
IEEE Xplore ® 
Notice to Reader 

 
“Multimodal Machine Translation” 
by Jiatong Liu 
published in IEEE Access Early Access 
Digital Object Identifier: 10.1109/ACCESS.2021.3115135 
 
It is recommended by the Editor-in-Chief of IEEE Access that this article will not 
be published in its final form. 
 
We regret any inconvenience this may have caused. 
 
Derek Abbott 
Editor-in-Chief 
IEEE Access 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3115135, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Multimodal Machine Translation
JIATONG LIU1
1School of Informatics, Xiamen University, Xiamen, 10384 China (e-mail: liujiatong@stu.xmu.edu.cn)

This work was supported by the Key Project of National Key R&D Project(No.2017YFC1703303); External Cooperation Project of Fujian
Province, China(No.2019I0001); Science and Technology Guiding Project of Fujian Province, China(2019Y0046);Industry University
Research Collaboration Project between Ningde city and Xiamen university (No.2020C001).

ABSTRACT In recent years, neural network machine translation, especially in the field of multimodality,
has developed rapidly. It has been widely used in natural languages processing tasks such as event detection
and sentiment classification. The existing multimodal neural network machine translation is mostly based
on the autoencoder framework of the attention mechanism, which further integrates spatial-visual features.
However, due to the ubiquitous lack of corpus and the semantic interaction between multimodalities, the
quality of machine translation is difficult to guarantee. Therefore, this paper proposes a multi-modal machine
translation model that integrates external linguistic knowledge. Specifically, on the encoder side, we adopt
the pre-trained Bert model to be used as an additional encoder to integrate with the original text encoder
and picture encoder. Under the cooperation of the three encoders, a better text representation and picture
representation at the source end is generated. Besides, the decoder decodes and generates a translation
based on the image and text representation of the source. To sum up, this paper studies the visual-text
semantic interaction on the encoder side and the visual-text semantic interaction on the decoder side, and
further improves the quality of translation by introducing external linguistic knowledge. We compared the
performance of the multimodal neural network machine translation model with pre-trained Bert and other
baseline models in English German translation tasks on the multi30k data sets. The results show that the
model can significantly improve the quality of multimodal neural network machine translation, which also
verifies the importance of integrating external knowledge and visual text semantic interaction.

INDEX TERMS Multi-domain, Machine Translation, Semantic Interaction, External Knowledge

I. INTRODUCTION

THE real world that human beings live in is a space
where text, sound, image, and video coexist. For thou-

sands of years, humans have exchanged information with
each other in a variety of ways, such as language, text, and
images, and using multiple modalities at the same time can
clearly convey information more fully and accurately. Multi-
information fusion is an important research trend. However,
most of the existing machine translation models only use
text data for translation. How to integrate text, image, and
video information to improve the quality of translation is
a topic worthy of study. As Kalchbrenner et al. proposed
the concept of neural network machine translation in 2013,
it soon achieved results comparable to, or even better than,
traditional statistical machine translation, and it has gradually
become a research hotspot.

At present, the mainstream models can be divided into
three categories: the first type of model only uses the text
attention mechanism, and the image is only used as auxiliary
information to improve the generation of text representation.

Huang et al.(2016) by integrating the semantic represen-
tation of the image as an additional input into the encoder.
Calixto et al(2017b) further studied how to use the semantic
representation of the image to initialize the hidden state of the
decoder. In the framework of multi-task learning, Elliott and
Kadar (2017) decompose multi-modal translation into learn-
ing translation models and visual representations. In this way,
multi-modal models can be trained on parallel text or external
data sets describing images, making it possible to use existing
resources. Qian et al. (2018) proposed a new algorithm based
on the advanced actor-critical algorithm (Bahdanau et al.,
2017) to study the effectiveness of reinforcement learning in
multi-modal NMT.

The second type of model believes that both text and image
information are crucial in multimodal neural network trans-
lation. Therefore, two attention mechanisms are simultane-
ously used to capture text and image contexts for translation.
In this regard, Caglayan et al. (2016a, b) first proposed an
end-to-end attention multi-modal NMT model, which effec-
tively integrates text and image information into the existing
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machine translation framework by sharing parameters. In
addition, Calixto et al. (2017a) will introduce two indepen-
dent attention mechanisms for text and image information.
Delbrouck et al. (2017) empirically studied the effectiveness
of enhanced visual and textual representation to improve
the quality of multimodal neural machine translation. The
third type of model uses semantic interaction to refine the
learned image semantics. Delbrouck and Dupont (2017b)
apply a multi-modal compressed bilinear pooling operation
to remove the noise information represented by the image
based on the text representation. Recently, Yin et al. (2020)
proposed a graph-based multi-modal fusion encoder, which
is based on a unified graph representing various semantic re-
lations between multi-modal semantic units. Lin et al. (2020)
introduced a capsule network to better dynamically extract
translation image features. Yang et al. (2020) jointly trained
source-to-target and target-to-source translation models, and
encouraged these models to share visual information when
generating semantically equivalent visual words. However,
these models only use visual information to optimize the
semantic representation of text, ignoring the strong semantic
association between text and image.

In this paper, according to the characteristics of the multi-
modal neural network machine translation model, the BERT
model is introduced as an additional encoder to encode the
input sentence, and then it is used for decoding with the
original visual encoder and text encoder of the multi-modal
neural network model. , So that the visual context vector and
text context vector can learn more external linguistic knowl-
edge to improve their representation ability. In summary, this
article has the following innovations:

i) Aiming at the existing problem of lack of semantic in-
teraction in multimodal neural network machine translation,
the visual-text semantic interaction on the encoder side and
the visual-text semantic interaction on the decoder side are
studied separately.

ii) In response to the lack of multimodal machine transla-
tion corpus, the introduction of external linguistic knowledge
further improves the quality of translation.

ii) Experiments were performed on multiple language
pairs on the Multi30k data set, and the results all show that
the model in this paper can significantly improve the quality
of multimodal neural network machine translation.

II. RELATED WORK
A. BERT
Pre-training technology has a long history in the field of
machine learning and natural language processing, and its
related applications can be traced back to (Erhan et al., 2010).
Since then, Mikolov et al. (2013) and Pennington et al. (2014)
pioneered Xindi proposed a word embedding representation,
and this pre-training technique was widely used at that time.
Dai & Le (2015) trained an autoencoder using unlabeled data
and then used the model for downstream tasks. As the scale
of data is getting larger and larger and deep neural network
models are widely used, pre-training technology has been

widely used and has achieved remarkable results, but it has
also received more and more attention. Peters et al. (2018)
designed ELMo based on the two-way cyclic long- and
short-term memory unit, and input the pre-trained ELMo as
global information into downstream tasks. In 2018, Radford
designed the language model GPT based on Transformer,
which uses unlabeled data for pre-training and fine-tuned
through specific downstream tasks. Drawing lessons from
the design ideas of Transformer model encoder, Devlin et
al. designed the BERT model in 2019, which is widely
used for the initialization of downstream task models. On
the basis of BERT, many variant models have been derived,
such as the multilingual pre-training model XLM (Lample
& Conneau, 2019), which introduces more unlabeled data
and removes the "NSP (predict next sentence)" module of
RoBERTa (Liu et al., 2019), and XLNet based on permuta-
tion modeling method (Yang et al., 2019b). In recent years,
with a large number of pre-training techniques/models, such
as: ELMo (Peters et al., 2018), GPT/GPT-2 (Radford et
al., 2018) , BERT (Devlinet al., 2019) and cross-language
language XLM (Lample & Conneau, 2019), XLNet (yang et
al., 2019b) ,RoBERTa (Liu et al., 2019) and other models
have refreshed the performance records in the corresponding
field time and time again, and the pre-training technology has
attracted widespread attention from the machine learning and
natural language processing communities. These models are
pre-trained on a large amount of unlabeled data to better learn
the representation of the model input. These models are then
used to provide context-aware word embedding representa-
tions of the input sequence for downstream tasks (Peters et
al., 2018) or to initialize model parameters for downstream
tasks. Practice has shown that in natural language under-
standing tasks, effective use of this type of pre-trained model
can effectively improve the performance of the model. BERT
and its variant models have been widely used in tasks such as
natural language understanding tasks and text classification,
and have greatly promoted the development of corresponding
fields. Multimodal neural network machine translation aims
to simultaneously use source language sentences and cor-
responding visual information to obtain high-quality target
language translations. In this process, the input sentence and
image need to be encoded first, and then decoded to generate
the target language sentence. Today, BERT has been proven
to improve the model performance of many natural language
processing tasks, so it is of great significance to study the
application of BERT in the direction of multimodal machine
translation. Limited by equipment and computing power, the
cost of retraining BERT is unbearable. Therefore, this article
mainly focuses on: by introducing the pre-trained BERT
model, the multi-modal machine translation model can learn
more external linguistic knowledge to improve the translation
quality of the model.

III. METHOLOGY
In this section, we design a multi-modal neural network
machine translation model incorporating pre-trained BERT,
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FIGURE 1. The overall framework, which consists of a image feature extraction module, an attention based LSTM module and a joint leading re-position relation
network for figure question answering.

as shown in Figure .1, using BERT to encode the input
text sequence. Due to the vocabulary size and sub-word
unit division of the BERT model, there may be differences
from the existing multi-modal model. Solve the problem
of embedding dimension and sentence length alignment by
introducing two mapping matrices. Then, the hidden layer on
the decoder side is used to pay attention to the hidden layer
sequence encoded by BERT to obtain an additional context
vector; the context vector and the original text context vector
are merged through a gate to generate an integrated linguistic
knowledge Text context vector. The model designed in this
paper includes a visual encoder, an RNN text encoder, an
additional pre-trained BERT text encoder, and a decoder. We
will introduce these modules in detail.

A. VISUAL ENCODER

Given the picture I and the source language description
sentence X = (x1, x2, · · · , xN ) of the picture, where n is
the length of the source language sentence. And the corre-
sponding target language translation Y = (y1, y2, · · · , yM ),
where m is the length of the target language sentence. The
goal of multimodal neural network machine translation is
to construct an end-to-end neural network model to model

P = (Y | X, I). In this model, a pre-trained Bert model is
added to the multimodal translation model. The source lan-
guage sentences are encoded by the original coder in MNMT
model and the pre trained Bert model respectively to obtain
the hidden layer sequence C and the hidden layer sequence
Q. In addition, the visual encoder encodes the picture to
represent A. Then, the decoder decodes the encoded text
sequence representation C and Q and the encoded visual
sequence a according to the conditional probability formula
5:

log p(Y | X, I) =
M∑
i=1

log (y<t, C,A,Q) (1)

In practice, researchers often use gated recurrent neural
network (Gru) (CHO et al., 2014) as the implementation
of recurrent neural network: specifically, the network uses
forward encoder ~Φenc and reverse encoder

←−
Φ enc to encode

the input sentences from two directions to generate forward
hidden layer sequence

(
~h1,~h2, · · · ,~hN

)
and reverse hidden

layer sequence
(←−
h 1,
←−
h 2, · · · ,

←−
h N

)
respectively. The spe-

cific generation process is shown in formulas 2 and 3:
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−→
h i = ~Φenc

(
Ex [xi] ,

−→
h i−1

)
(2)

←−
h i =

←−
Φ enc

(
Ex [xi] ,

←−
h i−1

)
(3)

Where ~Φenc and
←−
Φ enc are GRU activation functions in

two directions respectively, and Ex [xi] represents the word
vector corresponding to the source word xi. The final hidden
layer vector in a given time step is composed of forward
and reverse hidden layer vectors hi =

[
~hi;
←−
h i

]
. Based on

this, we can use the hidden layer vector sequence C =
(h1, h2, · · · , hN ) to represent the input sentence.

As shown in Figure 2, the visual encoder adopts the pre
trained convolutional neural network, and the parameters of
the encoder do not participate in the update during train-
ing. Specifically, the encoder is a 50 layer residual network
(resnet-50) (he et al., 2016) to encode the visual semantic in-
formation into a matrix A = (a1, a2, · · · , a196) , ai ∈ R1024

and each line is composed of a 1024 dimensional feature
vector encoding a specific image region. Since the purpose
of acquiring visual representation is to initialize the hidden
layer state (vector with dimension of 256) of decoder, a two-
layer full connected layer is used to transform the dimension
of visual representation. In addition, the forgetting layer is
added to the network to improve the robustness of the model
and make it have stronger generalization ability.

After generating text hidden layer sequence and visual rep-
resentation by using bidirectional recurrent neural network
text coder and visual coder, fine-grained semantic interaction
between text and vision is realized under the action of bidi-
rectional attention mechanism, and the improved text hidden
layer sequence is represented as C̄ and Ā

IV. PRE-TRAINING BERT
As shown in Figure 3, the Bert model is mainly composed
of bidirectional transformers. In the Bert model, the context
information on the left and the context information on the
right are considered in the process of generating the rep-
resentation of each layer. Given the input source language
sentence sequence (E1, E2, · · · , EN ), where represents the
i-th subword unit in the input sentence. The pre-training Bert
model encodes the input sequence into hidden layer sequence
Q according to formula 4

Q = ΦencBERT
(E1, E2, · · · , EN ) (4)

1) Decoder
The decoder is a conditional threshold control unit (cGRU)
with four independent attention mechanisms, three of which
are used to process text information and the other is used
to process visual information. Specifically, cGRU consists of
two stacked GRU activation unitsREC1 andREC2. At time
t,REC1 employ the hidden layer vector st−1 of the previous
time and the target word yt−1 to generate the target word yt
by using the formulas 5

s′t = (1− z′t)
⊙

s′t + z′t � st−1
s′t = tanh (W ′Ey [yt−1] + r′t � (U ′st−1)

r′t = σ (W ′rE [yt−1] + U ′rst−1)

z′t = σ (W ′zE [yt−1] + U ′zst−1)

(5)

where st−1 represents the hidden layer state of GRU unit
REC1 at the previous time, S′t means the new memory of
GRU unit REC1. Z ′t is the update gate of REC2 which
determines the fusion of the newly generated memory and the
hidden state ofREC1 mode. rt is theREC2 reset gate which
determines the importance of the hidden state ofREC2 to the
generation of new memory.Wr, Ur,WZ , Uz are parameter
sets which are used to generating reset gate rt and updating
gate zt of REC2.

During the above process, based on the temporary hidden
layer vector s′t and the improved text hidden layer state
sequence C̄, text attention mechanism uses the following for-
mula to generate a time independent temporary text context
vector Ct−temp.

ct−temp = fatt−text (C, S′t) (6)

Meanwhile, based on the temporary hidden layer vector
s′t and the hidden layer state sequence Q, the text attention
mechanism adopts the formula 7 generate a time independent
temporary text context vector Ct−BERT :

ct−BERT = fatt−text (Q,S′t) (7)

Then, a threshold unit g(∗) is generated by using the
temporary hidden layer vector under the action of the for-
ward neural network. The threshold unit is used to fuse
the temporary context vector generated by the bidirectional
cyclic neural network encoder ct−temp. And the temporary
context vector generated based on the pre trained Bert encode
ct−BERT to get the text context vector Ct. The calculation
process is shown in formula 8

ct = g(ct−temp, ct−BERT ) (8)

At the same time, the visual attention mechanism uses
the temporary hidden layer vector s′t and the visual feature
matrix A to adopt the formula 9 generate time independent
visual context vector it:

it = fatt−img(A, s′t) (9)

Then, under the use of collaborative attention mechanism,
the temporary hidden layer vector s′t, the text context vector
Ct, and the text context vector it. And the visual up and down
vectors realize the high-level semantic interaction between
text and vision, and generate the hidden layer of the current
moment vector St. Finally, based on the hidden layer state
yt−1, the calculation process of context vector Ct and visual
context vector it is get by p (yt | y<t, C,A) ∝
exp (Lo tanh (Lsst + LwEy [yt−1] + Lcsct + Lciit) , where

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3115135, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 2. The overall framework, which consists of a image feature extraction module, an attention based LSTM module and a joint leading re-position relation
network for figure question answering.

FIGURE 3. The overall framework, which consists of a image feature
extraction module, an attention based LSTM module and a joint leading
re-position relation network for figure question answering.

Lo, Ls, Lw, Lcs, Lci are hyper parameters corresponding to
the model.

V. EXPERIMENTS
A. EXPERIMENTAL SETTING
The experiment in this paper also uses the M30k data set, and
the model parameter settings are the same as the multimodal
neural network machine translation based on deep semantic
interaction described above. Each instance in M30KC con-
sists of one image, five English descriptions and five German
descriptions in a triad, where the English and German de-
scriptions are independent of each other. For the experiments,
the data set was divided as follows: training set of 29,000
triples, validation set of 1014 triples and test set of 1,000
triples.

For visual information, this paper uses a pre-trained 50-
layer residual neural network to extract the local features of
the image. As shown in Figure 4, this paper performs a series
of preprocessing operations on the text data before the model
training.

It is worth noting that this paper mainly studies the En-
glish German translation based on the m30k public data set.
Because the model proposed in this paper is based on the
encoder to represent the context information of sentences,
and the low data resource language output integrating ex-
ternal semantic information is realized through the decoder,
so as to establish the end-to-end sequence mapping from the
source language to the target language. Therefore, the model
can also be applied to other language translations, such as
Slavic ones, as long as there is a corresponding corpus for
training.

B. BASELINE
Next, in order to verify the effectiveness of the introduc-
tion of external linguistic knowledge for multi-modal neural
network machine translation, this chapter designs multiple
sets of comparative experiments. The following describes
the models involved in the experiments Baseline Model: In
this paper, to verify the advantages of the deep semantic
interaction-based MNMT model designed in this paper, we
compare it with the following mainstream models: Paral-
lel RCNN [37]: this model uses an encoder that contains
multiple encoding threads with long- and short-term mem-
ory units in each encoding thread [38] share parameters.
MNMT [39]: this model introduces two separate attentional
mechanisms that utilize image features and text sequences to
decode and generate translations. IMG [40]:This model uses
image features as additional input to initialise the implicit
units of the decoder. Soft-Attention [41]: this model uses
an encoder-decoder framework that not only considers the
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FIGURE 4. The overall framework, which consists of a image feature extraction module, an attention based LSTM module and a joint leading re-position relation
network for figure question answering.

sequence of text representations on the source side when
generating the context vector on the decoder side, but also
introduces an additional local attention mechanism to extract
image features to The model not only takes into account
the sequence of text representations at the source side when
generating the context vector at the decoder side, but also
introduces an additional local attention mechanism to extract
image features to assist in generating better context vectors.
Hard-Attention [41] uses two separate attention mechanisms
for generating image and text context vectors, one of which
weights all text representations and the other considers only
one image feature at each moment.

C. VISUAL ANALYSIS

Since the translation quality of neural network machine
translation models is closely related to sentence length, the
sentence length of the dataset was visually analysed to guide
the experimental setup (e.g., length penalty terms etc.), as is
shown in Fig.5 and 6. The best scores are achieved through
multiple rounds of parameter optimization of models, and the
length of original word sentences will also affect the result of
translation in the way that too long sentences may lead to
the weakening or even loss of relevant information between
words with large spacing, while too short sentences may not
be able to learn effective sentence representation and become
phrase translation.

Figure.7 show the translation results generated by each
model for a sample English->German multimodal transla-
tion. It is worth noting that the German word "klatscht"
in blue means "claps" in the source language. In order to
explore how the multimodal neural network machine trans-
lation model based on deep semantic interaction designed

FIGURE 5. Distribution of sentence lengths in the training set(English).

in this paper can improve the translation results. Here, the
translation results of this model are compared with those
of other baseline models. A sample English->German mul-
timodal translation from the M30K_T test set is shown
in Table x. In the sample, it can be seen that the key
word "clap" in the source sentence is missing from the
MNMT_CO_ATT_BIATT translation results. Although both
Soft-Attention and Hard-Attention use two separate attention
mechanisms to generate text and image context vectors, they
also lose the keyword "clap" in the source sentence during the
translation process. It is worth noting that the model designed
in this paper and its variants produce correct translations. The
results confirm the effectiveness of introducing text-visual
semantic interactions, while pointing out the shortcomings
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FIGURE 6. Distribution of sentence lengths in the training set(German).

FIGURE 7. Sample English->German translations corresponding to language
descriptions and pictures.

of traditional multimodal neural network machine translation
models (modelling text and picture semantics separately,
neglecting the link between them).

D. ACCURACY ANALYSIS
Figure 8 and Figure 9 respectively list the performance of
each multimodal model in English− > German transla-
tion and German− > English translation after introducing
external linguistic knowledge. The experimental results of
the upper half of the two tables are obtained without pre-
training using the pseudo-parallel corpus generated by the
M30Kc corpus. The experimental results of the lower half
of the two tables are obtained by using the M30Kc corpus
to generate the pseudo-parallel corpus. Parallel corpus is
obtained after pre-training the model.

Without pre-training the model using the back-flip corpus,
except that theMNMT (pre)−BIATT model has no perfor-
mance improvement in German− > English translation,
the other modelsMNMT (pre),MNMT (pre)−COATT−

FIGURE 8. Experimental Results of Multimodal Translation Model with
External Lingistic Knowledge (English-German)

BIATT and MNMT (pre) − COATT , MNMT (pre) −
COATT − BIATT that introduce external linguistic knowl-
edge have varying degrees Performance improvement. The
experimental results show that by adding the pre-trained
BERT as an additional encoder to the multimodal neural
network machine translation model, the translation quality of
the model can be significantly improved.

However, after pre-training the model using the pseudo-
parallel corpus generated from the M30Kc corpus, in addi-
tion to MNMT (pre) − COATT slightly improved perfor-
mance in English− > German− > English translation,
the others use pre-trained BERT as an additional encoder
The performance of all models has declined. Especially
in the German− > language translation, the BLEU of
the MNMT translation result dropped by 0.4 points. The
experimental results show that after pre-training the model
using the pseudo-parallel corpus of the M30Kc corpus, the
multimodal neural network machine translation model has
learned more knowledge of external linguistics. At this time,
because the knowledge in the pre-trained BERT contains
more noise (compared to the M30Kc flip-back corpus, the
corpus used to pre-train the BERT is much different from the
M30KT domain and has more noise).

VI. CONCLUSION AND FUTURE
This paper designs a multi-modal neural network machine
translation model that incorporates pre-trained BERT. By in-
troducing external linguistic knowledge, the neural network
machine translation model can generate better translations.
It also introduces the four main components in the design
model of this article: visual encoder, text encoder, BERT
pre-training model, and decoder. Next, this article briefly
introduces the multi-modal experimental data set and experi-
mental settings. Since the sentence length is closely related to
the model translation quality, this article visually analyzes the

VOLUME 4, 2016 7
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FIGURE 9. Experimental Results of Multimodal Translation Model with
External Lingistic Knowledge (German-English)

sentence length in the data set to better guide the experiment.
Although the model studied in this paper has achieved

preliminary results, there are still some areas worthy of
improvement. The next steps of this article include: this
article only explores the method of incorporating image
information into the translation process. In the future, the
author will further study how to incorporate audio, video
and other information into the translation process in order
to further improve the translation quality. In addition, due
to the large difference between the image classification task
and the translation task, and the pre-trained residual neural
network model used in this paper is pre-trained on the image
classification task, the visual representation obtained in this
way has certain problems. We plan to study integrating the
convolutional neural network used to extract image features
into the translation model and train it during the translation
process.
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