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ABSTRACT In this work, we propose a new approach to tactile research using natural language processing
of archival word corpus as the database. Tactile perception, or assessment of surfaces, is recognized as
a language. Thus, by extracting touch-related words and sentences from a text corpus and learning their
relationships, we can ultimately learn how humans perceive surfaces. We selected 6 adjectives and 42
onomatopoeias in Japanese as our tactile words. The adjectives represent physical properties, such as
roughness and hardness, while onomatopoeias, such as “zara-zara” and “tsuru-tsuru,” are widely used to
describe surfaces in Japanese and can correspond to both physical texture cognition and affective cognition.
First, using natural language processing of word corpora, we successfully mapped the onomatopoeias
with respect to the 6 adjectives, which matched well with the results based on an enquete-based survey.
This verified the effectiveness of natural language processing for tactile research. In addition, principal
component analysis revealed new tactile dimensions based on onomatopoeias, which we presumably
assessaffective tactile dimensions. The proposed approach using natural language processing of archival
text databases can provide a large number of datasets for tactile research and culminate in new findings and
insights.

INDEX TERMS Machine Learning, Unsupervised Learning, Tactile Perception, Natural Language
Processing, and Onomatopoeia.

I. INTRODUCTION

The sense of touch needs to be exploited alongside sight
and hearing to develop XR applications. To this end, tactile
perception must be characterized quantitatively, by determin-
ing the perceptual dimensions. Several studies attempted to
extract these dimensions, which include, but are not limited
to, roughness, friction, hardness, moisture, and warmness [1],
[2]. These dimensions are associated with the physical prop-
erties of materials.

“Roughness” and “Friction” can correspond to the surface
roughness [m] and the friction coefficient [-], respectively.
“Hardness” is, in fact, the stiffness or Young’s Modulus [Pa].
“Moisture” can be assessed by wettability or surface en-
ergy [N/m]. “Warmness” is associated with the temperature
[K] [3]. However, these dimensions do not provide a precise
quantitative characterization of the surface properties and can

be insufficient to assess tactile perception. For example, the
surface roughness can be described quantitatively in terms
of many different forms of parameters, such as Rz, RSm,
and Rq. Friction feeling is reported to be more dependent on
the mean variation of the friction coefficient than the friction
coefficient itself [4]. “Warmness” can be controlled by not
only temperature but also thermal conductivity [5]. There-
fore, when tactile perception or surface sensing is assessed
with respect to these dimensions, much information can be
lost.

Here, we would like to discuss another approach to se-
lecting tactile dimensions. Tactile perception can be recog-
nized in the form of a word [6]–[8]. In order to describe
surface texture and tactile perception, we try to find the
appropriate words that represent them. Adjectives, such as
rough, smooth, and stiff, are good candidates. Also used
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FIGURE 1. Concept of proposed approach to derive tactile perceptional dimensions from a huge text corpus. NLP enables learning of semantic
relations between words from such corpora and generation of word embeddings of tactile onomatopoeia and adjectives. It can generate onomatopoeic
maps by mapping the onomatopoeias onto the adjective axis and sort them based on the principal component axis.

frequently in Japanese are onomatopoeias, which comprise
repetitions of a few letters. For example, "zara-zara" and
"tsuru-tsuru" describe rough and smooth surfaces, respec-
tively. In order to correlate onomatopoeias to physical prop-
erties, onomatopoeia maps were proposed with respect to the
various tactile dimensions on the basis of a questionnaire-
based survey [9]. It was reported that onomatopoeias could
distinguish minute differences in materials better than ad-
jectives, and that onomatopoeias are more effective than
adjectives in understanding the differences in individuals’
sensory perception of texture [10].

Onomatopoeias are also reported to be able to describe
both texture cognition and affective cognition [11] [6]. An
onomatopoeia map uses tactile dimensions based on physical
properties, which can express texture cognition. However,
affective cognition may not be able to be mapped onto the
tactile dimensions. There may exist new tactile dimensions
correlating to affective cognition that can be described with
onomatopoeias.

A major challenge in tactile research is that tactile percep-
tion experiments are time-consuming. In many cases, partic-
ipants need to go to an experimental site to touch samples
or tactile displays physically and label the perception. It is
difficult to find many participants and thus collect a lot of
data. In the present study, instead of conducting perception
experiments with human participants, we take a different
approach. As discussed above, when we describe a surface
texture or tactile perception, we use words that represent that
texture or perception. These words are recorded in archival
text corpora, such as Wikipedia. Thus, we believe that we
can extract tactile dimensions composed of onomatopoeias
by conducting natural language processing (NLP) on corpora
containing an extremely large number of user data. We can
access several large text corpora, such as Wikipedia, and
analyze them effectively thanks to recent advances in natural
language processing.

In this paper, we propose and demonstrate a novel ap-
proach to deriving the relationship between tactile percep-
tional dimensions from a large word corpus using NLP
techniques. In this approach, no human labeling of tactile in-
formation is necessary. We vectorize all the candidate words,
which are 6 adjectives and 42 onomatopoeias, using a dis-
tributed representation of words from the corpus. We apply
several NLP methods and attempt to deduce the relationship
between the words, or the onomatopoeia map. First, we verify
the effectiveness of our approach by comparing the map to
a previously reported map and enquete-based survey. Then,
affective tactile dimensions are extracted by PCA analyses.
The proposed method can automatically create onomatopoeic
maps from textual information without the need for time-
consuming subject experiments. In addition, this technology
can be easily applied to all languages (Fig. 1).

II. APPROACH AND METHOD
We used natural language processing to acquire tactile di-
mensional representations using onomatopoeia, without the
need for subject experimentation. One of the basic methods
in natural language processing is to represent words in a
corpus as high-dimensional vectors (word embeddings) in
order to learn the grammatical and semantic relationships
in the text corpus. It is usually constructed using machine
learning algorithms, such as Word2Vec [12] or FastText [13].
These algorithms use information about the co-occurrence
of words in a text corpus. For example, if we learn from a
rich corpus of word meanings, the vector representing the
word “school” should have a close cosine distance to the
vector representing “university” and the vector representing
“education”. Importantly, skip-gram-type NLP algorithms,
such as Word2Vec, which learn meaning by predicting words
that appear in the neighborhood of the target word, do not
require human labeling, because they use neighboring words
as supervised data. In contrast to conventional visualization

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3130277, IEEE Access

T. Nagatomo et al.: Unsupervised Learning Enables Extraction of Tactile Information from Text Database

tools for tactile information such as onomatopoeia maps [9],
which are based on the results of subject experiments, our
method uses archived corpora as supervisory data to cre-
ate vectors of tactile words, allowing visualization of tac-
tile information without subject experiments (i.e., without
human labeling). Since tactile perception is recognized as
a language [6]–[8], we think that it is possible to extract
semantic information from tactile information by acquiring
word embedding expressions from a set of semantic data on
the language (corpus) and restricting the words to those that
express tactile sensation.

A. NATURAL LANGUAGE PROCESSING MODELS
In our proposed method, we used FastText [13], a skip-
gram NLP algorithm, and BERT [14], a general-purpose
natural language processing model employing skip-grams.
FastText is an improved model of Word2Vec [12] that can
handle unknown words. It divides each word into sub-words,
extracts features for each letter’s n-gram, and generates a
word vector by adding each feature vector. Thus, the model
can deal with word conjugations, similar words, compound
words, and unknown words that do not exist in the corpus.
BERT is a general-purpose NLP model, a fine-tuning model
that consists of bidirectional encoding representations using
Transformers [15], and can be used to pre-train word em-
beddings and solve NLP tasks in the same model. BERT
is very powerful because it uses Transformers to identify
polysemous words from the way they are used in sentences;
however, it is not designed to strictly represent the relation-
ships between words in terms of cosine distances [14].

Another powerful natural language processing model other
than BERT is GPT-3 [16], a unidirectional autoregressive
language model (AR model), which can generate sentences
that can be mistaken for human-generated ones using a huge
text dataset of 45TB and about 175 billion parameters as a
model. There is also a text-to-image model called DALL-
E [17], which is an application of GPT-3. This model takes
a caption as input and outputs an image dataset that matches
the meaning of the text. Like the images in this model, it is
expected to be applied to tactile information. On the other
hand, unlike BERT, it generates vectors through a unidirec-
tional autoregressive process with context weighting, so it is
not suitable for tasks where we want to estimate words from
both front and back contexts. In addition, it is challenging
to prepare a corpus in Japanese for constructing GPT-3,
and it is computationally expensive, so we excluded it from
this study. The successors to BERT [14] are XLNeT [18],
RoBERTa [19], ALBERT [20], and ELECTRA [21]. XLNet
is an improved version of BERT’s Masked Language Model
by applying an AR model. RoBERTa uses a model that
improves accuracy by tuning BERT’s hyper-parameters; AL-
BERT improves accuracy by separating the dimension of the
word embedding representation from the dimension of the
hidden layer and sharing the weights for each layer, making
the model lighter; ELECTRA is an adversary generation In-
stead of masking the input, ELECTRA replaces some tokens

TABLE 1. 42 selected onomatopoeias and their English translations.

Onomatopoeia Word meanings
kasa-kasa dry, rustle, bone dry
gasa-gasa dry or rough feeling, rustling

kunya-kunya (the impression of being) soft and flexible
gunya-gunya flabby, limpness, soft
kunyo-kunyo flabby, soft, flexible

keba-keba garish, gaudy, ostentatious
kochi-kochi tense, scared stiff, frightened
gotsu-gotsu rugged, scraggy, rough, angular

kori-kori crunchy, crisp (like a pickle), stiff (musculature)
gori-gori scratching, hard (to the bite, to the touch), scraping

gowa-gowa starchy, stiff
sara-sara murmuring, fluently
zara-zara gritty, granular, rough (touch, voice, etc.), coarse
jyari-jyari gritty (sand, pebbles, etc.), crunchy, chunky
syori-syori scratching, scrubbing, scraping
jyori-jyori the feeling of touching something hard and short-hair-like
siwa-siwa crumpled, wrinkled, crinkled
sube-sube sleek, smooth (skin, etc.), silky

chiku-chiku stinging, tingling, prickling
tsubu-tsubu lumpy, grains, bumpiness
tsuru-tsuru slippery, sleek, slick, smooth
toge-toge prickly, thorny, spiny, stinging
toro-toro syrupy, simmering, dozing

nyuru-nyuru slurping, slithering
nume-nume slimy, slippery, wet, glistening
nuru-nuru slimy, slippery

necha-necha slippery, messy (from mud, ink, etc.), sticky
necho-necho prickly, sticky, stickily

neba-neba stickiness
fuka-fuka soft (and fluffy) (e.g., bed, bread, baked potato)
fusa-fusa tufty, tufted

puchi-puchi small grains, little bits
putsu-putsu pimply, bumpy (e.g., of a rash), knobbly
funya-funya soft, limpness, flabby
punyu-punyu soft and squishy, jellylike

puni-puni squishy, pillowy, pudgy
puru-puru jiggle, bounce, slightly trembling
beta-beta sticky, cliched, hackneyed

becha-becha sticky, prattling, messy (from mud, ink, etc.), chattering
beto-beto sticky, gooey, prickly

moko-moko lumpy, fuzzy, soft and fluffy
mochi-mochi springy, sticky, glutinous

with plausible alternatives sampled from a small generator
network to achieve the same level of accuracy with about a
quarter of the computational complexity of XLNet and AL-
BERT. Although these models have improved accuracy and
computational complexity, the generated features of vectors
are not expected to change significantly. Therefore, in this
study, we decided to use a model pre-trained on the already
existing Japanese Wikipedia to see if tactile information can
be extracted from a pre-trained model trained on a generic
model.

B. MAPPING ONOMATOPOEIAS BY ADJECTIVE AXES

In this study, we adopted Japanese Wikipedia as data and
selected 42 words used by Sakamoto et al. as Japanese
onomatopoeias for tactile perception (Table 1).

By mapping onomatopoeias onto the tactile adjective axis,
we verified whether tactile onomatopoeias generated from
the corpus have tactile information. We visualize the se-
mantic distribution of tactile words in language space using
NLP, where each word is expressed as an embedding and
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the cosine distance of these vectors is calculated. Skip-gram-
type NLP algorithms use neighboring words as supervised
data, thus eliminating the need for human labeling. Since
words with similar meanings often appear in similar contexts,
the corresponding embeddings will also be similar, and the
semantic closeness between words can be calculated by
calculating the cosine distance of the embeddings [12]. Using
this property, we can visualize the relationship between tac-
tile onomatopoeias without human labeling (i.e., tactile sub-
ject experiments). Six adjectives, viz., “hard,” “soft,” “wet,”
“dry,” “rough,” and “smooth,” are included in the NLP and
used to form the three axes (lines drawn between two points),
“hard” and “soft” (hardness), “wet” and “dry” (wetness),
and “rough” and “smooth” (roughness). This automatically
creates onomatopoeic maps with respect to the adjective axes,
which represent physical properties.

The vectors that represent an adjective pair can be ex-
pressed as follows:

a1 = (a11 , a12 , · · · , a1n), a2 = (a21 , a22 , · · · , a2n), (1)

where a1 and a2 are the vectors representing an adjective
pair, and n is the number of dimensions of the hidden layer
that is represented by the NLP embedding. We used 300
and 768 as the n values for the FastText and BERT models,
respectively. These are the recommended values for these two
models. The unit vector u of the axes formed by the adjective
pair can be expressed as follows:

u =
a1 − a2

‖a1 − a2‖
. (2)

By mapping the word group X of the onomatopoeia with
this unit vector, we can obtain a distributed representation
mapped to the adjective axes.

Xafter = X · u (3)

Since the obtained distributed representation xafter is pro-
jected against the adjective axis, we consider that the distance
between the adjective at both ends and the onomatopoeia
expresses the material properties. For example, “tsuru-tsuru”
is a word that means slippery, sleek, slick and smooth, but in
this case, the cosine distance from smooth is very short, and
the distance from rough is large. Thus, “tsuru-tsuru” can be
regarded as a physical property with very low roughness.

III. EXPERIMENTS
A. OBTAINING DISTRIBUTED REPRESENTATIONS OF
ONOMATOPOEIAS
Since Japanese onomatopoeia is diverse and each word has
a distinct meaning, the onomatopoeias selected in Table 1
were embedded using the FastText and BERT pre-training
models to obtain an embedded representation of the word.
The details of the pre-training models for each model are
described below.

1) FastText
We used a publicly available pre-training FastText model in
Japanese1. This model uses MeCab, a morphological analysis
engine, and ipadic, dictionary data to separate Wikipedia
articles into sub-words, 32,000 vocabulary, 300 dimensions
of hidden layers, 20 processes per batch, and 10 epochs of
training. The other parameters are the default settings of
FastText.

2) BERT
We used a publicly available pre-training BERT model in
Japanese2. This model uses 12 layers of transformers, 768
dimensions of hidden layers, 12 heads of self-Attention, 512
tokens per process, 256 processes per batch, and 20 epochs of
training. The morphological analysis engine, dictionary data
and vocabulary are the same as FastText.

B. EXPERIMENT A: VISUALIZING THE EMBEDDING OF
ONOMATOPOEIAS WITH ADJECTIVES
We plotted the 42 onomatopoeias on each adjective axis, the
straight line formed by the adjective pairs. Since FastText
yielded better results, only the FastText results are shown.

Fig. 2 shows a onomatopoeia map with hardness and
wetness axes, which were obtained from the FastText model.
The horizontal axis represents hardness; the further to the
right, the closer to the word “hard” (i.e., stiff), and the further
to the left, the closer to the word “soft”. The vertical axis
represents the wetness axis; the higher up you go, the closer
you are to the word “wet,” and the lower down you go, the
closer you are to the word “dry”. Fig. 3 shows the roughness
and hardness, while Fig. 4 shows the wetness and roughness.

C. EXPERIMENT B: EMBEDDED ONOMATOPOEIA
In order to quantify the extent to which the distributed repre-
sentation of an onomatopoeia mapped onto these adjective
axes reflects the material properties, we conducted a user
study3. For this study, we recruited 20 participants (17 males
and 3 females, aged 22–26). It is important to note that
the purpose of this study was to determine quantitatively
how close the distribution obtained by this experiment was
to actual cognition, and it did not affect the distribution
of onomatopoeias obtained by the embedded representation.
The participants were asked to describe the image of the
42 onomatopoeias learned in this study on the hardness
axis “hard/soft,” the wetness axis “wet/dry,” and the rough-
ness axis “roughness-smoothness.” Then, they were asked
to answer the questions in seven steps using the semantic
differential (SD) method. No tactile sensation was given
at this time, and the participants were asked to answer on
the basis of their own perception and image (or memory).
We averaged and normalized the evaluation values for each

1https://github.com/Hironsan/awesome-embedding-models
2https://github.com/cl-tohoku/bert-japanese
3Ethical approval for this study was obtained from Keio University

Faculty of Science and Technology Ethics Committee Number 2020-32.
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onomatopoeia so that they would take values between 1 and
-1. We used the obtained data as the correct answer data, and
the degree of agreement with the distributed representation
of the onomatopoeia was calculated. This time the data were
normalized so that to they would fall in the range from 1
to -1. Thus, we can define the degree of agreement for each
onomatopoeia as follows:

P (n) =
1

2
(2− ‖xSDn

− xembeddingn + 1‖), (4)

where P (n) is the agreement of the nth onomatopoeia, xSDn

is the averaged and normalized evaluation value for the nth
onomatopoeia, and xembeddingn is the normalized distributed
representation of the nth onomatopoeia mapped onto each
adjective axis.

Table 2 compares the tactile representation with the partic-
ipant answers; the values represent the average values of the
degree of agreement (P (n)) for each axis. BERT’s agreement

TABLE 2. Comparison of tactile representation derived by embeddings
of onomatopoeia using NLP models with human cognition.

Adjective Axis FastText Score BERT Score
hardness 0.72 0.61
wetness 0.71 0.65
roughness 0.75 0.73
total 0.73 0.66

was 61% on the hardness axis, 65% on the wetness axis,
and 73% on the roughness axis, all lower than FastText’s
72%, 71%, and 75%. This is likely because BERT learns
word variants that take into account context and sentence
structure. For example, when outputting the sentence “You
like [mask] bread,” it estimates whether it is “hard” or “soft”
by inferring from the context before and after [14]. However,
in the proposed method, no sentences were used as input, and
words were input, so that even if the words had no context
and were opposite in meaning, they may have been judged
to be close. On the other hand, since FastText generates a
unique distributed representation for each word, it can judge
words based on their simple meanings, and the score is
considered to be high. Thus, BERT succeeded in extracting
tactile information from the distributed representation of
natural language processing.

IV. RESULTS AND DISCUSSION

A. EMBEDDED ONOMATOPOEIAS AND HUMAN
COGNITION

From the FastText variance representation, “gotsu-gotsu” and
“gasa-gasa” were shown as “hard” words, which agreed with
the tactile phase diagram with 42 onomatopoeic words pre-
sented by Sakamoto et al. [9]. Other good agreements include
“beta-beta" and “necho-necho" as “soft” words, “toro-toro”
as “wet”, “jyari-jyari” as “dry”, “zara-zara” as “rough”, and
“tsuru-tsuru” as “smooth”. Thus, it was verified that NLP can

FIGURE 2. Onomatopoeia group mapping with the hardness and wetness axes of the distributed representation obtained from the FastText model. The
horizontal and vertical axes represent hardness and wetness, respectively.
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FIGURE 3. Onomatopoeia group mapping with the roughness and hardness axes of the distributed representation obtained from the FastText model.
The horizontal and vertical axes represent roughness and hardness, respectively.

FIGURE 4. Onomatopoeia group mapping with the wetness and roughness axes of the distributed representation obtained from the FastText model. The
horizontal and vertical axes represent wetness and roughness, respectively.
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extract tactile information as successfully as previous studies
could from subject experiments.

On the other hand, even though “nyuru-nyuru”, “fusa-
fusa”, and “kunya-kunya” are “soft” words, FastText mapped
these words close to the origin of all the axes. In NLP, these
words were considered not to involve tactile information.

We can conclude that NLP can successfully extract and
map onomatopoeic words that contain tactile information.

The main difference between this map and the ono-
matopoeia map of Sakamoto et al. lies in the data set used
to create this map. While Sakamoto et al. used data from 10
subjects who touched actual materials to create this map, this
study automatically created it from the corpus of Wikipedia.
The present study can be said to be a method that solves the
difficulty of data collection in tactile research since the same
tendency was obtained without preparing actual materials
or subjects. In addition, by using a large data set such as
wikipedia, it is possible to generate data on the average tactile
cognition of Japanese people rather than individual tactile
information. This data is expected to become a standard for
judging cognitive differences between cultures and thresh-
olds in tactile cognition between individuals.

B. AFFECTIVE TACTILE DIMENSIONS: FACTOR
ANALYSIS OF EMBEDDINGS OF ONOMATOPOEIA
Principal component analysis (PCA) of the embeddings of
onomatopoeia can visualize the factors that humans consider
important in tactile perception, which presumably corre-
sponds to the affective tactile dimensions. We performed
PCA on the embeddings of onomatopoeia. To clarify the
difference between the principal component axes obtained
by PCA and the conventional explanatory variables of tactile
perception, we simultaneously reduced the dimensions of
the six adjectives corresponding to the three elements of
tactile perception. If each embedding of onomatopoeia is xo

and each adjective embedding is xa, then the vector of the
data matrix of the onomatopoeias alone, Xo, and the vector
of the data matrix including the adjectives, Xo+a, can be
represented by two vectors as follows:

Xo =


xo11 xo12 · · · xo1n

xo21 xo22 · · · xo2n

...
...

. . .
...

xom1 xom2 · · · xomn

 , (5)

Xo+a =



xa11 xa12 · · · xa1n

xa21 xa22 · · · xa2n

...
...

. . .
...

xal1 xal2 · · · xaln

xo11 xo12 · · · xo1n

xo21 xo22 · · · xo2n

...
...

. . .
...

xom1 xom2 · · · xomn


, (6)

where n is the number of dimensions of the embeddings,
m is the number of onomatopoeia, and l is the number of

adjectives.
We performed PCA on the distributed representation of

onomatopoeia and selected the principal component axes so
that the variance after projection would be maximized. In this
case, we calculated the covariance using only the distributed
representation group of the onomatopoeia, not including the
adjective words. This is because FastText and BERT learn
not only the meanings of words, but also their relationships
(i.e., morphological information. Japanese onomatopoeias
are composed of repeated units of 2 or 3 Japanese syllables,
such as zara-zara), so if there are two types of words, an
adjective and an onomatopoeia, they will select axes that
expand the variance morphologically. The data covariance
matrix S is defined as follows:

S =
1

m

m∑
i=1

(xoj − x̃o)(xoj − x̃o)
T . (7)

Assuming that the variance after projection is projected
onto the first principal component axis u1 to be thought,
it can be set as u1

TSu1. Considering that the variance
after this projection is maximized, the following equation is
obtained by adding the Lagrange multiplier λ1:

Su1 = λ1u1. (8)

From this equation, we can know that the first principal
component axis is the eigenvector of the covariance matrix
S. By obtaining the eigenvector u1 from this equation, we
can obtain the post-projection variance u1

TSu1 of the first
principal component axis, which is obtained in the general
principal component analysis.

In the proposed method, we can obtain a new covariance
So+a including the adjectives to visualize it by obtaining the
variance after projection, including the adjective axis.

So+a = 1
m+l

∑m+l
i=1 (xo+aj − ˜xo+a)(xo+aj − ˜xo+a)

T . (9)

By projecting this covariance onto the eigenvectors of the
first principal component axis, we can obtain the principal
component variance u1

TSo+au1 of the onomatopoeia with
adjectives.

Fig. 5 shows the cumulative number of principal compo-
nent axes and the cumulative contribution ratio. It was found
that 16 dimensions were necessary to express a contribution
rate of 80% or more. Table 3 shows the variance of the
top three axes sorted in descending order, viz., the kunya-
kunya/gotsu-gotsu, punyu-punyu/gunya-gunya, and punyu-
punyu/gasa-gasa axes. In this method, eigenvectors are ob-
tained for axes where the variance of only onomatopoeias
is maximized. The adjectives are mapped over the axes in
Table 3. Interestingly, the distance between the paired adjec-
tives is small. In other words, physical characteristics are not
considered to be the dominant factor in these major axes.

We confirmed this quantitatively by deducing how much
variance (distance) each adjective pair has on each principal
component axis. Table 4 shows a quantitative representation
of the relationship between the adjective pairs and the 16
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FIGURE 5. PCA results of the embeddings of onomatopoeias generated
by FastText.

TABLE 3. The top three principal components of the embeddings of
onomatopoeias generated by FastText by principal component analysis.

PC1 PC2 PC3
kunya-kunya -17.37 punyu-punyu -12.19 punyu-punyu -13.87
funya-funya -17.12 putsu-putsu -9.49 putsu-putsu -12.76
gunya-gunya -16.62 kochi-kochi -8.06 puchi-puchi -11.93
becha-becha -15.54 gori-gori -6.76 gunya-gunya -5.41
gunyo-gunyo -14.03 jyori-jyori -6.59 jyari-jyari -4.86
necha-necha -13.97 gunyo-gunyo -5.83 puru-puru -3.16
jyori-jyori -10.80 necho-necho -5.50 puni-puni -2.61

necho-necho -10.62 puchi-puchi -5.27 nyuru-nyuru -1.82
punyu-punyu -10.44 fuka-fuka -5.14 becha-becha -1.79

gori-gori -9.53 gasa-gasa -4.80 kunya-kunya -1.43
kochi-kochi -8.72 moko-moko -4.56 kori-kori -1.15
putsu-putsu -3.67 keba-keba -4.11 tsubu-tsubu -1.11
nume-nume -3.63 kasa-kasa -3.91 beta-beta -0.85
keba-keba -2.94 beto-beto -3.42 tsuru-tsuru -0.81
beto-beto -2.22 syori-syori -2.88 sara-sara -0.65

syori-syori -2.04 nume-nume -1.95 toro-toro -0.64
chiku-chiku -2.00 nyuru-nyuru -1.70 neba-neba -0.59
gasa-gasa -0.31 chiku-chiku -1.49 funya-funya -0.45

moko-moko -0.10 toro-toro -0.76 beto-beto -0.42
nyuru-nyuru 0.32 jyari-jyari -0.64 smooth -0.40

fuka-fuka 0.71 mochi-mochi -0.23 soft -0.30
kori-kori 1.85 siwa-siwa -0.18 wet -0.25
jyari-jyari 2.04 beta-beta 0.04 sube-sube -0.16
beta-beta 2.09 kori-kori 0.46 nuru-nuru -0.10
toro-toro 2.53 puni-puni 0.65 hard -0.05
siwa-siwa 3.55 toge-toge 1.53 gotsu-gotsu 0.04

puchi-puchi 3.66 puru-puru 1.69 rough 0.157
kasa-kasa 3.88 sara-sara 1.85 dry 0.23

mochi-mochi 4.63 wet 1.93 zara-zara 0.46
puni-puni 5.57 neba-neba 2.37 gowa-gowa 0.48
puru-puru 5.81 tsubu-tsubu 2.38 fusa-fusa 0.61
sara-sara 6.53 rough 2.42 toge-toge 1.00

wet 6.58 fusa-fusa 2.69 gunyo-gunyo 1.65
fusa-fusa 6.77 gowa-gowa 2.80 mochi-mochi 1.82

tsuru-tsuru 6.86 soft 2.81 keba-keba 1.84
toge-toge 6.86 dry 2.84 necha-necha 2.12
nuru-nuru 6.98 tsuru-tsuru 3.03 chiku-chiku 2.71
neba-neba 7.10 gotsu-gotsu 3.07 moko-moko 2.91
sube-sube 7.10 smooth 3.10 syori-syori 3.15

dry 7.25 nuru-nuru 3.13 nume-nume 3.59
tsubu-tsubu 7.57 hard 3.24 kochi-kochi 4.09

hard 7.75 zara-zara 3.71 siwa-siwa 4.58
soft 7.79 sube-sube 3.76 necho-necho 5.20

rough 7.80 becha-becha 7.56 fuka-fuka 5.46
gowa-gowa 7.88 funya-funya 9.10 gori-gori 5.62
zara-zara 7.91 kunya-kunya 9.38 kasa-kasa 5.86
smooth 8.10 necha-necha 9.71 jyori-jyori 5.94

gotsu-gotsu 8.22 gunya-gunya 10.26 gasa-gasa 8.01

TABLE 4. Relationship between each principal component axis and physical
properties.

PC
Index

Explained
Variance ratio

Hardness
Length

Wetness
Length

Roughness
Length

1 20.73% 0.14% 2.61% 1.20%
2 8.35% 1.91% 4.06% 3.00%
3 6.58% 1.15% 2.17% 2.55%
4 5.17% 1.93% 4.28% 1.72%
5 4.59% 0.21% 1.03% 2.74%
6 4.01% 4.28% 8.19% 1.20%
7 3.86% 1.56% 9.36% 0.47%
8 3.71% 4.23% 0.20% 0.43%
9 3.41% 4.48% 9.35% 3.77%

10 3.18% 1.70% 4.41% 5.57%
11 3.04% 0.12% 4.25% 3.20%
12 2.80% 0.88% 2.63% 1.08%
13 2.56% 1.55% 0.29% 0.65%
14 2.39% 2.87% 4.17% 1.33%
15 2.21% 0.60% 6.06% 0.67%
16 2.17% 1.23% 0.13% 5.82%

principal component axes by normalizing the length of the
adjective pairs on each principal component axis by the
length of each principal component axis. Interestingly, in all
of the 16 principal component axes, the distance between
the adjective pairs is smaller than 10%. Uchida et al. [22]
have shown that onomatopoeias in Japanese contain human
affective meaning. Ramachandran et al. [11] and Etzi et
al. [6] have shown that tactile sensation contains affective
information. Therefore, we can say that onomatopoeias are
not used to represent physical properties but affective infor-
mation.

Since the onomatopoeic embeddings obtained from the
FastText model were shown to have physical properties in
Experiment A, the respective principal component axes were
visualized in the results of Experiment A in order to visualize
the correspondence between the principal component axes
and the physical properties. In PC1, for example, we mapped
each adjective axis pseudo-physically by drawing an axis that
passed through the two extreme words, “gowa-gowa” and
“kunya-kunya” Fig. 6, 7 and 8.

In Fig. 6, the norm of PC1 is very small and can be
regarded as an axis different from the hardness and roughness
axes, which are physical properties. The norm of PC2 and
PC3 is large relative to the overall distribution, but the slope is
almost parallel to the hardness axis, so they can be considered
as axes with roughness properties and almost no wetness
properties.

In Fig. 7, the norm of PC1 is very small and can be con-
sidered as an axis different from the hardness and roughness
axes, which are physical properties. The norm of PC2 and
PC3 is large compared to the overall distribution, but the
slope is almost parallel to the roughness axis, so it can be
considered as an axis with roughness properties and little
wetness properties.

In Fig. 8, the norm of PC1 is very small and it is considered
to be a different axis from the hardness and roughness axes,
which are physical properties. The norm of PC2 and PC3
is large in relation to the total distribution, but the slope is
from the third quadrant to the first quadrant, so they can
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be considered as axes having both roughness and hardness
properties.

Figs. 6–8 show that PC1 has properties very different from
the existing physical axes, and PC2 and PC3 have properties
of the hardness and roughness axes. Interestingly, PC1 has
different properties from the existing physical axes even
though it has a much higher contribution of 28% to the total
variance than Fig. 1. This is because the existing axes ignore
this 28% in the total variance, and many tactile experiments
using the existing axes are considered to have information
loss of this 28%.

Since PC2 and PC3 were shown to have physical proper-
ties of hardness and roughness, we visualized the physical
axes in each principal component axis in Fig. 9, 10, and 11.

Fig. 9 shows PC1 on the horizontal axis and PC2 on the
vertical axis. If we focus on the norm of the physical axis, we
can see all three are very small compared to the total variance.
Fig. 10 shows PC2 on the horizontal axis and PC3 on the
vertical axis, and the norm of the physical axis is also very
small compared to the total variance. Fig. 11 shows PC3 on
the horizontal axis and PC1 on the vertical axis, and the norm
of the physical axis is also very small compared to the total
variance.

In Table 3, we mentioned the norm for each axis, similarly,
for PC1 and PC2, PC2 and PC3, and PC3 and PC1, the norm
for each physical axis was shown to be small relative to
the overall variance. This indicates that PC2 and PC3 have

physical components of hardness and roughness axes, but
they are not dominant in PC2 and PC3, and can be regarded
as different axes that affect the hardness and roughness axes.

Etzi et al. [6]. focused on the tactile adjectives rough and
smooth, and showed that roughly correlated with negative
words such as “dim”, “dark”, “loud” and “heavy” while
smooth correlated with positive words such as “bright”,
“light”, “quiet” and “lightweight”. The PC2 and PC3 ob-
tained by this principal component analysis were found to
have the characteristics of rough-smooth, which is consistent
with their claim. These results can be said that our generated
vectors might have not only physical properties but also
affective properties.

We assume that the first principal component axis obtained
in the proposed method (for the sake of convenience, we
named it the “kunya-gotsu axis” since the pairs are “kunya-
kunya” and “gotsu-gotsu”) can be set as a factor in the SD
method, instead of adjective pairs that represent physical
properties, to better express the sense of touch. For example,
in the kunya-gotsu axis, the two ends of the SD method
should be set to “kunya-kunya” and “gotsu-gotsu”. By using
the 16 principal axes obtained this time and evaluating them
with the SD method, we will be able to evaluate tactile
sensation more variedly. This is because if we wanted to
incorporate existing axes as before, we could use this model
to re-map them into hyperspace and incorporate them into
variables that can be accounted for by the methods of Exper-

FIGURE 6. Onomatopoeia group mapping of the hardness and wetness axes of the distributed representation obtained from the FastText model and
calculated principal component axes. The magenta, cyan and orange axes represent the PC1 (”gowa-gowa“ and ”kunya-kunya“), PC2 (”gunya-gunya“
and ”punyu-punyu“) and PC3 (”gasa-gasa“ and ”punyu-punyu“) axes, respectively.
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FIGURE 7. Onomatopoeia group mapping of the roughness and hardness axes of the distributed representation obtained from the FastText model and
calculated principal component axes. The magenta, cyan and orange axes represent the PC1 (”gowa-gowa“ and ”kunya-kunya“), PC2 (”gunya-gunya“
and ”punyu-punyu“) and PC3 (”gasa-gasa“ and ”punyu-punyu“) axes, respectively.

FIGURE 8. Onomatopoeia group mapping of the wetness and roughness axes of the distributed representation obtained from the FastText model and
calculated principal component axes. The magenta, cyan and orange axes represent the PC1 (”gowa-gowa“ and ”kunya-kunya“), PC2 (”gunya-gunya“
and ”punyu-punyu“) and PC3 (”gasa-gasa“ and ”punyu-punyu“) axes, respectively.
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iment A (i.e., the three axes with textural properties).

C. APPLICATION TO MULTIPLE LANGUAGES AND
LINGUISTIC EXPRESSIONS OTHER THAN
ONOMATOPOEIA
The present NLP-based method for tactile evaluation using
word embedding can also be applied to languages other than
Japanese. In the proposed method, we used onomatopoeia
as the main tactile embedding, but it should be possible
to extract tactile information by embedding adjectives and
representative nouns as well. Our results suggest that al-
though BERT’s performance is inferior to FastText in directly
visualizing word embedding, fine-tuning can greatly improve
BERT’s performance. Furthermore, by translating word em-
beddings that have learned the meaning of tactile sensation
using a generic model such as BERT, it should be possible to
visualize the differences in tactile sensation between multiple
languages.

V. CONCLUSION
In this paper, we proposed a new and effective approach
in tactile research that uses natural language processing of
archival text corpuses. This approach allows us to access a
large amount of useful data, i.e., verbalized tactile words,
without time-consuming perception experiments. We high-
lighted onomatopoeias, which are frequently used to repre-
sent tactile information in Japanese. They were successfully
mapped with respect to physical properties, which agreed
with the previous report based on an enquete-based survey.
This verified the effectiveness of the NLP-based approach.

FIGURE 9. Onomatopoeia group mapping of the PC1 and PC2 axes of
the distributed representation obtained from the FastText model and
calculated principal component axes. The magenta, the cyan, and the
orange axes represent the hardness, wetness, and roughness axes,
respectively.

FIGURE 10. Onomatopoeias group mapping the PC2 and PC3 axes of
the distributed representation obtained from the FastText model and
calculated principal component axes. The magenta, cyan, and orange
axes represent the hardness, wetness, and roughness axes, respectively.

FIGURE 11. Onomatopoeias group mapping the PC3 and PC1 axes of
the distributed representation obtained from the FastText model and
calculated principal component axes. The magenta, cyan, and orange
axes represent the hardness, wetness, and roughness axes, respectively.

In addition, principal component analysis of the distributed
representation suggested that onomatopoeias are used to
represent affective tactile information. PCA successfully ex-
tracted affective tactile dimensions, including "kunya-gotsu",
"punyu-gunya", and "punyu-gasa".
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