SVM and GA to produce the 
range limits for sensor value dynamically and automatically. Compared with the solid limit it 

produces more accuracy and reduces misinformation. 
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Summarily, in the training phase, a training dataset that 

can either be obtained from archived telemetry data or 

simulation data was used to calculate the PCA matrix and 

train SVMs.  In the real-time detection phase, the real-time 
telemetry data of the spacecraft system is processed. The 

approach first transforms the input data to a low dimensional 

feature space using PCA matrix to obtain feature vectors. 

These feature vectors then pass through the Binary SVM to 

detect whether there is a fault or not. If the fault is detected, a 

multi-class SVM is used to identify the fault type. From 

experimental results, the authors showed that the method was 

efficient and practical for FD and diagnosis of a spacecraft 

system. 

 

 
 

FIGURE 9.  PCA and SVM-based Fault Detection and Isolation [128] 

D.  LIMITATIONS OF PROPOSED APPROACHES TO 
ANOMALY DETECTION AND FAULT DETECTION  

Challenges central to AD in multivariate time series data also 

apply to spacecraft telemetry. This implies that a lack of 
labeled anomalies necessitates the use of unsupervised or 

semi-supervised approaches [134]. Having analysed the 

proposed approaches to AD/FD in [122] it was gathered that 

the limitations of each approach will emanate from the 

limitation(s) of the algorithm(s) used for the data-mining. For 

example, the adaptive limit checking approach used ML 

algorithms like SVM, Rough Set Method, and GA to 

dynamically and automatically produce the range limits for 

sensor value. Each algorithm utilized different historical 

telemetry data and produced different efficiency. Generally, 

SVM has some significant weaknesses, among which are: 

algorithmic complexity that affects the training time of the 

classifier in large data sets, development of optimal 

classifiers for multi-class problems and the performance of 

SVMs in unbalanced data sets [135].  
In spite of its weaknesses, SVM has demonstrated highly 

competitive performance in many real-world applications. 

However, for large data sets the training kernel matrix grows 

in quadratic form with the size of the data set, thus making 

the training of SVM on large data sets a very slow process 

[135]. This is expected to be the case for spacecraft telemetry 

data, considering that they are usually highly complex, 

highly dimensional and multi-dimensional [122].   

Gao et al. in [128]  used binary SVM to detect anomalies. 

However, SVM is designed for the classification of two 

classes, which makes it unsuitable for fault diagnosis. 

Considering that practical fault diagnosis has to deal with 
multi-type faults that involve relationships among a large 

number of parameters, they proposed two approaches for 

constructing a multi-class SVM: combining several binary 

SVMs and implementing multi-class classification. Their 

approach was implemented using telemetry data from an 

actual in-orbit satellite and simulated by Matlab/Simulink 

[136] [128]. Using 25000 points of data the accuracy of their 

approach was verified using two case scenarios. In Case 1, 

all 25000 points of data were used as training data, after 

which the same was used as test data to gauge the 

performance. In Case 2, the 25000 points of data were 
divided into two sets by cross-extraction. The first set was 

used for training while the second was used as test data. 

The results show a classification accuracy of 99.2% and 

97.4% for Case 1 and Case 2 respectively, thus 

demonstrating that the method is efficient and practically 

suitable for a spacecraft system‘s FD and diagnosis. Table V 

compares Multi-class SVM approach with ANN. From the 

table, it can be seen that for Case 1 the accuracy of SVM and 

ANN are quite close. However, for Case 2 SVM performed 

better that ANN because of SVM‘s extraordinary 

generalization capability, along with its optimal solution and  

discriminative power; especially when the number of input 
data is small [135].  

 
Table V. COMPARISON BETWEEN SVM AND ANN [128] 

 Case 1 Case 2 

SVM Classification 
Accuracy 

99.2% 97.4% 

Training Time 
(s) 

36.2 19.5 

Test Time (S) 11.2 5.8 

Neural 
Network 

Classification 
Accuracy 

99.13% 92.6% 

Training Time 
(s) 

39.5 18.2 

Test Time (S) 10.3 6.5 

 

In addition, SVM has a better performance when the 

training and test data are not the same [128].  

Notwithstanding the dividends, a key challenge of this 
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approach is the use of PCA, a linear dimension-reduction 

technique not suited for nonlinear systems. Given that some 

components of the spacecraft system are nonlinear, the 

authors acknowledged the need of a nonlinear PCA (e.g. 
KPCA) to be used in extracting features from input data in 

their future work [128]. 

II. REMOTE SENSING 

Remote sensing refers to the science of identification of earth 

surface features and estimation of their geo-bio-physical 

properties using electromagnetic radiation as the medium of 

interaction [137]. Images acquired remotely over long 

distances are usually affected by noise and other 

environmental conditions like cloud coverage; which  makes 

them differ widely in terms of colour variations and textural 

contrasts [138].  Furthermore, captured data needs to be 

transmitted to the ground station for aggregation and 

analysis, which can be expensive. However, a satellite can 

reduce the amount of data transmitted by employing DL for 
on-board pre-processing. Parts of the image of no interest 

(e.g. those occluded by clouds) can be discarded so as to 

drastically reduce the amount of data transmitted [139],[15]. 

Fig. 10 shows a diagram illustrating six satellite image 

processing methods, out of which we shall treat the first two.  

 

 
 

FIGURE 10.  Satellite Image Processing Methods 

A.  ML-BASED IMAGE PROCESSING TECHNIQUES 

1) ENHANCEMENT 

Enhancement methods applied to preprocessed data rely on 

metaheuristic-based algorithms to manipulate the digital 

pixel values for effective visual interpretation of images. 
Two algorithms employed in image enhancements are 

Particle Swarm Optimization (PSO) and GA. However, 

among the evolutionary algorithms GA and PSO suffer from 

the limitation of getting trapped in local minima [138]. One 

way to overcome such limitation is by combining various 

optimization techniques. Combining Cuckoo Search (CS) 

algorithm with PSO has shown better results in terms of 

closeness to optimal solution when compared to PSO or GA 

individually [71], [138]. In [140] Suresh et al. proposed  a 

new method—Modified Differential Evolution (MDE) 

algorithm for contrast and brightness enhancement. 

2) CLASSIFICATION 

In a general sense, image classification can be defined as ―the 

process of categorizing all pixels in an image or raw 

remotely sensed satellite data to obtain a given set of labels 

or land cover themes [141]. In supervised classification, 

available known pixels are used by the analyst to generate 

representative parameters for each class of interest. 

Contrastingly, in unsupervised classification pixels are 

grouped according to the reflectance properties of pixels. 

These groupings are called clusters. Two popular clustering 

algorithms are K-means and Expectation Maximization.  
  One key advantage of the unsupervised classification 

technique is that it can be used when no sample sites exists.  

Although image classification is dependent on the type of 

satellite image used, classification followed by other stages 

such as de-noising and segmentation can lead to better 

processing of the image [138]. Commonly used image 

classification algorithms include fuzzy algorithms, ANN and 

ES. The main advantage of Radial Basis Function Neural 

Network (RBFNN) is its immunity to noise signals; perhaps 

due to its large number of tunable parameters [142]. 

B. CHALLENGES WITH REMOTE SENSING 

Common challenges associated with satellite image 

processing methods have been reported in literature and 

include the following: image complexity, large image sizes, 

presence of unwanted artifacts and background information. 

In addition, satellite sensor variations (such as radiometric 
resolution, spatial, and spectra) and a change of viewpoint 

bring tremendous diversities into satellite image 

representations [143].  Images of the above said different 

variations could be integrated by fusion techniques to enrich 

the chosen study area's available information.  
 

1) VOLUME 

The volume of data generated from satellites is already far 

more than human imagery analysts can effectively analyze. It 

is growing exponentially, thus necessitating the need for CV 

techniques applied to satellite imagery. Recent breakthroughs 

in DL have also improved to the point where DL now 
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outperforms humans in some tasks like classifying objects in 

images. However, current open-source AI tools are not 

optimized for satellite imagery [144].  

At present, even though a wide range of techniques are 
available for image processing, it is extremely difficult to 

settle for a technique which can be generally applied to all 

types of satellite images. Owing to the different color and 

textural variations and the limitations of traditional remote 

sensing using optical sensors, Synthetic Aperture Radar 

(SAR) imaging, an alternate form of remote sensing, permits 

the observation of large target areas during day or night 

under almost any weather condition [145], [146]. Although 

SAR has shown significant benefits over traditional remote 

sensing techniques, it comes with additional complexities 

[147]. Researchers have begun to employ advanced ML 

techniques (DL) to SAR data to cope with these challenges 
adequately.  

 
TABLE VI. Statistical Models for Satellite Image Analysis 

 

Author Method Advantage 

Liu 
Haijiang et 
al., 2007 

[148] 

Monitoring Land 
cover change for 
the desertification 
of an island using 

Maximum 
Likelihood 
Classifier 

Simple mode of 
classification. 

 
J.Tian et al., 

2007 
[149]. 

 
 
 

Studied the 
significance of 
validating the 
correlation of 

satellite-derived 
and gauge 

measurements. 

Experiments are 
analyzed with 

different seasons. 

Francis 
Padula et 
al., 2010 

[150]. 
 

Land cover change 
detection using 

PCA 

Fused Landsat and 
MODIS data are 

used for better data 
resolution. 

Brian P. 
Salmon et 

al., 2011 
[151]. 

Unsupervised Land 
cover change 

detection in 
MODIS data using 
Sequential Time 
Series Analysis. 

 

Lesser training time 
than supervised 

learning methods. 

 
Deepti 

Sharma et 

al., 2011 
[152]. 

Investigated dust 
storm effects using 
aerosol products 

acquired from both 
satellite-derived 

and ground 
measurements. 

 

Both ground-based 
and atmospheric 

parameters 

considered. 

Biswadip 
Gharai et 
al., 2013 

[153]. 

Fusion of MODIS 
and CALIPSO 

(LIDAR) Data to 

study the dust 
storm effects. 

The use of LIDAR 
data favors studying 
the vertical uplift of 

dust in the air. 

Yionel et al. [154] introduced a DL framework for inverse 

problems in imaging and demonstrated the advantages and 

applicability of this approach in passive SAR image 

reconstruction. As a preliminary study,  Chen and Wang in 
[155] used a single layer of Convolutional Neural Network 

(CNN) to learn features from SAR images automatically.  

DL is nowadays being frequently utilised in SAR data 

applications by leading companies like Orbital Insight and 

Descartes Labs specializing in satellite earth observation 

analytics [156]. 

 

2) COMPLEXITY 

Traditional satellite image models are predominantly based 

on statistical methods like: Linear Discriminant Analysis 
(LDA); Maximum Likelihood Estimation (MLE); PCA; and 

other regression-based models. Unfortunately, most 

traditional algorithms are plagued with a lack of logical 

reasoning. With ML techniques vibrant progress has been 

made in incorporating human-level reasoning into these 

traditional models [157]. Despite the merits of ML methods, 

supervised ML techniques suffer from excessive 

computational complexity due to demanding training 

processes and insufficient ground truth data for labeling. To 

overcome these challenges, the training phase must be 

limited. This can be achieved through an unsupervised mode 

of learning. Furthermore, the accuracy of classification, 
either in supervised or unsupervised mode, can be improved 

using hybridization. Parallel processing of data could also be 

used to improve the issues with the speed of computation 

through higher-level Graphical Processing Unit (GPU) 

architectures. However, the development of this method is 

still in progress [157].  

Table VI shows a few statistical models utilized in satellite 

image analysis. The performance of K-means clustering and 

neural network with back-propagation for successful image 

segmentation and classification in satellite images employing 

dense count values of the pixel intensities were compared in 
[158]. However, using more advanced intelligence schemes 

like DNN in satellite image analysis could improve the level 

of reasoning with a reduction in training complexities [159]. 

Complexities associated with the training of deep networks 

with a vast number of hidden layers can be resolved to a 

greater extent by employing a  greedy learning-based 

algorithm [157].  Greedy algorithm or search is an efficient 

tool that is usually employed in optimization problems, 

especially when dealing with large sets of data [160].  

 

3) INEFFICIENCY 
A fundamental challenge with statistical models is that they 

are inefficient in prediction due to the irregularly varying 

patterns of voluminous data [161]. Thus, ML techniques are 

better in deriving prediction models as it learns through 

experience during the training phase. In [162], two ML 

techniques (SVM and CNN) were developed to extract 

human settlements from Very High Resolution (VHR) 

satellite images of 3 provinces in Afghanistan.  
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TABLE VII. Hybrid ML Approaches for Satellite Image Analysis 

 

Author Method Advantage 

Rubia et al., 
2009 [163]. 

Integrated Fuzzy 
Inference System 
(FIS) and Genetic 
Algorithm (GA) 

Both spatial and 
temporal analysis over 

forest land cover. 

 
Zhiding Yu 
et al., 2010 

[164]. 

 
Combined Ant 

Colony algorithm 
and FCM 

Enhanced FCM's limit 
on sensitive to noisy 

data and random 
initialization of 

parameters. 

Mohammad 
Awad et al., 
2010 [165]. 

Integrated 
dissimilar 

threshold functions 

with Traditional 
Self Organizing 

Maps (SOM) 

Overcome the under 
and over-segmentation 

issues of SOM. 

Ashish 
Ghosh et 
al., 2011 
[166]. 

Achieved 
unsupervised 

clustering and then 
combined with GA 

and Simulated 
annealing. 

Improved random 
initialization problems 

on clustering. 

Xiang Yang 
Wang et al., 
2012 [167]. 

Combined 
FCMFCM and 

SVM. 

Increased segmentation 
quality and reduced 

time complexity. 

 

By comparing the results with analyst-verified reference data 

information (LandScan Settlement Layer), the authors 

demonstrated that in terms of overall pixel cells the CNN 

technique yielded more accurate results overall while based 

on derived statistics against the reference data the SVM 

technique performed more accurately in omission. 

Given the merits of ML techniques in deriving prediction 

models, the hybridization of different ML methods as shown 
in Table VII and the integration of statistical and ML 

methods could acquire more efficient results. In [157], 

Giorgio Giacinto et al. proposed an approach with a 

combination of neural and statistical algorithms in a simple 

design phase to disclose that every algorithm is significant in 

solving a particular issue, and no single algorithm is proved 

to be perfect. Castellana et al. [168] performed the 

combination of both supervised and unsupervised modes of 

change detection and on a pixel-based method to achieve 

better classification of remote sensing images. In [169], 

Pabitra Mitra et al. combined an active learning method with 

SVM and advanced an active SVM with reduced labeled data 
for classification [157]. 

C. PERFOMANCE EVALUATION OF IMAGE 
PROCESSING ALGORITHMS 

Performance evaluation in a universal sense refers to the 

degree of some required behavior of an algorithm, whether it 

is attainable accuracy, adaptability, or robustness. It allows 

the innate characteristics of an algorithm to be emphasized, 
as well as the evaluation of its advantages and limitations 

[170].The justification for evaluating an algorithm is to 

understand its behavior in dealing with different categories of 

images, and/or help in estimating the best parameters for 

different applications [171]. Although a wide range of 

techniques exist for image processing it is immensely 

cumbersome to arrive at a technique which can be commonly 
applied to all types of satellite images.  This is due to the 

different color and textural variations of the images.  

Assessing the performance of any algorithm in image 

processing is demanding because performance depends on 

several factors, as surmised by Heath et al. [172]: 

(a) the algorithm itself, 

(b) the algorithm parameters used in the evaluation, 

(c) the method used for evaluating the algorithm, 

(d) the nature of images used to measure the performance 

of the algorithm. In [138] the authors analysed different 

metrics for evaluating the overall performance of the 

discussed image processing techniques. However, for the 
qualitative evaluation of a proposed technique some 

parameters need to be computed to enable its comparison 

with available techniques; in addition to evaluating its 

suitability and reliability over other techniques. Four 

computable parameters were analysed: Feature Similarity 

Index (FSIM), Structural Similarity Index (SSIM), Precision 

and Recall. However, only the first two shall be treated. In a 

nutshell, FSIM denotes the measure of similarity of features 

between the input image and the final image. It is computed 

using equation (1): 
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where the whole image is represented by X, SL(x) represents 

the similarity in the two images and PCm is the phase 

congruency map. Structural Similarity Index (SSIM) 

indicates the structural similarity between the input image 

and the final image. It is calculated using equation (2): 
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Where    and    represent the sample means of x and y 

respectively;    and    give the sample variances of x and y, 

respectively; and       shows the sample correlation 

coefficient between x and y, where x and y are local windows 

in the input images. The calculated SSIM index is always a 

decimal value with range between -1 and 1. A   value of 1 

indicates perfect structural similarity while 0 indicates no 

structural similarity. 1 is only attainable in the case of two 

identical sets of data. Summarily, performance evaluation 

ought to rely on the use of performance indicators that 

convey the qualities of an algorithm.  Considering the above 

suggestion, six typical performance indicators as surmised by 

Wirth et al in [173] include: 
(1) sensitivity: an algorithm‘s response to small changes in 

features; 

 (2) robustness: an algorithm‘s capacity for tolerating various 

conditions; 
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(3) accuracy: how well the algorithm has performed with 

respect to some reference; 

(4) adaptability: how the algorithm deals with variability 

in images; 
(5) reliability: the extent to which an algorithm, when 

repeated using the same stable data, yields the same result; 

(6) efficiency: the practical viability of an algorithm (time and 

space). 

III. SATELLITE COMMUNICATION 

In the near future (2020-2025), it is expected that satellite 

communication systems provide capacities close to 1 

Terabit/s [174]. This would require the deployment of the 

next generation broadband infrastructure, including fixed and 

mobile internet access (5G) such as the KONNECT VHTS 

by EUTELSAT, expected to be launched in 2021. Therefore, 

to meet the requirement of capacity increment there is a trend 

towards the use of larger, more powerful Geosynchronous 

Equatorial Orbit (GEO) satellites, and/or flexible payloads. 
Very high throughput satellite (VHTS) aim at achieving 1 

Terabit/s per satellite in the near future and will play a key 

role in supporting future 5G and broadcast terrestrial 

networks [175]. Currently, VHTS systems provide uniform 

throughput over the entire service area based on multi-spot 

coverage with frequency and polarization reuse schemes 

using larger bandwidths in the feeder link in the frequency 

Q/V bands or by optic links. However, traffic demands are 

expected to be unevenly distributed over the service area 

since the user distribution is not uniform within the coverage. 

This results in a system where some beams lack the required 

capacity, i.e., not meeting the traffic demands, whereas other 
beams overcome the required capacity or, simply, wasting 

resources [176-178]. This challenge is addressed using 

flexible payload architectures to enable the allocation of 

payload resources in a flexible manner to meet the traffic 

demand of each beam. New propositions for flexible 

payloads systems must take into account the analysis of 

novel efficient cost function to optimize resources allocation 

and the analysis of the payload architecture and its adaptive 

allocation methods for new traffic demand scenarios [179].  

Notwithstanding the merits of Dynamic Resource 

Management (DRM) approaches derivable from flexible 
payload architectures, DRM adds significant complexity to 

VHTS systems. The authors in [177] analyzed and proposed 

the use of CNNs to manage the resources available in 

flexible payload architectures for DRM. A comparison 

between different payload architectures in terms of DRM 

response is carried out and the CNN algorithm performance 

is compared with three other algorithms, previously 

suggested in the literature to demonstrate the effectiveness of 

the suggested approach and to examine all the challenges 

involved.  

Optimizing the data return from space missions requires 

planning, design, standards, and operations coordinated from 
formulation and development stages throughout the mission. 

Autonomy, enhanced by cognition and ML, are potential 

methods for optimizing data return, reducing operational 

costs, and managing the complexity of automated systems 

[180]. By 2020–2025 it is envisaged that there will be more 

than 100 high throughput satellite (HTS) systems in GEO 

and mega constellations of Low Earth Orbit (LEO) satellites, 
delivering terabits per second of capacity across the world. 

These evolved satellite systems will provide Radio Access 

Networks (RANs), called satellite RANs, which will be 

integrated into the 5G system together with other wireless 

technologies, including cellular systems, Wi-Fi, and so on 

[175]. Considering the ever-increasing traffic distribution on 

earth the authors in [181] developed an Extreme Learning 

Machine (ELM) Distributed Routing (ELMDR) strategy. 

ELM, a fast and efficient ML algorithm, was adopted to 

forecast the traffic at satellite node. Simulation results 

demonstrate that in comparison to the conventional ACO 

algorithm ELMDR not only sufficiently uses underutilized 
link, but also reduces delay.  

IV. ROBOTIC AUTONOMOUS SYSTEMS FOR SPACE 

Robots designed for space missions operate in increasingly 

complex environments. This includes all types of robotic 

agents designed to explore a planet's surface and those 

deployed in orbit around extraterrestrial bodies. For those 

operating in completely known and static environments, the 

challenge of LTA shrinks down to one of robustness. 

Similarly, for autonomous agents operating in an 

unstructured environment, the operational environment could 

change over the lifetime of the agent [7].  

Categorically, space robots can be broadly classified into 

two groups: Orbital and planetary. Orbital robots find 

application in the assembly of large space telescopes, satellite 
repair, and deployment of assets for scientific investigations 

on platforms such as the ISS. In contrast, planetary robots 

(e.g., Curiosity and Opportunity) are used for the survey, 

observation, and close examination of extraterrestrial 

surfaces like the planets (e.g., Mars).  

The rest of this section surveys systems and approaches 

that address the challenges of LTA using AI techniques. 

Although AI may have witnessed a growing interest in the 

space industry over the last two decades staying current on 

ML advancements and knowing how to best leverage 

available technologies can be complicated. For instance, by 
introducing dexterous manipulators to traditional satellite 

platforms the spacecraft design becomes increasingly 

complex. Stemming from the high level of 

interconnectedness between the manipulator and its floating 

base, the manipulator becomes an intrinsic part of the overall 

spacecraft design [182]. Fundamentally, the whole satellite 

turns in into a 'space robot.' 

Depending on its application, a space robot is generally 

required to possess two functional attributes: locomotion and 

autonomy. Locomotion or mobility impacts it with the ability 

to manipulate or interact with a sample. Though autonomy 

may vary from semi-autonomous to fully autonomous, the 
nature of the mission and distance from the Earth determines 

to a great extent the level of autonomy designed into the 

system. With time it is envisaged that future robots would
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evolve a higher level of autonomy to meet the increasingly 

challenging goals of space missions. Regardless of the 

category of autonomy, specific action plans are needed for a 

robot to complete its tasks. This requires optimization to 
ensure the conservation of resources such as energy and 

communication bandwidth [183].  

It is worth stressing that advancements in general AI 

techniques are vital for improvement in many aspects of the 

autonomous functions of space robots. For instance, ML is 

often applied to sensing, perception (e.g., machine vision) 

tasks. It has also been applied to locomotion, such as in the 

improvement of locomotion strategies or policies and 

navigation. Planning, system-wide autonomy, scheduling, 

and resource allocation are also areas of continuing work for 

ML. 

Considering the above scenarios, the consolidation of AI 
methods in space engineering is undoubtedly an enabling 

factor for improving the autonomy of space robots [13]. 

Irrespective of the domain LTA systems need to combine 

different AI abilities to cope with challenging environments 

and tasks. Inherently, the combination of abilities such as 

navigation & mapping, perception, and Knowledge 

Representation (KR) presents a functional integration 

challenge [7, 184]. The challenge becomes even more 

significant when other AI abilities like planning, interaction, 

and learning are thrown into the mix. The following highlight 

three core subdomains of RAS where AI finds application.  

1) NAVIGATION AND PLANNING 

FIGURE 11.  Key Modules of a Typical Robotic Perception System [185] 

 

Robots have contributed immensely in helping humankind 

explore space, thereby contributing to expanding the frontier 

of scientific knowledge and our access to the extraterrestrial 

world. In 1970, the former Soviet Union built the first robot 
(Lunokhod) that traveled on the surface of an extraterrestrial 

body. It was remotely operated from Earth and traversed 

more than 10.5 km on the moon [186]. Within the past four 

decades, the AI community has witnessed a resurgence of 

interest in autonomous navigation and planning models for 

robots, especially the challenge of Simultaneous Localisation 

and Mapping (SLAM) [187]. When cameras are employed as 

the only exteroceptive sensor, it is called visual SLAM  [188]. 
The challenge with autonomous navigation of mobile robots 

is categorized into three principal areas: localization, 

mapping, and path planning [189]. Localisation entails 

determining exactly the current pose of a robot in an 

environment, whereas mapping blends the fragmented 

observations of the surroundings into a single congruous 

model (What does the world look like?). Path planning 

concerns itself with determining the best route in the map to 

navigate through the environment (How can I reach a given 

location?) [188]. 

Motion planning is extension of path planning. Although 

the terms appear to be the same a few differences exist. Path 
planning seeks to find the path between origin and 

destination in workspace by strategies like shortest distance 

or shortest time. Contrastingly, motion planning focuses on 

generating interactive trajectories in workspace when robots 

interact with dynamic environment. As a result, motion 

planning needs to consider kinetics features, velocities and 

poses of robots and dynamic objects nearby.  therefore path is 

planned from topological level [190].  In 1986, Smith et al. 

[191] introduced the concept of implementing spatial 

uncertainty estimation, which gave birth to the pre-

development of SLAM technique.  This was followed in 
1991 by Leonard et al. in [192] developing a SLAM  

 

 

 

 

 

 

 

technique based on [191], which used a probabilistic 

approach in solving the SLAM problem. This gave birth to 
the implementation of the Extended Kalman Filter (EKF) 

method, which laid the foundation for the first SLAM 

algorithm known as the EKF-SLAM [193]. In 2001, [194] 

described the substantial implementation of the SLAM 

algorithm on a vehicle operating in an outdoor environment 

using Millimeter-Wave (MMW) radar to provide relative 

map observations. 
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In real environments with many landmarks present 

Kalman filter-based algorithms require time quadratic in the 

number of landmarks to incorporate each sensor observation. 

In light of this drawback Montemerlo et al. [195] introduced 
FastSLAM, an algorithm that recursively approximates the 

entire posterior distribution over robot pose and landmark 

locations, yet scales exponentially with the number of 

landmarks on the map. FastSLAM uses a hybrid technique 

that integrates Particle Filter and EKF approach, making it 

popular for its higher data accuracy [193, 195]. FastSLAM 

evolved to FastSLAM 2.0 a year later with a conceptually 

simple modification.  In FastSLAM, when proposing a new 

robot pose, the proposal distribution relies only on the motion 

estimate. In contrast, in FastSLAM 2.0 it relies on both the 

motion estimate and the most recent sensor measurement. 

This approach was found to be less wasteful with its samples 
than the original FastSLAM algorithm, especially in 

circumstances where the noise in motion is high relative to 

the measurement noise [196].  

Many modifications have been made to SLAM algorithms 

over the years. These include the Squared Root Smoothing 

and Mapping (SAM) method proposed in 2006 [197] for 

improving the mapping process of mobile robots; the 

UFastSLAM proposed in 2007 [198] to improve the 

FastSLAM method by using unscented transformation 

algorithm and the Differential Evolution technique proposed 

in 2009 [199]. 
Research in motion planning is currently witnessing a lot 

of attention as a result of advancements in DL and RL. This 

is due to their better performance in coping with non-linear 

and complex problems. Basically, motion planning 

algorithms can be divided into two broad groups: traditional 

algorithms and ML-based algorithms according to their 

principles and the era they were invented [190]. They are 

further categorized as shown in Table VIII.  
 

TABLE VIII Classification of Planning Algorithms 

 

Planning Algorithms 

 

Traditional Algorithms 

 
Graph Search-

based Algorithm 
[200, 201].  

 
Sampling-based 
Algorithm [202, 

203]. 

 
Interpolating Curve 

Algorithm [204, 
205].  

 

ML-Based Algorithms 

Supervised 
Learning [206] 

[207, 208]. 

Optimal Value RL 
[209, 210]. 

Policy Gradient RL 
[211, 212]. 

 

Traditional algorithms can be classified into three categories 

(graph search algorithms, sampling-based algorithms and 

interpolating curve algorithms) while ML-based planning 

algorithms are based on ML techniques that include 

supervised learning (e.g. SVM, optimal value RL and policy 

gradient RL).   

2)  PERCEPTION 

For deep space missions that suffer from lags and gaps in 

communication, onboard DL systems would bring a much 

needed degree of autonomy and robustness to GNC. In terms 

of LTA and performance in space environments, robotic 

perception is critical for planetary and orbital robots to make 

decisions, plan, and operate in real-world environments, 
utilizing functionalities ranging from occupancy grid 

mapping to object detection. These days, most robotic 

perception systems rely on ML techniques, ranging from 

classical to DL approaches where the learning can be in the 

form of unsupervised learning or supervised classifiers using 

handcrafted features, or DL neural networks [185].  

As depicted in Fig. 11, the fundamental components of 

any AI perception system are sensory data processing, data 

representation (environment modeling), and ML-based 

algorithms. However, in the majority of applications, the 

fundamental role of environment mapping is to model data 
from exteroceptive sensors mounted onboard the robot to 

facilitate reasoning, and inference regarding the robot‘s real-

world environment [185].   

 

 
FIGURE 12. MER (Courtesy of NASA/JPL) [186] 

 

The Mars Exploration Rover (MER) shown in Fig. 12 is 

equipped with two stereo imaging systems on a camera 

mount on the bar of the rover mast: Panoramic (Pancam) and 

Navigation camera (Navcam). The panoramic camera is 

dedicated to the mapping of medium-to-far objects in 

panoramic images, while the other is a navigation camera 

with the best focus at 1 m with a field of view (FoV) of 450 

[186, 213]. Early approaches to mapping of dynamic 
environments were object-centric methods that identified and 

removed moving objects from the maps [214] or used them 

as moving landmarks for self-localisation [215]. 

Nevertheless, not all dynamic objects really move at the 

instance of mapping, necessitating that their identification 

requires long-term observations. Ambrus et al. [216] 

addressed this challenge by processing several 3D point 

clouds of the same environment recorded in several weeks to 
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identify and separate movable objects and refine the static 

environment structure simultaneously.   

3) LEARNING AND INTERACTION 

Learning is critical for any robotic system deployed in open 

or dynamic worlds where autonomy is needed to maintain 

reliability, robustness, and cut operational cost.  However, 

some of the most challenging application domains for long-

term running robots, such as the MER, involve interacting 

autonomously with a diverse range of objects, which implies 

that being able to learn and adapt from experience is crucial 

to the success of the mission. Robots or systems that need to 

interact autonomously with their environment through 

sensory-motor capabilities must possess the capacity to act 

deliberately to fulfill their mission [184], especially in 
environments requiring LTA. Techniques which allow robots 

to continually learn from experience such as reinforcement 

learning, or focus on particular experiences (e.g., failures, 

novelty) such as learning from demonstration should allow 

online improvement of capabilities [98]. 

Considering the interest in these research fields in 

Robotics and AI communities, there are several publications 

and survey papers that review state of the art for a few 

focused deliberation functions such as planning, goal 

reasoning, monitoring, and recognition of actions and plans 

[184, 217]. 

FIGURE 13.  Dextre the ISS Robot [218] 

 

Robotic perception, as observed by Sünderhauf et al. [219] 

differs from traditional CV perception. In robotics, the 

expected outputs of a perception system will result in 

decisions and actions in the real world. In contrast, most CV 

applications take images and translate the outputs into 

information. This shows that perception plays a critical role 

in the learning and interaction of any goal-driven robotic 

system. 
Like localization and navigation, robot perception 

functions depend on the robot's operational environment 

[185]. For artificial agents like robots to interact with their 

real-world environment, perception and manipulation must 

complement each other. Once a robot is (self) localized, it 

can proceed with the execution of its task by taking 

deliberate action, or a set of interactive actions. In the case of 

autonomous mobile manipulators in a typical open/dynamic 

setup, this involves navigating to the region of interest, 
observing the current scene to build a 3D map for collision-

free grasp planning, and localising target objects in the 

operating environment and grasping them [185]. 

The technical feasibility of robotic servicing has been 

sufficiently demonstrated on the Hubble Space Telescope 

and the ISS where robots carry out in-orbit activities like 

inspection, component assembly, and docking [20, 220]. Fig. 

13 shows Dextre, a two-armed robot or telemanipulator that 

is part of the Mobile Servicing System on the ISS.  Equally 

known as Special Purpose Dexterous Manipulator (SPDM), 

Dextre performs repairs that would have otherwise 

require spacewalks [221].  However, to achieve the vision of 
on-orbit servicing for satellites, developing a new design and 

operation paradigms of satellite architectures is necessary 

[20]. In [17], Nanjangud et al. provide an overview of the  

RASs technologies that enable O3 on smallsat platforms. 

Robotic O3 involves a robotic agent (or chaser) operating on 

a client spacecraft (also called a target), which can be further 

classified as cooperative or non-cooperative targets.  

IV. CHALLENGES AND LIMITATIONS 
Despite the risks posed to humans and robotic explorers 

operating in space's extremely challenging environment, 

humankind has not given up on the desire to conquer space 
and other planets. In 2017, seven nations attempted a total of 

90 known orbital launch attempts from spaceports in eight  

different countries. As shown in Fig. 14, the United States 

ranks on top for the first time since 2003 after sharing it with 

China in 2016 [222]. Using AI techniques in space missions,  

FIGURE 14.  Orbital Launch Attempts by Countries in 2017 [222] 

 

we can increase the levels of autonomy and automation, 

thereby freeing humans to focus on tasks for which they are 

better suited [223]. However, there are still challenges that  
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stand in the way of achieving full-scale autonomy and 

automation. To combat these, we would require advances in 

robotic sensing and perception, mobility and manipulation, 

rendezvous and docking, onboard and ground-based 
autonomous capabilities. For the next foreseeable future, it 

appears we would still need human-robot integration and 

suite of other data analysis tools to explore space. Although 

ML, a subdomain of AI, can be used to enable LTA in 

spacecraft and improve the science return of space missions, 

the requirements of the missions alone severely limit the use 

of many current ML approaches [117].  

A.  AUTONOMY 

Space robots are often designed to possess mobility (or 

locomotion) to manipulate by griping, roving, drilling, and 

sampling. To a large extent, these functionalities are 

influenced by the operational environments (either orbital or 

planetary). Depending on the type of mission and distance 

from the Earth, these robots are expected to possess a varying 

autonomy level, ranging from teleoperation to fully 

autonomous operation [114]. In most cases, the onboard 
autonomy deployed in spacecraft consists of the use of a 

planner. For example, the autonomous capabilities of 

NASA‘s Opportunity rover came from MAPGEN, a mixed-

initiative task planner and an autonomous navigation system. 

It was used to create daily mission schedules automatically, 

which were then refined by terrestrial scientists [224].  

There are already several known factors that frustrate the 

realization of fully autonomous operation in space and limit 

the use of many current ML approaches. First, space 

missions have an extremely high cost of failure with little or 

no opportunity for external aid or repair.  Frequent failures of 

GEO satellites result in high economic costs for governments 

and private companies, thereby resulting in the continuous 

increase of GEO debris and crowding of the GEO orbit 

[225]. Stemming from the limitations of the traditional 

satellite architecture paradigm and the dearth of a 

maintenance industry for satellites, Saleh et al. [226] propose 

O3 to provide flexibility to decision-makers in satellite 

design and operations in the industry. Any autonomy derived 

from O3 and provided for by AI techniques must be proved 

to be reliable, robust, and constrained from posing any threat 

to the spacecraft's core operations, station-keeping and 

health. In [225], Liang et al. proposed a universal  O3 in 

GEO, consisting of a 7-DOF redundant manipulator (with 

replaceable end-effectors, a 2-DOF docking mechanism, a set 

of stereo vision and general subsystems of a traditional 

spacecraft platform. 
In contrast to a classic payload, which is usually detached 

from the platform, a robotic device attached to a satellite 

becomes an integral part of the spacecraft itself. By 

introducing dexterous manipulators to traditional satellite 

platforms, Jaekel et al. [182] argue that the spacecraft design 

becomes increasingly sophisticated and complex. The high 
interdependencies between the manipulator and its floating 

base automatically turn the whole satellite into a 'space 

robot.' Consequently, a sophisticated combination of 

traditional concepts and AI will be needed for system FDIR. 

When dealing with FDIR equipping a spacecraft with an 

onboard data analysis system can enable the detection of and 
reaction to dynamic events. For example, a satellite‘s timely 

reaction to an asteroid on a collision path would be possible 

if the event was detected onboard and the spacecraft 

equipped to react.  In contrast, with ground-based analysis, 

such real-time reactions are not possible.  

Although the integration of AI techniques at the system 

level is essential for the functional realization of LTA, there 

is little research to no standard on combining modules from 

different areas of AI. With the help of robotic software 

development [227] and robotic middleware such as the Robot 

Operating System (ROS) [228], researchers and roboticists 

have been provided with methods to integrate their software 
components and other people's components in a structured 

way, thus improving software maintainability and reusability. 

Examples of such middleware on which frameworks can be 

built upon include (STRANDS [229]) for long-term 

navigation planning & task scheduling; (ROSPlan [230]) for 

planning and execution and (RoboSherlock [231]) for 

knowledge-enabled perception.  

Having a framework to build on makes it easier for 

integration and the use of different AI methods. However, 

our extensive survey reveals that there is still a lack of 

understanding and research in the domain of system-level 
integration. Although the space robotics market size in 2018 

crossed USD 2 billion and the industry is growing rapidly, 

we believe that system-level integration of AI methods and 

their evaluation in autonomous systems research is still a 

significant challenge in academia and industry [232]. 

B.  RADIATION 

The high levels of radiation that occur in space can 

precipitate various problems for sensitive electronic 

components like solid-state memory, microprocessors, and 

network interfaces. Adverse effects of radiation on 

unprotected board computation could range from complete 

burnout to the occasional bit flips in memory that can corrupt 

some data. In a study of the effect of radiation-corrupted 

RAM on different clustering algorithms [233], a method was 

developed to simulate radiation-induced bit flips and 

quantitatively assess the sensitivity of clustering and 
classification algorithms likely to be deployed onboard 

spacecraft. The findings surmised that the k-means algorithm 

could withstand radiation in the Earth orbit environment 

without the need for radiation-hardened memory. It also 

found out that simpler algorithms (regular k-means clustering 

and linear SVM) have less sensitivity (more tolerance) than 

more complex versions (kd-k-means, Gaussian SVM [117, 

233]. 

Kd-k-means, a faster version of the clustering algorithm 

that stores the data set as a kd-tree in memory, was 

discovered to be much more sensitive to radiation and not 
recommendable for onboard use on spacecraft. As a result, a 
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kd-tree variant was subsequently developed and restructured 

to increase its robustness to radiation [234].  

C.  COMPUTATIONAL CONSTRAINT 

A significant challenge arising directly from the high-

radiation environment is the computational constraints under 

which remote spacecraft are forced to operate. A few reasons 

contribute to this problem. First, processors and memory 

chips used in space need to pass extremely rigorous testing to 

certify them fit for operation in the harsh environment of 
space. Unfortunately, the amount of testing and preparation 

spacecraft systems designers require to get a system ready for 

spaceflight often takes years. As a result, engineers, 

designers, and quality assurance experts prefer to rely on 

legacy processors and components that have been flown and 

used in older spacecraft. This implies that even more recent 

spacecraft run on processors and memory that lag a decade 

behind the desktop state of the art [235]. 

Since most modern electronic components were not 

manufactured to operate in high-radiation environments, 

those meant for use in space must undergo a mandatory 

radiation hardening process, thereby increasing their cost. 

For example, the RAD750 processor used by Deep Impact, 

Mars Reconnaissance Orbiter, the Kepler space telescope, 

and other current missions and instruments runs at only 133 

MHz and costs ∼$200,000 [117]. Alternatively, there are 

specially shielded packaging of electronic parts to keep 

radiation at bay.  However, this approach is expensive and 

can lead to an increase in the weight of the spacecraft, which 

could adversely influence launch costs. Two other ways of 

dealing with space radiation include using redundant 

subsystems and selective shielding [236]. 

D. NATURE OF TELEMETRY DATA 

Satellite telemetry data are largely heterogeneous and 

multimodal, made up of hundreds to thousands of variables 

and attributes. In addition, telemetry data is usually collected 

from different sensors in various subsystems with different 

output formats and operating modes that must be changed 

from one mode to another over time ([122] [129], [237]). 
According to Yairi et al. [14] there  has been little work done 

in artificial satellite telemetry data mining, even though in the 

last few years the applications of SI in data mining have 

become increasingly implemented in different fields like 

bioinformatics and forensic analytics. However, in the 

research community of ML, some researchers are becoming 

interested in applying data mining techniques to the health 

monitoring problems for space missions.  

Notwithstanding that some SI algorithms have shown 

favourable and effective results in many application areas, 

they still suffer from defects such as weak generalization 

ability, low classification accuracy and slow convergence 
among others. Furthermore, evolutionary algorithms require 

some randomness to proceed [238],  all problems  to which 

Chaos theory  can be applied to improve the performance of 

the evolutionary algorithm. In [239], Darwish et al. proposed 

the hybridization of SI and evolutionary computing 

algorithms for DL and how these integration solve some 

problems in satellite health monitoring based on ML data 

mining. Gehad et al. [238] presented a novel Chaotic WOA 

(CWOA) to overcome these problems. The performance of 
CWOA was compared with WOA and ten other optimization 

algorithms, after which experimental results showed that 

circle chaotic map was the best chaotic map that significantly 

boosted the performance of WOA [240].  

D. DEEP LEARNING TECHNIQUES 

Space systems can be quite expensive to develop and launch 

into outer space. Due to the gradual degradation of system 

components and/or devices, it is highly recommended to 

have an on-board fault-diagnosis system capable of 

detecting, isolating, identifying or classifying faults in the 

spacecraft [123]. Historically the majority of the automated 

control and navigation maneuvering operations were directed 

by a human, which is burdensome and only attainable for 

near Earth missions [15]. 
  

 
 

FIGURE 15. Challenges for Deep Learning in Robotic Vision [219]. 

 

Considering the need to introduce higher levels of autonomy 

and automation using AI, DL will continue to play a critical 

role in developing mission-defined RAS that are capable of 

surviving the hostile environment of space. However,  there 

is often the temptation among mainstream ML communities 

to assume that the challenges with DL in domains like CV 
and Natural Language Processing (NLP) are the same for 

robotics [219].  Unfortunately, this is not true. Sunderhauf et 

al. [219] discussed  a number of robotics-specific challenges 

for DL. As shown in Fig. 15, these problems were 

categorized into three conceptually orthogonal axes: learning, 

embodiment, and reasoning. For instance, under the learning 

axis, ―Identifying Unknowns‖ is a key challenge because of 

the common assumption in DL that trained models will be 

deployed under closed-set conditions [241]. However, robots 

are often deployed in ever-changing, uncontrolled real-world 

environments, and are bound to come into contact with 

environmental conditions that were not covered by the 
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training data, including instances of classes, scenarios and 

textures [219].  

In open-set conditions [242],[243] it is critical to identify 

the unknowns. The robot‘s perception system must not 
assign high-confidence scores to unknown objects, or falsely 

recognize them as one of the known classes. For instance,  if 

a robot‘s vision system (object detection) is fooled by data 

outside of its training data distribution [244], the 

consequences of acting on false but high-confidence 

detections can be disastrous.  

E.  LEGAL CHALLENGES 

The current space treaties do not address the use and 

regulation of AI in space. The legal challenges emanating 

from the reliance and use of AI in space necessitates 

ascertaining the existence of linkage between space systems 
and services using AI to a system of governing rules and 

guiding legal principles [245]. Harnessing AI and ML 

technologies in the exploration of outer space will in all 

likelihood span a broad array of intended and unintended 

consequences such as privacy and liability issues. These 

consequences require consideration of a broad range of legal 

and regulatory concerns that the space industry alone cannot 

answer. The following are three core topics worthy of 

interest.  

1) LIABILITY OF INTELLIGENT SPACE OBJECTS 

The growing delegation of decision making to AI will have 

repercussions on many areas of law for which mens rea, or 

intention, is required for a crime to have been committed. As 

machines increasingly take on tasks and decisions 

traditionally performed by humans, should we consider 

giving AI systems 'personhood' and moral or legal agency? 

[246]. In the legal arena, the term ―person‖ generally refers to 

an entity which is subject to legal rights and duties. 

Generally, we think of a person as a human being [247]. 

However, the legal rights and duties imposed on inanimate 

objects and artificial entities emanate from actions or conduct 

engaged in by human beings. This is undoubtedly not the 
case for actions or conduct taken based on AI. Although a 

machine can learn independently from human input and 

make decisions based on its learning and available 

information, that ability does not necessarily equate with 

natural or legal personhood [245].  

Liability under the space law treaty regime is grounded in 

Outer Space Treaty (OST) Article VIII, which is the genesis 

of the Liability Convention [245]. The Liability Convention 

establishes a restricted framework for assessing international 

liability which only applies to a launching State [248]. As 

noted, decisions and conduct of legal persons are ultimately 
decisions made by a human being. Ultimately, since fault 

liability under the Liability Convention Article III is 

premised on the fault of a state or the faults of persons, a 

decision by an intelligent space object will, in all likelihood, 

not be the ―fault of persons‖ [245].   

Existing liability models may be inadequate to address the 

future role of AI in criminal activities [249]. For example, 

while autonomous agents can carry out the criminal act or 

omission, the voluntary aspect of actus reus would not be 

met, since the idea that an autonomous agent can act 

voluntarily is debatable. This implies that agents, artificial or 

otherwise, could potentially perform criminal acts or 
omissions without satisfying the conditions of liability for 

that particular criminal offence [246]. In the event that 

criminal liability is fault-based, it also requires mens rea (a 

guilty mind). The mens rea may comprise an intention to 

commit the actus reus using an AI-based application, or 

knowledge that deploying an autonomous agent will or could 

cause it to perform a criminal action or omission [250].  

2) DATA PROTECTION AND ETHICAL CHALLENGES 

AI also raises important ethical and privacy concerns that 

could erode trust in emerging technologies if not addressed 
thoughtfully.  AI requires access to vast amounts of data, but 

poorly drawn laws and government policies can hinder 

beneficial access without reducing the risk of AI activities 

[251]. The fear that satellite imagery can be used to discern 

car plates, individuals, and ―manholes and mailboxes‖ is not 

fictional. In 2013, police in Oregon, used Google Earth 

satellite image depicting marijuana growing illegally on a 

man‘s property. In January, 2020, the United States imposed 

an immediate interim export controls regulating the 

dissemination of AI technology software that possesses the 

ability to automatically scan aerial images to recognize 

anomalies or identify objects of interest, such as vehicles, 
houses, and other structures [252]. Employing AI in satellite 

imaging presents ethical issues relating to loss of control over 

one´s personal information and activities, which 

encompasses the right of individuals to move in their own 

home (yards and gardens) and/or other non-public places 

without being identified, tracked or monitored [253]. 

Nevertheless, a larger influx of data, observation capabilities 

and high-quality imagery from EO satellites is expected to 

become more widely available on a timely basis [254]. 

3) LIMITATIONS OF SPACE LAW  

There are no international or space treaties that address or 

regulate the use of AI in space. This simply implies that 

domestic legislation must serve as the principal source for the 

substantive law relating to the use of AI in space [245]. 

Furthermore, the dearth of international regulation of AI 

poses potential complex problems relating to the applicable 

substantive law in disputes involving the use of AI in space.  

It is not yet clear how ethical and legal concerns, especially 

around responsibility and analysis of decisions made by AI- 

based systems can be solved. Adequate policies, regulations, 

ethical guidance and a legal framework to prevent the misuse 
of AI in space need to be developed and enforced by 

regulators [245, 255, 256]. 

V. FUTURE DIRECTIONS 

AI and blockchain are among the key disruptive drivers 

behind innovation today [257]. While AI has its fair share of 

issues with trustworthiness, explainability, and privacy, 

blockchain on the other hand suffers from shortcomings such 

as scalability, security and efficiency. By leveraging 

advances in AI and blockchain platforms we can demonstrate 
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the capabilities of a new framework to collect vast amounts 

of data. The integration or marriage of these two technologies 

seems inevitable; especially since they have the potential to 

complement each other and revolutionize the next digital 
generation [257, 258].   

Regardless of the undisputed challenges with AI, several 

developments in algorithmic improvements have boosted the 

performance of DL methods and their models' accuracy. 

However, the large datasets required for trainings tend to be 

generally proprietary, highly centralized and expensive to re-

create. Furthermore, published models soon become obsolete 

and in need of retraining with new data. In view of the above 

challenges there seems to be a push towards finding ways to 

collaboratively improve ML models hosted on public 

blockchains.  Blockchain will bring trustlessness, privacy, 

and explainability to AI while  will in turn help build an ML 
system on blockchain for better security, scalability, and 

more effective personalization and governance [257]. 

Researchers at Microsoft [258] proposed a new 

framework for  collaboratively building a dataset and using 

smart contracts to host a continuously updated model. A free 

and open-source implementation of this framework for the 

Ethereum blockchain is provided at 

https://github.com/microsoft/0xDeCA10B. Similarly, the space 

industry has begun experimenting with blockchain 

technology across its entire supply chain to address some of 

the challenges faced by agencies like ESA and NASA. Going 
forward, we shall discuss three domains that stand to benefit 

the most from the inevitable AI-Blockchain convergence in 

the space community. They include the Internet of Space 

Things (IoST), Satellite Communications, and Spacecraft 

Data Security. 

1. INTERNET OF SPACE THINGS (IoST) 

The growing popularity of CubeSats has given rise to the 

practicability of ubiquitous cyber-physical systems known as 

the IoST/CubeSats [259]. Given the already mentioned 

challenges associated with the development and launch of 

traditional satellites CubeSats have become a viable 

alternative  for building global satellite networks [260, 261]. 

The concept of Internet of Space Things (IoST) utilizes Low 

Earth Orbit (LEO) satellites as part of a ubiquitous cyber-

physical system for implementing true global connectivity. 

The system leverages Software-Defined Networking (SDN) 
and Network Function Virtualization (NFV) to integrate on-

the-ground data and satellite information. Over the last 

couple of years research interest in the use of AI and SDR 

to manage networks and communication systems has gained 

momentum [262]. 

In [259] Kak et al. introduced a highly customizable large-

scale optimal constellation design framework for IoST with 

the aim of achieving global coverage and robust connectivity. 

Fortunately, the use of CubeSats offers several advantages. 

First, they make extensive use of Commercial-Off-The- Shelf 

(COTS) components which helps bring costs down. 
Secondly, through the use of sequential redundancy, 

CubeSats have much shorter development and deployment 

cycles. Furthermore, CubeSat constellations are more 

resilient to satellite failures due to the larger number of 

CubeSats in use. Notwithstanding the  many use cases for 

IoST that focus on on-Earth or near-Earth applications, it is 
worth stating that IoST can also can find application in deep 

space exploration through interplanetary data relaying, 

sensing and monitoring of asteroids, Mars, and Moon [260, 

263].  

For example, NASA aims to establish a human colony on 

Mars by 2025, which will require connectivity beyond Earth. 

The IoST, consisting of deep-space CubeSats, is expected to 

play a crucial role in providing such intra-galactic 

connectivity [264]. Currently, the utmost goal of IoST is to 

enable global connectivity beyond planet earth and provide 

sensing capabilities at a low cost [263]. Remote locations 

such as Mars that have little satellite coverage and 
connectivity can benefit from data sharing. Just as Earth‘s 

self-driving cars collectively share information about 

obstacle detection on a road, satellites or rovers could 

provide relative navigational information to each other and 

thus improve the accuracy of their space-based positioning 

and navigation. 

2. SOFTWARE-DEFINED RADIO (SDR) AND 

SATELLITE COMMUNICATIONS 

LEO satellite network plays a critical role in future space-

terrestrial integrated network because of its unique 

advantages. Notwithstanding, the effective and reliable 

routing for LEO satellite network is a difficult task due to 

time-varying topology, imbalanced communication load and 

frequent link handover [181]. This is where automation 

enhanced by cognition and ML can help with optimizing data 

return from space missions, reducing costs of operations and 

managing the complexity of communication systems. 

Although autonomous control systems without humans in the 
loop already exist for ground station network management, 

adding ML and cognitive algorithms will open up entire new 

fields of research with the potential to reduce complexity, 

enhance performance, and undoubtedly minimize the cost of 

space operations [181] [180].  

NASA is currently on the verge of defining and 

developing future space and ground architecture for 

optimizing the data return from space missions. In [180] the 

authors discussed the potential role of ML in the link-to-link 

aspect of the communication systems. For the first time the 

advantages and disadvantages of applying ML to space links 
in actual flight environment was demonstrated in an 

experiment using NASA‘s Space Communication and 

Navigation Testbed onboard the ISS and the ground station 

located at NASA John H. Glenn Research Center.  

Given the successful result, SDR has been identified as a 

key technology that provides the needed flexibility and 

configurability for NASA‘s future cognitive communication 

systems. Cognitive communication architectures will  

undoubtedly play a critical role in  future space missions, 

providing seamless internetworking services  for 

communication and navigation from within Earth‘s orbit out 

https://github.com/microsoft/0xDeCA10B
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through Mars and other planetary exploration in deep space. 

However, achieving the above objectives might require 

integrating future 5G communication frameworks with 

different radio access technologies and AI-based Dynamic 
Spectrum Management (DSM) mechanisms. AI-based DSM 

mechanisms such as spectrum sensing, signal classification 

and dynamic spectrum access have been proven to achieve 

superior performance and robustness than conventional 

schemes. These mechanisms, enabled by Cognitive Radio 

(CR), Blockchain and AI, also provide more flexible and 

efficient means of implementing DSM. In the future, the 

combination of AI techniques and the DSM mechanisms 

would become a novel and promising research 

direction[175], [25, 180].  

3.  SPACECRAFT DATA SECURITY AND THE 

BLOCKCHAIN FRAMEWORK  

Considering that both AI and Blockchain deal with data to 

create value, the AI-Blockchain convergence is absolutely 

inevitable in the space industry. While data is central to AI‘s 

efficacy blockchain enables collaborative and secure data 

sharing.  Therefore, tokenizing space resources such as 

satellites, telescopes and orbits   in the form of blockchain-
based digital tokens will open up new research areas and 

possibilities. Currently, Space Assets Management, Space 

Financing and Secure Satellite Communication represent 

some of the key areas that can hugely benefit from 

blockchain.  

In 2017, NASA awarded a $330,000 grant to Dr. Jin Wei 

Kocsis of the University of Akron to support the 

development of an autonomous blockchain-based spacecraft 

system. The new system, called the Resilient Networking and 

Computing Paradigm (RNCP), relies on blockchain and 

represents  NASA‘s first step  toward blockchain adoption in 

space applications [265, 266].  The authors in [266] also 
investigated the adoption of blockchain theory  based on the 

space digital token concept and proposed a new conceptual 

blockchain space industry framework to address some major 

challenges facing the space industry.  

Ant-inspired algorithms, when applied to the routing 

problem in wireless communication networks between 

satellites or planetary sensors achieved great efficiency [267]. 

However, communication security still remains a major 

challenge among spacecraft/satellites. Spacecraft and 

ground-based systems that control them are at risk of both 

active hacking and denial-of-service attacks. For most 
existing spacecraft communication security was 

insufficiently implemented, thus leaving significant attack 

vectors related to spacecraft control [268].  

Blockchain can therefore be employed to help in securing 

satellites swarms‘ communications, managing and 

authenticating space transactions between those swarms and 

ground stations [269].  In order to understand how 

blockchain can be employed in this regard it is first necessary 

to understand possible communication patterns between 

satellites and blockchain system. In [270] these patterns are 

classified as four communication models and enumerated as 

follows: 

 

1. A Satellite/spacecraft works as a blockchain node within 

the blockchain network;  

2) A Satellite/spacecraft works as a validator (i.e. a miner) 

node within the blockchain network;  

3) A satellite/spacecraft read from the blockchain;  

4) A satellite requests a specific transactional data to be 

written to the blockchain.  

 
With respect to the enumerated models above, Multi-

Factor Authentication (MFA) can be used to verify a 

satellite‘s identity, ground station‘s identity, or 

communication pattern validity by requiring multiple 

security proofs [266]. For example, satellite A and Satellite B 

in a satellite swarm can use a code to authenticate a satellite‘s 

membership in the swarm. Take for instance a scenario 

where Satellite A requests a specific connection with satellite 

B.  A sends the last block‘s Nonce code in the blockchain, 

which is verified by B before establishing the communication 

link. After terminating the connection a new block with a 
new Nonce code is provided, and then the new block is 

verified by all the miners in the blockchain network. 

Verification by miners (e.g. satellites and ground stations) 

proves the validity of connection and adds the new block to 

the blockchain system [266].  

Data-sharing enabled by blockchain could also be used to 

address distrust by creating virtual trusted space zones in 

which rovers or satellites in swarms identify and update each 

other in a trustless network environment. For instance, when 

a specific satellite in its orbit is endangered with a space 

debris collision, it will update all satellites in the same swarm 

(i.e. in the same orbit) with the new information; the update 
being distributed as a digital token. 

VI. CONCLUSION 
As spacecraft systems become larger and exceedingly 

complex, AI techniques are needed to help with control, 

operations, and communications. For instance, the 

application of ML algorithms to various aspects of remote 

sensing, spacecraft health monitoring and communication 

offers the potential to improve throughput and data return to 

Earth from space missions. In this survey we analyzed the 

applications of AI in Spacecraft Health Monitoring, Remote 

Sensing, Satellite Communications, and RAS. Some BIAs 
were also surveyed and their potential application areas in 

space missions highlighted.  

Regardless of the benefits derivable from the use of AI in 

space missions, there are still lots of challenges and open 

issues to be addressed. These hurdles need not to be seen as 

unassailable obstacles, but opportunities that point the way to 

where technological advancements are needed. For example, 

there seems to be a push towards finding ways to 

collaboratively improve ML models by hosting them on 

public blockchains. Similarly, SDR has been identified as a 
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key technology that provides the needed flexibility and 

configurability for future cognitive communication systems. 

We encourage researchers to look into mathematical 

methods such as quantum computing and chaotic theory; and 
hybridizing them with bio-inspired computing to overcome 

some of the limitations associated with BAIs. Unlike similar 

surveys focused only on technological challenges, we 

thought that it was important to also address some of the key 

legal challenges that emanate from the reliance and use of AI 

in space. 

Summarily, our paper outlined the need for advanced ML 

methods for space applications. ML has the potential to 

greatly increase these missions‘ capabilities, as well as 

enabling ambitious new autonomy possibilities in almost all 

fields of spacecraft operations. However, the combination of 

blockchain technology and AI will revolutionize space 
missions altogether as never before witnessed. This 

convergence has the potential to utilize data in ways never 

before thought possible. Given that data is the key 

ingredient for the development and enhancement of AI 

algorithms, blockchain holds the promise of securing this 

data and allowing us to audit all the transitional steps that 

these algorithms take to infer conclusions from the data. 
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