
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086529, IEEE Access

Digital Object Identifier

Defending Deep Neural Networks
against Backdoor Attack by Using
De-trigger Autoencoder
HYUN KWON1
1Department of Electrical Engineering, Korea Military Academy, Seoul 01819, South Korea

Corresponding author: Hyun Kwon (e-mail: hkwon.cs@gmail.com or khkh@kaist.ac.kr).

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (2021R1I1A1A01040308) and Hwarang-Dae Research Institute of Korea Military Academy.

ABSTRACT A backdoor attack is a method that causes misrecognition in a deep neural network by training
it on additional data that have a specific trigger. The network will correctly recognize normal samples (which
lack the specific trigger) as their proper classes but will misrecognize backdoor samples (which contain the
trigger) as target classes. In this paper, I propose a method of defense against backdoor attacks that uses a
de-trigger autoencoder. In the proposed scheme, the trigger in the backdoor sample is removed using the
de-trigger autoencoder, and the backdoor sample is detected from the change in the classification result.
Experiments were conducted using MNIST, Fashion-MNIST, and CIFAR-10 as the experimental datasets
and TensorFlow as the machine learning library. For MNIST, Fashion-MNIST, and CIFAR-10, respectively,
the proposed method detected 91.5%, 82.3%, and 90.9% of the backdoor samples and had 96.1%, 89.6%,
and 91.2% accuracy on legitimate samples.

INDEX TERMS Backdoor attack, Defense method, Deep neural network, De-trigger autoencoder

I. INTRODUCTION

Deep neural networks [1] provide good performance in the
fields of image recognition [2], speech recognition [3], pat-
tern analysis [4], and intrusion detection [5], which are typ-
ical machine learning tasks. However, deep neural networks
have security vulnerabilities. The security risks of machine
learning have been categorized by Barreno et al. [6] into those
from exploratory attacks and those from causative attacks. An
exploratory attack [7] is an attack that induces misrecognition
by a model that has already been trained, caused by the
manipulation of test data. An adversarial example [8] [9]
[10] [11] is a type of exploratory attack. A causative attack
[12] is an attack that degrades the accuracy of a model by
adding malicious artificial data during the model’s training
process. Causative attacks include poisoning attacks [13] [14]
and backdoor attacks [15] [16] [17]. The method proposed
in this paper is designed as a method of defense against the
backdoor type of causative attack.

The backdoor attack [15] [18] originated as an improve-
ment of the poisoning attack. The conventional poisoning
attack reduces the accuracy of a model by adding malicious
data to the model’s training data. With this method, however,
it is not possible for the attacker to specify the time of attack;

additionally, it is easy to determine whether such an attack
has been performed by checking the validity of some of
the data. To overcome the disadvantages of the poisoning
attack, the backdoor attack was proposed, by which a trigger
is attached to data to induce misrecognition by the model;
data lacking the trigger will be recognized correctly. This
method trains the model by adding a backdoor sample to
the training data so that data containing the trigger will not
be correctly recognized. After being trained, the model will
correctly recognize data that do not contain the trigger but
will not correctly recognize backdoor samples that contain
the trigger. With a backdoor attack, the attacker can specify
the time of attack by means of the trigger, and because the
model’s overall accuracy remains high, it is not easy to detect
the attack by performing a validation check.

Investigators have researched three methods of defense
against backdoor attacks: reversing the trigger [19], changing
the structure of the target model [20], and changing the
classification [21] [22] by adding a separate model. The re-
verse trigger method analyzes the classification score accord-
ing to trigger positions set randomly. This approach works
because a model attacked by a backdoor sample is highly
likely to misrecognize the sample for some specific trigger

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086529, IEEE Access

Hyun Kwon: Backdoor Attack Defense by Using Autoencoder to Remove Trigger

location. However, as this method has a high probability of
misrecognizing data because of the presence of a trigger,
it has a high rate of false detections. The second method,
which detects backdoor samples by changing the structure of
the target model, reduces the effectiveness of the backdoor
attack by removing specific neurons in the target model.
However, the removal of specific neurons in the target model
can reduce its accuracy on the original samples. The third
method, which detects backdoor samples using two separate
models, compares changes in classification results between
the model trained on the original samples and the model
trained on the backdoor sample. However, as training each of
the two models on clean samples and on the backdoor sample
requires verification of the training data by human feedback,
the assumption it is based on is somewhat less realistic, and
a complex process is required.

In this paper, a de-trigger backdoor defense method is
proposed. This method detects backdoor samples using a
proposed de-trigger autoencoder in which triggers are arbi-
trarily added to input data. The method removes the trigger
of the backdoor attack in the de-trigger module; therefore,
a legitimate sample will not be changed by passing through
the module, but a backdoor sample will change, allowing
the backdoor sample to be detected by the proposed scheme.
The contributions of this paper are as follows. First, the pro-
posed method for detecting a backdoor sample by removing
its trigger using a de-trigger autoencoder is described and
explained. In the proposed method, an autoencoder module
removes the trigger on the backdoor sample. The technique
is original in that it can restore the backdoor to the legit-
imate sample, in contrast to existing methods of defense
against backdoor attacks. In particular, unlike the existing
autoencoder method, the de-trigger autoencoder is designed
to restore an image with an arbitrary trigger to the legitimate
sample so that the trigger on the backdoor sample can be
removed. Second, it is shown how the proposed method
analyzes the images after removal of the trigger for the
legitimate sample and backdoor sample using the de-trigger
autoencoder. In addition, detection rates using different de-
trigger autoencoders are compared, and the recognition rates
on legitimate samples are analyzed. Third, the performance
of the proposed method is demonstrated using the MNIST
[23], Fashion-MNIST [24], and CIFAR-10 [25] datasets.

The remainder of the paper is organized as follows. In
Section II, the proposed method is briefly described, and
related research is reviewed. In Section III, the proposed
scheme is explained in detail." Sections IV and V discuss
the evaluation experiment and its results, and Section VI
further discusses the proposed scheme. Finally, Section VII
concludes the paper.

II. RELATED WORK
Legitimate data without a trigger are recognized correctly by
the model; a backdoor attack is an attack in which data con-
taining the trigger are not correctly recognized by the model.
This section describes the concept of the autoencoder and

describes related research on attack methods and methods of
defense against backdoor samples.

A. AUTOENCODER CONCEPT
An autoencoder [26] is a neural network for unsupervised
learning that copies inputs to outputs. The autoencoder
has the same structure as the general multilayer perceptron
(MLP) except that the number of neurons in the input and
output layers is the same. The loss function is calculated
using the difference between the input and the output. Au-
toencoders reduce the number of dimensions by using fewer
neurons in the hidden layer than in the input layer, or they
may train the network to restore the legitimate input after
adding noise to the input data. These constraints prevent the
autoencoder from simply copying the input directly to the
output and control it so that it learns how to represent data
efficiently.

B. BACKDOOR ATTACK METHODS
The backdoor sample is an attack in which the triggered data
will be misrecognized by the model. The backdoor sample
attack was proposed by Gu et al. [15] in the BadNet method.
In this method, a specific trigger is attached to the image,
and it is not correctly recognized by the model. The method
achieved an attack success rate of 99% against MNIST. In-
stead of adding malicious data, Liu et al. [27] added external
neural networks to create a new method of attack. Their
method attacks by adding a neuron to the neural network
and causes the data to which a specific trigger is attached to
be misrecognized by the model. Wang et al. [28] proposed
a detection method that operates by reversing the trigger.
In this method, various triggers are attached to analyze the
backdoor attack method. Clements and Lao [29] proposed a
method for causing malfunction by planting a backdoor in the
hardware of a neural network. When this method was used
on the MNIST dataset and the wrong neuron was deliberately
added to the neural network, the backdoor was misrecognized
by the model because of the presence of a specific trigger.

C. DEFENSE METHODS AGAINST BACKDOOR ATTACK
Methods of defense against backdoor samples can be catego-
rized into those that use reverse trigger detection on input
data, those that detect backdoor samples by changing the
structure of the target model, and those that add a separate
model and analyze changes in classification. The first of these
detects whether a model has been attacked by a backdoor
sample by attaching a trigger to the input data. For example,
Xiang et al. [19] proposed a reversal method that uses the
change in classification result in the target model after reflect-
ing the input data through multiple triggers. Wang et al. [28]
proposed the neural cleanse method, a reversal method that
detects changes in classification by using multiple triggers
on input data. A sample is identified as a backdoor sample
when a certain metric exceeds a specific criterion by using the
outline method for the detected classification. Gao et al. [30]
proposed a strip method for detecting backdoor samples. This

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086529, IEEE Access

Hyun Kwon: Backdoor Attack Defense by Using Autoencoder to Remove Trigger

real-time method tests whether the target model has been
subjected to a backdoor sample by inserting several trigger
patterns into the input data and evaluating the difference in
entropy between the clean sample and the backdoor sample.
The second type detects backdoor samples by changing the
structure of the target model. For example, Liu et al. [20]
proposed the fine-pruning method, which identifies clean
samples and backdoor samples by removing specific neurons
in the structure of the target model. This method detects
backdoor samples by taking advantage of the fact that a
backdoor sample is sensitive to classification changes in-
duced by the removal of a specific neuron from the target
model. With a clean sample, the classification result does
not change significantly even if the specific neuron of the
target model is removed, but with a backdoor sample, a
relatively large change in the classification result is caused
by the removal of the specific neuron. The third type detects
backdoor samples through classification changes that may
occur when a separate model is added. For example, Weber et
al. [21] proposed the “RAB” method, which detects backdoor
samples by comparing the classification results produced by
two models: the model trained using the backdoor sample and
a model trained on clean data. If the input value is clean data,
the two models will provide the same classification result.
If the input data is a backdoor sample, however, the model
trained on the clean data will classify it as the normal class,
but the model trained on the backdoor sample will classify it
incorrectly; thus, the backdoor sample can be identified using
this classification difference.

The above methods require the insertion of a specific
trigger into the input data (for the reversal process), changing
the structure of the model, constructing safe training data,
and/or conducting additional training of the model. Changing
the structure of the model or inserting a specific trigger into
the input data requires considerable time, many iterations,
and a complex process. Training each of two models on clean
samples and on the backdoor sample requires verification
of the training data by human feedback, which is somewhat
unrealistic and involves a complex process. Unlike the above
methods, however, the proposed method first applies the
de-trigger autoencoder, which removes the trigger from the
backdoor sample. The de-trigger autoencoder reduces the
effectiveness of the attacking backdoor samples by removing
the trigger pattern, and it is easy to detect backdoor samples
by using the change in the classification results. In addition,
the proposed method does not require access to the entire
dataset and does not require changing the structure of the
model or reversing a specific trigger pattern.

III. PROPOSED METHOD
Figure 1 shows how the proposed method detects backdoor
samples by the change in the classification result after the
input data are passed through the de-trigger autoencoder.
In the case of a legitimate sample, the classification results
produced before and after the sample is passed through the
de-trigger autoencoder are the same. In the case of a backdoor

sample, however, the classification results produced before
and after the sample is passed through the de-trigger autoen-
coder are different. This is because the backdoor sample,
whose trigger has been removed, is restored to the legitimate
data, and the classification result given by the target model is
the proper class.

The proposed method consists of two processes: gen-
erating a de-trigger autoencoder and detecting a backdoor
sample. First, a de-trigger autoencoder is created so that an
image consisting of legitimate data with a trigger attached
is output as data without the trigger. Then, the backdoor
sample is detected by using the change in the recognition
result between the original data and the backdoor sample
through the de-trigger autoencoder. The result value given
by the target model and the result value given by the input
detection model are compared. If these values are different,
it is regarded as a backdoor sample, and the target model is
deemed to be under a backdoor attack.

The mathematical procedure for the proposed method is as
follows. In the first step, in which the de-trigger autoencoder
is created, a specific trigger is added to the input data, and the
de-trigger autoencoder is trained so that it will output the in-
put data with the trigger removed when it is given a randomly
generated backdoor sample as input. When the input is x,
the encoder network function fθ(·), and the decoder network
function gθ′(·), the trigger-reflected backdoor sample x̂ is
mapped to the hidden latent layer as follows:

y = fθ(x̂) = s(Wx̂+ b),

where W is the weight value, b is a bias constant, and s is an
activation function. In the decoder, hidden latent variable y
can generate gθ′(y):

z = gθ′(y).

The encoder network parameter θ and decoder network pa-
rameter θ′ are trained to have a minimal reconstruction error
as follows:

L2(x, z) = ‖z − x‖22 .

The de-trigger autoencoder, which has been trained on a large
quantity of data using this process, plays the role of restoring
the data containing a specific trigger to the legitimate data
with the trigger removed. The trigger is created as a white
pattern in the shape of a 4 × 4 square, and it is positioned
randomly at the top right, bottom right, top left, or bottom
left of the image.

In the second step, in which the backdoor sample is de-
tected, the change in the classification of the input after it is
passed through the de-trigger autoencoder is examined. Let
the operation function of the de-trigger autoencoder be fp
and the operation function of the target model be ft. Then

ft(xv) = rb and ft(fp(xv)) = ra,

where xv is the data being validated, rb is the classifica-
tion result before the de-trigger autoencoder, and ra is the
classification result after the de-trigger autoencoder. If the

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086529, IEEE Access

Hyun Kwon: Backdoor Attack Defense by Using Autoencoder to Remove Trigger

FIGURE 1: Overview of the proposed scheme.

classification results are the same before and after the input
is passed through the de-trigger autoencoder, the input value
is a legitimate sample, and if the classification results are
different, the input value is regarded as a backdoor sample.
Details of the algorithm are shown in Algorithm 1.

Algorithm 1 De-trigger (DT) autoencoder for detecting a
backdoor attack
Input: legitimate training data x ∈ X , new input data xv ,

function of the target model fd, de-trigger autoencoder
fp

Detecting backdoor attack:
Process for training DT autoencoder (fp) on x ∈ X
rb ← fd(xv)
ra ← fd(fp(xv))
if rb 6= ra then

flag← 0
else

flag← 1
end if
return flag

IV. EXPERIMENT SETUP
Through experiments, it was demonstrated that the proposed
method can effectively defend against backdoor attacks. In
the experiments, the machine learning library used was Ten-

sorFlow [31], and the hardware was a Xeon E5-2609 1.7-
GHz server.

A. DATASETS
MNIST, Fashion-MNIST, and CIFAR-10 were used as ex-
perimental datasets. MNIST is a dataset of handwritten im-
ages consisting of the numerals from 0 to 9 in black and
white. The images in MNIST are two-dimensional data of
28 × 28 × 1 pixels, totaling 784 pixels. MNIST has 60,000
training data and 10,000 test data. Fashion-MNIST is a
fashion-related dataset and consists of 10 types of image,
such as T-shirts, bags, ankle boots, coats, shirts, sneakers,
sandals, and dresses. The images in Fashion-MNIST are
two-dimensional data of 28 × 28 × 1 pixels, totaling 784
pixels. Fashion-MNIST has 60,000 training data and 10,000
test data. CIFAR-10 is a color object image dataset and is
composed of 10 types of data, such as planes, dogs, cats,
cars, trucks, and deer. The images in CIFAR-10 are three-
dimensional data of 32× 32× 3 pixels, totaling 3072 pixels.
In CIFAR-10, there are 50,000 training data and 10,000 test
data.

B. TARGET MODELS
As the target model for MNIST and Fashion-MNIST, a con-
volutional neural network [32] was constructed. For CIFAR-
10, the VGG model [33] was used as the target model. The
structures of the target models are shown in Table 8 and Table

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086529, IEEE Access

Hyun Kwon: Backdoor Attack Defense by Using Autoencoder to Remove Trigger

9 in the appendix, and their parameters are given in Table 10
in the appendix. The Adam algorithm [34] was used as the
optimization algorithm for all of the target models.

C. STRUCTURE OF DE-TRIGGER AUTOENCODER
The de-trigger autoencoder is composed of an encoder, latent
layer, and decoder. The encoder consists of two layers, one
having 250 neurons and the other having 100 neurons. The
latent layer consists of 20 neurons. The decoder is composed
of 100 and 250 neurons as two layers. The parameters of
the de-trigger autoencoder were set to 0.001 for the learning
rate, 20 for the number of epochs, and 128 for the batch size.
ReLU [35] was used as the activation function, and Adam
[34] as the optimization algorithm.

D. CREATION OF BACKDOOR SAMPLES
Each backdoor sample has a white square trigger at the top
left of the legitimate image. A backdoor sample with the trig-
ger attached will be misrecognized as the target class by the
target model. The generated backdoor samples constituted
approximately 10% of the total training data. These samples
are used as additional training data for the target model.

V. EXPERIMENTAL RESULTS
Accuracy is the percentage of matches between the class
recognized by the target model and the proper class for the
input data. The detection rate is the rate calculated using
the change in classification when the backdoor samples are
passed through the de-trigger autoencoder.

Table 1 shows the class results for legitimate samples from
MNIST and their corresponding backdoor samples; it also
shows the backdoor samples after they were passed through
the de-trigger autoencoder. The trigger was specified as a
white square in the upper left corner, and the target class was
set to “0.” As shown in the table, the target model correctly
recognized the legitimate data and misrecognized the back-
door samples having the specified trigger as the target class.
This misrecognition occurred because the target model was
additionally trained on the backdoor samples. The backdoor
samples that were passed through the de-trigger autoencoder
were correctly recognized by the target model because the
trigger had been removed. The backdoor samples were not
fully restored to match the legitimate data, but the similarity
was sufficient to allow their recognition as legitimate data.

Table 2 shows the class results for legitimate samples from
Fashion-MNIST and their corresponding backdoor samples;
it also shows the backdoor samples after they were passed
through the de-trigger autoencoder. The trigger was specified
as a white square in the upper left corner, and the target
class was set to “T-shirt.” As with MNIST, the legitimate
data without the specified trigger were correctly recognized
by the target model, and the backdoor samples with the
trigger were misrecognized as the target class by the model.
In addition, the backdoor samples that were passed through
the de-trigger autoencoder were properly recognized by the

target model because the trigger had been removed and the
samples restored to a version similar to the legitimate data.

Table 3 shows the class results for legitimate samples from
CIFAR-10 and their corresponding backdoor samples; it also
shows the backdoor samples after they were passed through
the de-trigger autoencoder. The trigger was specified as a
white square in the upper left corner, and the target class
was set to “Plane.” As shown in the table, the legitimate data
without the specified trigger were recognized normally by
the target model, and the backdoor samples with the trigger
were misrecognized as the target class by the model. In
addition, because the trigger was removed by the de-trigger
autoencoder and the backdoor samples became similar to
the legitimate data, the backdoor samples that were passed
through the de-trigger autoencoder were correctly recognized
by the target model.

Table 4 shows the classification scores for a backdoor
sample derived from MNIST before and after being passed
through the de-trigger autoencoder. The digit with the high-
est value among the classification scores is recognized as
the class of the input value. Before the backdoor sample
was passed through the de-trigger autoencoder, its highest
classification score was 12.62, corresponding to the first of
the 10 possible classes, and so it was misrecognized as
the numeral 0. However, after it was passed through the
de-trigger autoencoder, its highest classification score was
13.06, corresponding to the eighth of the 10 possible classes,
and so it was correctly recognized as the numeral 7. Because
the trigger on the backdoor sample was removed by the de-
trigger autoencoder, the backdoor sample was then correctly
recognized as the proper class.

Table 5 shows the classification scores for a backdoor
sample derived from Fashion-MNIST before and after being
passed through the de-trigger autoencoder. As shown in the
table, the highest classification score for the backdoor sample
before it was passed through the de-trigger autoencoder was
14.7, corresponding to the first of the classes, and so it
was misrecognized as a T-shirt (Class 0). However, after it
was passed through the de-trigger autoencoder, its highest
classification score was 19.6, corresponding to the sixth of
the classes, and so it was recognized as a sandal (Class 5).
Because the trigger on the backdoor sample was removed
by the de-trigger autoencoder, the backdoor sample was then
correctly recognized as the proper class.

Table 6 shows the classification scores for a backdoor
sample derived from CIFAR-10 before and after being passed
through the de-trigger autoencoder. As shown in the table, the
highest classification score for the backdoor sample before
it was passed through the de-trigger autoencoder was 9.13,
corresponding to the first of the classes, and so it was mis-
recognized as a plane (Class 0). However, after it was passed
through the de-trigger autoencoder, its highest classification
score was 12.49, corresponding to the third of the classes,
and so it was recognized as a bird (Class 2). Because the
trigger on the backdoor sample was removed by the de-
trigger autoencoder, the backdoor sample was then correctly

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086529, IEEE Access

Hyun Kwon: Backdoor Attack Defense by Using Autoencoder to Remove Trigger

TABLE 1: Class results for legitimate samples from MNIST, their corresponding backdoor samples, and the backdoor samples
after being passed through the de-trigger autoencoder. The trigger on the backdoor samples is a white square in the top left
corner. “Proposed module” is the de-trigger autoencoder.

Class “1” “2” “3” “4” “5” “6” “7” “8” “9”

Legitimate sample

Class “0” “0” “0” “0” “0” “0” “0” “0” “0”

Backdoor before proposed module

Class “1” “2” “3” “4” “5” “6” “7” “8” “9”

Backdoor after proposed module

TABLE 2: Class results for legitimate samples from Fashion-MNIST, their corresponding backdoor samples, and the backdoor
samples after being passed through the de-trigger autoencoder. The trigger on the backdoor samples is a white square in the top
left corner. “Proposed module” is the de-trigger autoencoder.

Class “Trouser” “Sneaker” “Ankle boot” “Sandal” “Bag” “Dress” “Pullover”

Legitimate sample

Class “T-shirt” “T-shirt” “T-shirt” “T-shirt” “T-shirt” “T-shirt” “T-shirt”

Backdoor before proposed module

Class “Trouser” “Sneaker” “Ankle boot” “Sandal” “Bag” “Dress” “Pullover”

Backdoor after proposed module

TABLE 3: Class results for legitimate samples from CIFAR-10, their corresponding backdoor samples, and the backdoor
samples after being passed through the de-trigger autoencoder. The trigger on the backdoor samples is a white square in the top
left corner. “Proposed module” is the de-trigger autoencoder.

Class “Truck” “Bird” “Cat” “Deer” “Ship” “Frog” “Horse”

Legitimate sample

Class “Plane” “Plane” “Plane” “Plane” “Plane” “Plane” “Plane”

Backdoor before proposed module

Class “Truck” “Bird” “Cat” “Deer” “Ship” “Frog” “Horse”

Backdoor after proposed module

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086529, IEEE Access

Hyun Kwon: Backdoor Attack Defense by Using Autoencoder to Remove Trigger

TABLE 4: Classification scores for a backdoor sample derived from MNIST (“7”→ “0”) before and after being passed through
the de-trigger autoencoder. The target class of the backdoor sample was “0.” “Proposed module” is the de-trigger autoencoder.

Description Backdoor sample (“7”→ “0”)
Before proposed module (“0”) After proposed module (“7”)

Classification
scores

[12.62 -1.58 -9.73 -8.37 -10.1 -1.68 2.6
-10.1 1.67 1.53]

[3.12 -2.41 -7.69 -1.86 0.45 -1.39 -5.94
13.06 -4.17 -5.48]

TABLE 5: Classification scores for a backdoor sample derived from Fashion-MNIST (Class 5, “Sandal”→ Class 0, “T-shirt”)
before and after being passed through the de-trigger autoencoder. The target class of the backdoor sample was “T-shirt” (Class
0). “Proposed module” is the de-trigger autoencoder.

Description Backdoor sample (Class 5, “Sandal” → Class 0, “T-shirt”)
Before proposed module (Class 0,

“T-shirt”) After proposed module (Class 5, “Sandal”)

Classification
scores

[14.7 2.04 1.25 -4.38 -2.68 0.03 -6.23 1.79
-4.33 -5.86]

[-1.14 -6.24 -4.12 2.26 1.29 19.6 -5.20
3.54 1.77 -3.77]

TABLE 6: Classification scores for a backdoor sample derived from CIFAR-10 (Class 2, “Bird” → Class 0, “Plane”) before
and after being passed through the de-trigger autoencoder. The target class of the backdoor sample was “Plane” (Class 0).
“Proposed module” is the de-trigger autoencoder.

Description Backdoor sample (Class 2, “Bird” → Class 0, “Plane”)
Before proposed module (Class 0,

“Plane”) After proposed module (Class 2, “Bird”)

Classification
scores

[9.13 -1.61 0.38 1.21 -5.04 2.42 -3.03
-3.35 4.86 -1.98]

[-3.10 0.83 12.49 1.13 3.73 -4.08 -2.69
5.41 -2.92 4.34]

recognized as the proper class.

FIGURE 2: For MNIST, accuracy on the legitimate samples
and backdoor samples before and after being passed through
the de-trigger autoencoder. “Proposed module” is the de-
trigger autoencoder.

FIGURE 3: For Fashion-MNIST, accuracy on the legitimate
samples and backdoor samples before and after being passed
through the de-trigger autoencoder. “Proposed module” is the
de-trigger autoencoder.

Figure 2 shows the model’s accuracy on the legitimate

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086529, IEEE Access

Hyun Kwon: Backdoor Attack Defense by Using Autoencoder to Remove Trigger

FIGURE 4: For CIFAR-10, accuracy on the legitimate sam-
ples and backdoor samples before and after being passed
through the de-trigger autoencoder. “Proposed module” is the
de-trigger autoencoder.

samples from MNIST and the corresponding backdoor sam-
ples before and after they were passed through the de-
trigger autoencoder. As shown by the figure, there was little
difference in accuracy on the legitimate samples before and
after they were passed through the de-trigger autoencoder.
Because the de-trigger autoencoder is a module that removes
the trigger, and legitimate samples do not have a trigger, it
produces little change in accuracy with these samples. The
backdoor samples were misrecognized as the target class be-
fore being passed through the de-trigger autoencoder, degrad-
ing the accuracy to 10%. After these samples were passed
through the de-trigger autoencoder, however, the trigger was
no longer present, and so the model recognized the proper
class with 91.5% accuracy. Under the proposed method, after
the legitimate samples were passed through the de-trigger
autoencoder, the model’s accuracy on these samples was
96.1%. The proposed method had a 91.5% detection rate for
the backdoor samples because after being passed through the
de-trigger autoencoder, the backdoor samples were correctly
recognized with 91.5% accuracy in a scenario in which 100%
of them attacked with the aim of being recognized as an
incorrect class instead of as the proper class.

Figure 3 shows the model’s accuracy on the legitimate
samples from Fashion-MNIST and the corresponding back-
door samples before and after they were passed through
the de-trigger autoencoder. As shown by the figure, there
was little difference in accuracy on the legitimate samples
before and after they were passed through the de-trigger
autoencoder. Because the de-trigger autoencoder is a module
that removes the trigger, and legitimate samples do not have
a trigger, there is little difference in the accuracy with these
samples. The backdoor samples were misrecognized as the
target class before being passed through the de-trigger au-
toencoder, degrading the accuracy to 10%. Because the trig-
ger on the backdoor samples was no longer present after they
were passed through the de-trigger autoencoder, however,

the backdoor samples were then recognized as the proper
class with 82.3% accuracy. Under the proposed method,
after the legitimate samples were passed through the de-
trigger autoencoder, the model’s accuracy on these samples
was 89.6%. Similar to MNIST, the proposed method had a
detection rate of 82.3% for the backdoor samples because
after being passed through the de-trigger autoencoder, the
backdoor samples were correctly recognized with 82.3%
accuracy in a scenario in which 100% of them attacked with
the aim of being recognized as an incorrect class instead of
as the proper class.

Figure 4 shows the model’s accuracy on the legitimate
samples from CIFAR-10 and the corresponding backdoor
samples before and after they were passed through the de-
trigger autoencoder. As shown by the figure, there was lit-
tle difference in accuracy on the legitimate samples before
and after they were passed through the de-trigger autoen-
coder. Under the proposed method, the model’s accuracy
on these samples was 91.24%, only slightly different from
the 91.69% accuracy on the legitimate samples before they
were passed through the de-trigger autoencoder. This is be-
cause the de-trigger autoencoder removes the trigger from
the samples, and so the legitimate samples, which lack the
trigger, are hardly changed by being passed through the de-
trigger autoencoder. The backdoor samples, before being
passed through the de-trigger autoencoder, were incorrectly
recognized as the target class, reducing the accuracy to
10%. Because the trigger on the backdoor samples was no
longer present after they were passed through the de-trigger
autoencoder, 90.94% of the backdoor samples were correctly
recognized.

Table 7 shows the accuracy on the legitimate samples and
the detection rate for the backdoor samples for the rever-
sal method [19], neural cleanse method [28], strip method
[30], fine-pruning method [20], RAB method [21], and pro-
posed method. With each method, CIFAR-10 was used as
the dataset, and after the triggers were randomly generated
for the backdoor samples, a comparison experiment was
performed on 1000 backdoor samples and 1000 legitimate
samples. For the reversal method, the threshold was set to
0.53. For the neural cleanse method, epsilon was set to
0.000001, the learning rate was 0.1, and the threshold was
set to 0.89. For the strip method, the detection boundary was
set to 0.2. For the fine-pruning method, the batch size was set
to 100. In terms of accuracy, as legitimate samples have no
trigger, the proposed method resulted in higher accuracy on
the legitimate samples than did the other methods. Because
the fine-pruning method removes neurons from the target
model, its accuracy on the legitimate samples was lower than
that of the other methods. In terms of detection of backdoor
samples, because the proposed method removes the trigger
from the backdoor sample, it is restored to the legitimate
sample to the extent that it can be properly recognized, and
so the detection rate for the proposed method was higher
than that of the other methods. As can be seen, the RAB
method has a relatively low detection rate for other types of

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086529, IEEE Access

Hyun Kwon: Backdoor Attack Defense by Using Autoencoder to Remove Trigger

TABLE 7: Accuracy on the legitimate samples and detection rate for the backdoor samples under the reversal method, neural
cleanse method, strip method, fine-pruning method, RAB method, and proposed method.

Metric Trigger reversal Model
change Two models Trigger

removal

Reversal Neural
cleanse Strip Fine-

pruning RAB Proposed

Accuracy (%) 87.92 89.13 88.27 86.34 87.34 91.18
Detection rate (%) 89.76 90.23 87.23 88.31 81.86 90.94

backdoor samples that the user is not aware of when training
the two models. Thus, the proposed method detects backdoor
samples by reducing the attack effectiveness of the backdoor
sample, which it accomplishes by removing the trigger, in
contrast to the other methods.

VI. DISCUSSION
Assumptions. A necessary assumption for the proposed
method is that it has access to the training data of the target
model. This access enables the proposed method to detect
backdoor samples among the training data. With the de-
trigger autoencoder, it can also be used to determine whether
the target model has suffered a backdoor attack, and to
generate the de-trigger autoencoder, it requires access to the
target model’s training data. This is because it is only possible
to create a de-trigger autoencoder that can remove a trigger
by attaching the trigger to a sample from the training data that
is guaranteed to be legitimate.

The proposed method also serves as a method of defense
against backdoor samples that use the specific white trigger.
In some of the latest types of backdoor attacks, the attack
success rate is increased by using a complex picture in
the backdoor sample as a trigger pattern. However, even
a backdoor sample that has a white trigger is incorrectly
recognized as the target class with 100% success in an attack
on a target model that lacks a defense. In addition, if the
trigger on the backdoor sample is a complex picture, there is a
disadvantage in that it can be easily identified by eye because
of its coloration. Further, most of the latest defense methods
were tested on backdoor samples using a white trigger, and
therefore the same was used in the experiments of the present
study.

De-trigger autoencoder. In the proposed method, a de-
trigger autoencoder is used to remove the trigger on the
backdoor sample. The de-trigger autoencoder has a neural
network configured to output the legitimate input sample
without a trigger by applying internal encoding, latency,
and decoding procedures after first attaching the trigger to
it. The trigger is attached to the upper left, upper right,
lower left, or lower right at random in an area that will not
interfere with the legitimate image. It is done in this way
because if the trigger were to overlap with the image in the
legitimate sample, it could be easily identified by eye, and the
effectiveness of the attack would be reduced. The structure
of the de-trigger autoencoder is an improved version of the
denoising autoencoder [36] [37]. Each parameter was set as

described in Section IV-C to a value that was experimentally
determined to be suitable.

Backdoor samples. The backdoor samples generated by
the proposed method constituted 10% of the entire dataset.
Because the accuracy on the legitimate samples may decrease
as the proportion of backdoor samples increases, the pro-
portion of backdoor samples was set to 10% of the entire
dataset in order to maintain the accuracy on the legitimate
samples and still achieve a 100% attack success rate. In the
experiments, the trigger was set to a white square in the
upper left corner of the backdoor sample; backdoor samples
containing this trigger are misrecognized by the target model
as the target class determined by the attacker. However,
triggers can be created in other shapes or placed in positions
other than the top left. This is because the attacker determines
the shape and location of the trigger in advance and performs
additional training on the target model after creating the
backdoor samples.

Datasets. In testing the proposed method, MNIST,
Fashion-MNIST, and CIFAR-10 were used as experimental
data. There was a difference in the performance of the pro-
posed method between MNIST and Fashion-MNIST. When
the trigger is removed using the de-trigger autoencoder, pat-
terns on surfaces in the legitimate image may disappear. This
is because the image provided by the de-trigger autoencoder
has features from the input image, such as lines and outlines,
as well as an output value, but patterns on surfaces within the
image may appear blurry. Therefore, with Fashion-MNIST,
the de-trigger autoencoder provides images in which the
patterns on the clothing are generally blurred, though the
lines and outlines of the clothing shapes are reflected well
in the output values. With MNIST, however, because the
numerals have no surface patterns, their lines or outlines are
clearly revealed, and the output images are relatively similar
to the legitimate data. CIFAR-10, on the other hand, is a color
image dataset, unlike MNIST and Fashion-MNIST. When
the trigger is removed by the de-trigger autoencoder from a
CIFAR-10 image, the blur phenomenon is less obvious than
with MNIST and Fashion-MNIST. Therefore, the proposed
method has better performance with color image data.

In addition, under the proposed method, the accuracy of
the target model on MNIST was approximately 99%, but on
Fashion-MNIST it was approximately 91%. This is because
in Fashion-MNIST, certain classes, such as “T-shirt” and
“Shirt,” have similar characteristics, and it is not easy to
distinguish them. Therefore, the performance of the target

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086529, IEEE Access

Hyun Kwon: Backdoor Attack Defense by Using Autoencoder to Remove Trigger

model on Fashion-MNIST was slightly worse than that on
MNIST, and thus there was a difference in the performance of
the proposed method between MNIST and Fashion-MNIST.
Similar to the case with Fashion-MNIST, with CIFAR-10
the target model’s accuracy on the legitimate samples before
they were passed through the de-trigger autoencoder was
approximately 92%; therefore, the detection performance
was also somewhat degraded.

Applications. The proposed method can be used by au-
tonomous vehicles as a defense against backdoor samples.
For example, for an autonomous vehicle that uses a neural
network, an attacker may intentionally train backdoor sam-
ples with a trigger specific to the autonomous vehicle. The
autonomous vehicle that trains on the backdoor samples will
correctly recognize the legitimate data that lack the trigger.
However, the model can cause the vehicle to have an accident
by misrecognizing a backdoor sample that has the specific
trigger. Therefore, if the proposed method is applied to the
autonomous vehicle, the accident can be prevented by having
the vehicle issue a warning sound to the user when the
probability of having been attacked by a backdoor sample
is high.

VII. CONCLUSION
In this paper, I have proposed a defense method that de-
tects backdoor samples using a de-trigger autoencoder. The
method detects backdoor samples using the change in clas-
sification result after samples are passed through the de-
trigger autoencoder for the input data. The experimental
results show that with MNIST, Fashion-MNIST, and CIFAR-
10, respectively, the proposed method has 91.5%, 82.3%,
and 90.9% detection rates for backdoor samples and 96.1%,
89.6%, and 91.2% accuracy on the legitimate data.

In future research, it will be interesting to investigate a
method of generating the de-triggered data using a genera-
tive adversarial net [38] instead of an autoencoder. Another
subject for future research will be the incorporation of the
proposed method into an ensemble of several defense meth-
ods.

REFERENCES
[1] Jürgen Schmidhuber. Deep learning in neural networks:

An overview. Neural networks, 61:85–117, 2015.
[2] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recogni-
tion. In International Conference on Learning Repre-
sentations, 2015.

[3] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four
research groups. IEEE Signal Processing Magazine, 29
(6):82–97, 2012.

[4] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Julian

Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529
(7587):484–489, 2016.

[5] Sasanka Potluri and Christian Diedrich. Accelerated
deep neural networks for enhanced intrusion detection
system. In Emerging Technologies and Factory Au-
tomation (ETFA), 2016 IEEE 21st International Con-
ference on, pages 1–8. IEEE, 2016.

[6] Marco Barreno, Blaine Nelson, Anthony D Joseph, and
JD Tygar. The security of machine learning. Machine
Learning, 81(2):121–148, 2010.

[7] Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen.
Generative poisoning attack method against neural net-
works. arXiv preprint arXiv:1703.01340, 2017.

[8] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. In
International Conference on Learning Representations,
2014.

[9] Nicholas Carlini and David Wagner. Towards evaluat-
ing the robustness of neural networks. In Security and
Privacy (SP), 2017 IEEE Symposium on, pages 39–57.
IEEE, 2017.

[10] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami.
The limitations of deep learning in adversarial settings.
In Security and Privacy (EuroS&P), 2016 IEEE Euro-
pean Symposium on, pages 372–387. IEEE, 2016.

[11] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami. Distillation as a defense to
adversarial perturbations against deep neural networks.
In Security and Privacy (SP), 2016 IEEE Symposium
on, pages 582–597. IEEE, 2016.

[12] Yi Shi and Yalin E Sagduyu. Evasion and causative
attacks with adversarial deep learning. In MILCOM
2017-2017 IEEE Military Communications Conference
(MILCOM), pages 243–248. IEEE, 2017.

[13] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-
soning attacks against support vector machines. In
Proceedings of the 29th International Coference on
International Conference on Machine Learning, pages
1467–1474. Omnipress, 2012.

[14] Mehran Mozaffari-Kermani, Susmita Sur-Kolay, Anand
Raghunathan, and Niraj K Jha. Systematic poison-
ing attacks on and defenses for machine learning in
healthcare. IEEE journal of biomedical and health
informatics, 19(6):1893–1905, 2015.

[15] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Sid-
dharth Garg. Badnets: Evaluating backdooring attacks
on deep neural networks. IEEE Access, 7:47230–
47244, 2019.

[16] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran
He, and Siwei Lyu. Backdoor attack with sample-
specific triggers. arXiv preprint arXiv:2012.03816,
2020.

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086529, IEEE Access

Hyun Kwon: Backdoor Attack Defense by Using Autoencoder to Remove Trigger

[17] Shuo Wang, Surya Nepal, Carsten Rudolph, Marthie
Grobler, Shangyu Chen, and Tianle Chen. Backdoor
attacks against transfer learning with pre-trained deep
learning models. IEEE Transactions on Services Com-
puting, 2020.

[18] Hyun Kwon, Hyunsoo Yoon, and Ki-Woong Park.
Multi-targeted backdoor: Indentifying backdoor attack
for multiple deep neural networks. IEICE Transactions
on Information and Systems, 103(4):883–887, 2020.

[19] Zhen Xiang, David J Miller, and George Kesidis. Re-
verse engineering imperceptible backdoor attacks on
deep neural networks for detection and training set
cleansing. arXiv preprint arXiv:2010.07489, 2020.

[20] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Fine-pruning: Defending against backdooring attacks
on deep neural networks. In International Symposium
on Research in Attacks, Intrusions, and Defenses, pages
273–294. Springer, 2018.

[21] Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang,
and Bo Li. Rab: Provable robustness against backdoor
attacks. arXiv preprint arXiv:2003.08904, 2020.

[22] Hyun Kwon. Detecting backdoor attacks via class
difference in deep neural networks. IEEE Access, 8:
191049–191056, 2020.

[23] Yann LeCun, Corinna Cortes, and Christopher JC
Burges. Mnist handwritten digit database. AT&T
Labs [Online]. Available: http://yann. lecun. com/exd-
b/mnist, 2, 2010.

[24] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

[25] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
The cifar-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 2014.

[26] Cheng-Yuan Liou, Wei-Chen Cheng, Jiun-Wei Liou,
and Daw-Ran Liou. Autoencoder for words. Neuro-
computing, 139:84–96, 2014.

[27] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan
Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.
Trojaning attack on neural networks. 2017.

[28] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying
Li, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao.
Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 707–723. IEEE,
2019.

[29] Joseph Clements and Yingjie Lao. Hardware tro-
jan attacks on neural networks. arXiv preprint
arXiv:1806.05768, 2018.

[30] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. Strip: A
defence against trojan attacks on deep neural networks.
In Proceedings of the 35th Annual Computer Security
Applications Conference, pages 113–125, 2019.

[31] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In OSDI, volume 16, pages 265–283, 2016.

[32] Keiron O’Shea and Ryan Nash. An introduction
to convolutional neural networks. arXiv preprint
arXiv:1511.08458, 2015.

[33] Nina Narodytska and Shiva Kasiviswanathan. Simple
black-box adversarial attacks on deep neural networks.
In 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 1310–
1318. IEEE, 2017.

[34] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. The International Conference
on Learning Representations (ICLR), 2015.

[35] Zhi Chen and Pin-Han Ho. Global-connected network
with generalized relu activation. Pattern Recognition,
96:106961, 2019.

[36] Andri Ashfahani, Mahardhika Pratama, Edwin
Lughofer, and Yew-Soon Ong. Devdan: Deep evolving
denoising autoencoder. Neurocomputing, 390:
297–314, 2020.

[37] Xugang Lu, Yu Tsao, Shigeki Matsuda, and Chiori
Hori. Speech enhancement based on deep denoising
autoencoder. In Interspeech, volume 2013, pages 436–
440, 2013.

[38] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

APPENDIX

TABLE 8: Architecture of the target model for MNIST and
Fashion-MNIST. “Conv.” represents a convolutional layer.

Layer type Shape

Conv.+ReLU [3, 3, 32]
Conv.+ReLU [3, 3, 32]
Max pooling [2, 2]
Conv.+ReLU [3, 3, 64]
Conv.+ReLU [3, 3, 64]
Max pooling [2, 2]
Fully connected+ReLU [200]
Fully connected+ReLU [200]
Softmax [10]

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086529, IEEE Access

Hyun Kwon: Backdoor Attack Defense by Using Autoencoder to Remove Trigger

TABLE 9: Architecture of the target model [33] for CIFAR-
10. “Conv.” represents a convolutional layer.

Layer type Shape

Conv.+ReLU [3, 3, 64]
Conv.+ReLU [3, 3, 64]
Max pooling [2, 2]
Conv.+ReLU [3, 3, 128]
Conv.+ReLU [3, 3, 128]
Max pooling [2, 2]
Conv.+ReLU [3, 3, 256]
Conv.+ReLU [3, 3, 256]
Conv.+ReLU [3, 3, 256]
Conv.+ReLU [3, 3, 256]
Max pooling [2, 2]
Conv.+ReLU [3, 3, 512]
Conv.+ReLU [3, 3, 512]
Conv.+ReLU [3, 3, 512]
Conv.+ReLU [3, 3, 512]
Max pooling [2, 2]
Conv.+ReLU [3, 3, 512]
Conv.+ReLU [3, 3, 512]
Conv.+ReLU [3, 3, 512]
Conv.+ReLU [3, 3, 512]
Max pooling [2, 2]
Fully connected+ReLU [4096]
Fully connected+ReLU [4096]
Softmax [10]

TABLE 10: Model parameters for MNIST, Fashion-MNIST,
and CIFAR-10.

Parameter MNIST Fashion-MNIST CIFAR-10

Learning rate 0.1 0.1 0.1
Momentum 0.9 0.85 0.9
Delay rate – – 10 (decay 0.0001)
Dropout 0.5 0.5 0.5
Batch size 128 128 128
Epochs 50 50 200

HYUN KWON received the B.S degree in math-
ematics from Korea Military Academy, South Ko-
rea, in 2010. He also received the M.S. degree in
School of Computing from Korea Advanced Insti-
tute of Science and Technology (KAIST) in 2015,
and the Ph.D. degree at School of Computing,
KAIST in 2020. He is currently an assistant pro-
fessor in Korea Military Academy. His research
interests include information security, computer
security, and intrusion tolerant system.

12 VOLUME 4, 2016


