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ABSTRACT Existing Dynamic State Estimation (DSE) techniques for Permanent Magnetic Synchronous Generators-based Wind 
Turbines (PMSG-WTs) are impractical as they blend the physical dynamics of PMSG-WTs (i.e. plants) with the digital dynamics 
of the controllers. In this paper, a general DSE framework for PMSG-WT monitoring and control is proposed, which decouples 
the plant model from the controller model. Based on the decoupled models, the state transition equations and measurement 
equations of the plant are derived respectively. Then, based on the equivalence between the correction stage of iterated extended 
Kalman filtering (IEKF) and the weighted least squares (WLS) regression, a DSE algorithm that can effectively filter out noise 
and bad data is presented. Simulation results in the IEEE 39-bus system show that the DSE improves the accuracy of state trajectory 
monitoring than the raw measurements by 64.9%-78.4% and the accuracy of control setpoint tracking by 25.5%-33.9%. 

INDEX TERMS Permanent Magnetic Synchronous Generators, Dynamic State Estimation, Kalman Filtering, Situational 
Awareness, Power System Control, Wind Generation  

I. INTRODUCTION 
The penetration of wind generation is rapidly increasing in 
power systems around the world [1-2]. Over the years, 
Permanent Magnetic Synchronous Generators-based Wind 
Turbines (PMSG-WTs) have gradually become one of the 
dominating type of wind generation systems. In order to ensure 
the stable and efficient operation of power systems, it is critical 
to monitor and control PMSG-WTs accurately and reliably in 
real time. 

Dynamic State Estimation (DSE) is an essential tool for the 
monitoring and control of power and energy systems [3-4]. A 
key driver of the DSE technology is the wide deployment of 
Phasor Measurement Units (PMUs), which makes it possible 
to observe power system operation trajectories in a finer time 
scale and in a synchronous fashion [5-6]. Existing approaches 
on DSE can be broadly divided into two categories. The first 
category is the widely used Kalman Filtering (KF) techniques. 
Typical methods under this category are Extended Kalman 
Filter (EKF), Unscented Kalman Filter (UKF), and Cubature 
Kalman filter (CKF). As power systems are generally 
nonlinear, EKF are naturally considered for DSE [7-9], which 
linearize nonlinear functions by preserving the first order term 
of the Taylor series expansion. In order to reduce the 
estimation error induced by linearization, DSE techniques 
based on UKF are proposed, which has stronger adaptability to 
system nonlinearity [10-11]. Recently, CKF using volume 

transformation are applied for DSE in [12-13], which further 
improves the accuracy and robustness in strongly nonlinear 
environment. The second category of methods is the Particle 
Filtering (PF) technique. It can achieve high estimation 
accuracy under both Gaussian and non-Gaussian noises, but 
comes at the cost of higher computational burden [14-16]. 
Besides centralized solutions, decentralized techniques have 
also been proposed. Compared with the centralized algorithms, 
Distributed Particle Filter (DPF) manifests better tracking 
accuracy and robustness in dynamic environment [17-18]. 

In the existing literature, a vast majority of works target the 
traditional synchronous generators [5-6], while the DSE of 
wind generators requires further investigation [19]. Refs. [20-
22] use UKF to estimate the dynamic state of Doubly Fed 
Induction Generator based Wind Turbines (DFIG-WTs). Refs. 
[23] and [24] use EKF and Ensemble Kalman Filter (EnKF) to 
estimate the dynamic state of PMSG-WTs, respectively. In 
these only existing publications on the DSE of PMSG-WTs 
[23-24], a major limitation is presented: the physical wind 
generation system model (i.e. the “plant” model in control 
theory) and the controller model are blended in the estimation 
process, which results in the following problems. (1) The 
physical variables in the plant model and the digital variables 
in the controller are denoted by the same set of variables. In 
reality, however, these two sets of variables are not identical, 
in that both the sensing process (from the physical world to the



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3079298, IEEE Access

                                                              Author Name: Preparation of Papers for IEEE Access (February 2017) 

 

2                                                                                                                                                         VOLUME XX, 2017 

digital world) and the actuation process (from the digital world 
to the physical world) are imperfect. For example, the actual 
currents in the machine stator may be different from the 
measured values fed into the controller due to measurement 
errors; and the voltage signals output from the controller may 
be different from the actual voltages across the machine 
terminals due to the actuation imperfection. Failing to consider 
the uncertainty between the physical world and the digital 
world will inevitably lead to degraded estimator performances 
in practice. (2) While the physical model of PMSG-WTs is 
relatively fixed, a variety of control algorithms can be applied, 
which will drastically change the controller model. Thus, the 
blended model proposed in [23-24] is not generally applicable 
to PMSG-WTs with different types of controllers. It should be 
noted that some existing work already implements the 
principle of decoupling for wind turbines [25], but only for the 
mechanical part of the system, and not for the entire electro-
mechanical system and the DSE application. 

In order to overcome the aforementioned problems in the 
existing literature, this paper proposes a general DSE 
framework that separates the plant model from the controller 
model, and explicitly distinguishes the physical variables in 
the plant model from the digital variables in the controller 
model. A Weighted-Least-Square-form Iterated Extended 
Kalman Filter (WLS-form IEKF) based on the equivalence 
between the correction stage of IEKF and the WLS regression 
[26-27] is then proposed to allow convenient detection, 
identification, and correction of bad data using the Largest 
Normalized Residual (LNR) test [28-30]. Two alternative DSE 
schemes, i.e. the open-loop scheme for system monitoring, and 
the closed-loop scheme for system control are also presented. 
In summary, the proposed DSE framework for PMSG-WT has 
the following features that the existing works do not have: 

(1) The DSE framework accounts for the uncertainties of 
measurements and control signals by separately modeling the 
plant and the controller of PMSG-WTs, and explicitly 
describing the information exchange processes between them. 

(2) The DSE framework is generally applicable to PMSG- 

WTs with various control algorithms. As the digital variables 
in the controller are known, the DSE aims to track the physical 
variables in the plant only. Consequently, the replacement of 
control algorithms does not affect the applicability of the 
proposed framework. 

(3) The DSE framework can effectively monitor and control 
PMSG-WT system in the presence of noise, natural bad data, 
or maliciously injected false data, significantly enhancing the 
robustness of system monitoring and control.  

The rest of paper is organized as follows: Section II briefly 
introduces the dynamic model of a grid-connected PMSG-WT 
system. Notably, the system model is divided into the plant 
model and controller model. The information exchange 
processes between them are explicitly considered, and the 
variables associated with them are separately defined. Section 
III introduces the proposed DSE framework, where the state 
and measurement equations are derived, and the detailed WLS-
form IEKF estimation procedure is described. The two 
operation schemes for system monitoring and control are also 
presented. Comprehensive simulation results under different 
types of uncertainties and operation schemes are presented and 
discussed in Section IV. Section V summarizes the 
observations and concludes the paper. 

II. STATE SPACE MODEL OF GRID-CONNECTED PMSG-
WT  
PMSG-WTs are widely deployed today due to their low 
maintenance cost, flexible speed control capability, and full 
reactive power control capability [31-32]. The complete 
nonlinear dynamic model of a grid-connected PMSG-WT 
includes the wind turbine, the PMSG, the generator-side 
converter, the DC link, the grid-side converter, the grid-side 
filter, as well as converter controllers. In this section, the model 
is divided into the plant model (physical world) and controller 
model (digital world). Both of them are dynamic systems 
described by differential equations. 

A.  PLANT MODEL 
The plant of PMSG-WT entails the physical wind generation 

Nomenclature Vg voltage of grid-side filter 
x state vector Rf resistance of grid-side filter 
z measurement vector Lf inductance of grid-side filter 
u input vector Qs generator-side reactive power 
c control signal Qg grid-side reactive power 
w process error vector Ps generator-side active power 
v measurement error vector Pg grid-side active power 
P covariance matrix of estimate error C capacitance of DC bus 
Q covariance matrix of process error VDC DC-link voltage 
R covariance matrix of measurement error α shaft twist angle 
r estimated residual ωt wind turbine speed 
G gain matrix ωg rotor speed 
is stator current ωs electrical angular velocity of grid voltage 
Vs stator voltage Hg inertia constants of generator 
Rs stator resistance Ht inertia constants of wind turbine  
Ls stator inductance Ks shaft stiffness coefficient 
ψpm permanent magnet flux D damping coefficient 
ig output current of grid-side converter Tm wind turbine torque 
Vc output voltage of grid-side converter Cp wind energy coefficient 
M intermediate state variable λ tip speed ratio 
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system including the wind turbine, the PMSG, the generator-
side converter, the DC link, the grid-side converter, and the 
grid-side filter [33-34]. In this subsection, and the dynamic 
equations constituting the plant model will be presented, where 
the superscript “c” denotes the control signal inputs that the 
controller feeds to the plant. 

The dynamic equations of stator current in the d-q reference 
frame can be written as follows: 

( )b
sd s sd g sq sq

sd

c
sd

d
i V R i L i

dt L
ω

ω= − − + ,        (1) 

 ( )b
sq s sq g sd sd g pm

sq

c
sq

d
i V R i L i

dt L
ω

ω ω ψ= − − − + ,     (2) 

where the subscripts “d” and “q” denote variables in the d axis 
and the q axis, respectively; Vs and is represent the stator 
voltage and the stator current of the PMSG, respectively; Ls 
and Rs represent the stator inductance and the stator resistance, 
respectively; ωg and ψpm represent the rotor speed and the 
permanent magnet flux, respectively. 

The dynamic equations of the output current of the grid-side 
filter in the d-q reference frame are given as follows: 

( )c
cd gd

b
s gqgd f gd f

f

d i V R i L i V
dt L

ω ω= − + − ,      (3) 

( )c
cq gq

b
gq gq sf f gd

f

d i V R i L i V
dt L

ω ω= − − − ,      (4) 

where Vc and ig represent the output voltage and current of grid-
side converter, respectively; Lf and Rf represent the inductance 
and resistance of grid-side filter, respectively; Vg and ωs 
represent the voltage of the grid-side filter and the electrical 
angular velocity of the grid voltage, respectively. 

In the DC link, the dynamics of DC voltage can be described 
by the following equation: 

( )sd sq gd gqsq gqDC sd gd
DC

1d V V i V i V i V i
dt CV

= + − − ,    (5) 

where VDC is the DC-link voltage, and C is the capacitance of 
DC bus. 

The mechanical drive train includes the turbine, the blades, 
bearing, and other mechanical components. The equations to 
collectively describe the mechanical dynamics are as follows: 

t g
d
dt
α ω ω= − ,                 (6) 

( )t m s t g
t

1
2

d T K D
dt H
ω α ω ω 

 = − − − ,        (7) 

( ) ( ){ }g sq pm sq s t gsd sd
g

1
2

d L L i i K D
dt H
ω ψ α ω ω 

 = − − + + + − ,(8) 

where α and ωt represent the shaft twist angle and the wind 
turbine speed, respectively; Ks and D represent the shaft 
stiffness coefficient and the damping coefficient respectively; 
Hg and Ht refer to the inertia constants of the generator and the 
wind turbine, respectively. The wind turbine torque Tm 
depends on the wind speed vw. However, in order to achieve 
Maximum Power Point Tracking (MPPT), the wind turbine 
speed ωt under the optimal tip speed ratio is computed 
according to the real-time measured wind speed signal [35-36], 
then, the generator speed is adjusted to track the optimal speed 
setpoint ωgref so as to achieve MPPT. 

The relationships are described as follows: 

3m
m

t t

1
2 p w

PT A C vρ
ω ω

= ⋅ ⋅ ⋅= ,           (9) 

t

w

R
v
ωλ = .                  (10) 

where ρ, A , Cp , R , λ , Pm are air density, swept area, wind 
energy coefficient, blade radius, tip speed ratio and turbine 
output power, respectively.  
B.  CONTROLLER MODEL 
The controller model consists of the generator-side controller 
and the grid-side controller. Ref. [23] describes one of the 
common control paradigm, where the generator-side controller 
is used to control the DC-link voltage and the reactive power 
injected into the generator, and the grid-side converter is used 
to control the active and reactive powers injected into the grid. 
However, it does not distinguish the digital variables in the 
controller and the physical variables in the plant, thus failing 
to consider the inherent uncertainties in the information 
exchange processes (i.e. sensing and actuation) between the 
plant and the controller. In this paper, the controller will be 
separately modeled. Variables with the superscript “z” clearly 
denotes the measurements that the plant feeds to the controller. 

The outer-loop control on the generator side tracks the 
setpoint of the generator-side reactive power Qsref and the 
setpoint of the DC-link voltage VDCref, as is shown in Fig. 1a. 
Kpn (n=1,…,8) and Kin (n=1,…,8) are the proportional 
coefficient and integral coefficient of proportional-integral 
(PI) controller respectively. The dynamics of the intermediate 
state variables M2 and M4 of the outer-loop controller are 
described as follows:  

( )z z z z2
i1 sref sq sd sd sq

dM K Q V i V i
dt

= − + ,       (11) 

    ( )z4
i3 DCref DC

dM K V V
dt

= − .          (12) 

The inner-loop control on the generator side tracks the 
setpoint of the stator currents isdref and isqref from outer loop, as 
also shown in Fig. 1a. The dynamics of the intermediate state 
variables M1 and M3 of the inner-loop control are described as 
follows: 

( )z z z z1
i2 p1 sref sq sd sd sq 2 sd

zdM K K Q V i V i M i
dt

 = − + + − 
,   (13)

( )z z3
i4 p3 DCref DC 4 sq

dM
K K V V M i

dt
 = − + − 

.    (14) 

The outer-loop control on the grid side tracks the setpoint of 
the reactive power on the grid side Qgref and the setpoint of 
generator speed ωgref from the MPPT process, as shown in Fig. 
1b. The dynamics of the intermediate state variables M6 and 
M8 in the outer-loop control are described as follows: 

( )z6
i5 gref g

dM
K

dt
ω ω= − ,           (15) 

( )z z z z8
i7 gref gq gd gd gq

dM
K Q V i V i

dt
= − + .         (16) 

The inner-loop control on the grid side tracks the setpoint 
of the grid currents igdref and igqref from the outer loop, as also 
shown in Fig. 1b. The dynamics of the intermediate state 
variables M5 and M7 in the inner-loop control are described as 
follows:
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    ( )z z5
i6 p5 gref g 6 gd

dM
K K M i

dt
ω ω = − + − 

,     (17) 

( )z z z z z7
i8 p7 gref gq gd gd gq 8 gq

dM
K K Q V i V i M i

dt
 = − + + − 

.   (18) 

It should be noted that the control algorithms of PMSG-WTs 
are far from unique, and (11)-(18) only represent one common 
algorithm. In the case of other control algorithms, the dynamic 
equations should also be changed. However, as the plant and 
the controller are considered separately in this paper, the 

change of the controller type does not affect the proposed DSE 
framework.  

C. INTERACTION BETWEEN THE PLANT MODEL AND 
THE CONTROLLER MODE 
The physical state variables in the plant model can be defined 
as x = [isd, isq, igd, igq, VDC, α, ωg, ωt]T, while the digital state 
variables in controller model can be defined as m = [M1, M2, 
M3, M4, M5, M6, M7, M8]T. The information exchange between 
the two models is illustrated in Fig. 2. Denote the vector of 

srefQ
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sdi 1M z

s sdR i z z
g sq sqω L i

c
sdV
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i3K

p4K

i4K4M
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c
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FIGURE 1. Controller model. (a) Generator-side converter controller; (b) Grid-side converter controller. 
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FIGURE 2. Plant-controller breakdown of PMSG-WT. 
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measurement signals and the vector of control signals as z and 
c respectively, then they can be written as: 

z z z z z z z z z z z z z z z z

sd sq gd gq g sd sq gd gq cd cq g g

T
= , , , , , , , , , , , , , , ,

DC S S
i i i i V V V V V V V Q Q P Pω  z (19) 

sd sq cd cq

T
, , ,c c c cV V V V =  c .            (20) 

As can be seen, the controller needs to collect the 
measurement from the plant, and returns control signals to the 
plant, forming a complete closed loop. Because the plant 
model and the controller model are blended in previous 
publications [23-24], the measurements z, and the control 
signals c, and the actual state variables in the plant and the 
controller cannot be distinguished. For example, c

sdV  is a 

control signal of sdV , while z
sdV  is a measurement of sdV . The 

differences between c
sdV , z

sdV , and sdV  are always present in 
reality due to the uncertainties of the sensing and actuation 
processes. Denoting them as the same variable as in [23-24] 
implicitly ignores these differences, and limits the capability 
of the DSE algorithm for handling these uncertainties. 

III. DYNAMIC STATE ESTIMATION OF PMSG-WT  
The previous section develops the plant model and the 
controller model of PMSG-WTs separately. As is obvious, the 
digital variables in the controller are perfectly known and do 
not need to be estimated, thus it is only necessary to estimate 
the physical state variables in the plant model. This feature is 
fundamentally different from the existing publications [23-24] 
and enables the development of a general DSE framework for 
PMSG-WTs with various control algorithms. 

A. STATE TRANSITION EQUATIONS AND MEASUREMENT 
EQUATIONS  
As PMSG-WT is a typical dynamic nonlinear system, the state 
transition equations and measurement equations can be 
described as follows:  

( )1 1 1 1,k k k k k= +x x u w- - - -f ,         (21) 

( )k k k k= +z x vh .            (22) 
where f and h represent the state transition function and 
measurement function, respectively; x and z are the state 
vector and the measurement vector respectively; w and v are 
the vectors of process noise and measurement noise, 
respectively, both of which are assumed to be Gaussian white. 
Based on (1)-(8), the discretized state transition equations are 
presented in (23)-(30), where Ts is the sampling period, and 
superscript “w” represents the process noise of each state 
variable. 

( ) ( ) ( ) ( )

( ) ( )

cs b
sd sq g sq sq

sd

ws b s
sd sd

sd

1

1 ,

Ti k V k k L i k
L

T R i k i k
L

ω  + = − +ω 

 ω
− +  

 
+

       (23) 

( ) ( ) ( ) ( ) ( )

( ) ( )

cs b
sq sq g sd sd g pm

sq

ws b s
sq sq

sq

1

1 ,

Ti k V k k L i k k
L

T R i k i k
L

ω ω ω ψ

ω

 + = − − + 

 
− + 

 
 

+

   (24) 

( ) ( ) ( ) ( ) ( )

( )

c z ws b
gd cd s f gq gd gd

f

s b f
gd

f

1

1 ,

Ti k V k L i k V k i k
L

T R i k
L

ω  + = +ω − + 

 ω
−  

 
+

   (25) 

( ) ( ) ( ) ( ) ( )

( )

c z ws b
gq cq s f gd gq gq

f

s b f
gq

f

1

1 ,

Ti k V k L i k V k i k
L

T R i k
L

ω  + = −ω − + 

 ω
−  

 
+

       (26) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

c
DC DC sd sq sq

DC

z z w
gd gd gq gq DC

1 =

,

cs
sd

TV k V k V k i k V k i k
CV k

V k i k V k i k V k

+ +

− − +

+  (27) 

( ) ( ) ( ) ( ) ( )w
s b t g1k k T k k k α + = α + ω ω −ω +α 

    (28) 

( ) ( )
( ) ( )

( ) ( ) ( )
( )

ss
g g

g g

s w
g

g

s t

sq sq pm sqsd sd
,

1 1
2 2

2

( )

TT Dk
H H

T

H

K k D k
k

L L i k i k i k
k

ω ω

ω

α ω

ψ
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( )
( ) ( )

( ) ( )

s
t

ws
t

t

m s t

.

1
2

1
2

t

t

T
k

H

T D k k
H

T K k D k 
 

 
  
 

ω + =

+ − ω +ω

− α + ω
      (30) 

In order to estimate the above state variables, measurement 
equations are needed, which are presented in (31)-(44), where 
the superscript “v” denotes the measurement noise: 

( ) ( )z v
sd sd sdk ki i i= + ,            (31) 
( ) ( )z v

sq sq sqk ki i i= + ,            (32) 

  ( ) ( )z v
gd gd gdk ki i i= + ,            (33) 

( ) ( )z v
gq gq gqk ki i i= + ,            (34) 

( ) ( )z v

DC DCDCk kV V V= + ,          (35) 

   ( ) ( )z

g

v
g gk kω ω ω= + ,           (36) 

( ) ( ) ( )

( ) ( ) ( )

z sd sd
sd sd s sd

s b s b
wv

g sq sq sd sd

1 ( )

1 ,

L LV k i k R i k
T T

k L i k V i k

= − − +
ω ω

+ω + + −

     (37) 

( ) ( ) ( ) ( )

( ) ( ) ( )

sq sqz
sq sq s sq g pm

s sb b
wv

g sq sqsd sd ,

1

1

L L
V k i k R i k kT T

k L i k V i k

ω ψ
ω ω

ω

 
  
 

= − − + +

− + + −

 (38) 

( ) ( ) ( ) ( )

( ) ( )

z f f
s gqcd f gd gd f

s sb b

wz v
gd cd gd ,

1

1

L LV k R i k i k L i k
T T

V k V i k

 
  
 

= + − − −ω
ω ω

+ + + −

 (39) 

( ) ( ) ( )

( ) ( )

z f f
cq gq gq sf f gd

s sb b

wz v
gq cq gq ,

( ) 1

1

L LV k R i k i k L i k
T T

V k V i k

 
  
 

= + − − +ω
ω ω

+ + + + −

 (40) 

( ) ( ) ( ) ( ) ( )z z z v
s sq sd sd sq s+Q V i V i Qk k k k k= − ,    (41) 

( ) ( ) ( ) ( ) ( )z z z v
gq gd gd gq +g gQ V i V i Qk k k k k= − ,    (42) 

( ) ( ) ( ) ( ) ( )z z z v
s sd sd sq sq s+P V i V i Pk k k k k= + ,     (43) 

( ) ( ) ( ) ( ) ( )z z z v
g gd gd gq gq g+P V i V i Pk k k k k= + .    (44) 
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B.  DYNAMIC STATE ESTIMATION  
KF is a common method of DSE in power systems. In this 
paper, a WLS-form IEKF will be presented based on the 
equivalence between the correction stage of IEKF and the 
WLS regression. This formulation allows convenient 
application of the LNR method for bad data detection, 
identification, and correction [28-30]. The vector of state 
variables in a PMSG-WT system (i.e. the plant model) can be 
expressed as follows: 

T

sd sq gd gq DC g t= , , , , , , , .i i i i V α ω ω  x       (45) 
The measurement vector z can be expressed as follows: 

z z z z z z z z z z z z z z z z z
sq gq g sq gq cq s g s gsd gd sd sd gd cd

T
= , , , , , , , , , , , , , , , ,DCi i i i V V V V V V V V Q Q P Pω 
 z , (46) 

The vectors of inputs u can be expressed as follows: 
T

sref gref DCref w= , , , ,Q Q V v V∞  u .     (47) 
The specific steps for estimating the state of a PMSG-WT are 
summarized as follows. 

(1) Set time step t = 0.Initialize the posteriori estimate of 
state variables ( )ˆ tx + , and the covariance matrix of the 

posteriori estimate of dynamic state variables ( )t +P .  
(2) Set t ← t+1. 
(3) Prediction stage. The priori estimate of the dynamic state 

variables t( )ˆ −x  can be predicted by the state transition 
equations at time t as follows: 

( )1 1 1( )ˆ ˆ ,− − −− =x x ut t tt f ,           (48) 

where f is derived from (23)-(30).  
(4) The covariance matrix of the priori estimate is evaluated 

as follows: 
 ( ) 1 1 1 1

T
t t t t t− − − − −= +P F P F Q ,        (49) 

where F is Jacobian matrix of f, and Q is covariance matrix of 
process noise. 

(5) Correction stage. Solve the following WLS problem, 
which is equivalent to the correction stage of standard IEKF 
[26-27]: 

( )( ) ( )( ){
( ) ( )}

1
( )

1
( ) ( ) ( )

ˆ arg min

ˆ ˆ

t

T
t t t t t t t t

T

t t t t t

−
+

−
− − −

= − −

+ − −

x
x z h x R z h x

x x P x x
  (50) 

which can be written equivalently in the following form: 

( ) ( )

( )( ) ( )( )

1

( )
( ) ( ) ( )

1

ˆ arg min ˆ ˆ

       arg min

t

t

T
t t tt t t t

t
t t tt t

T

t t t t t t t

−

+
− − −

−

             = − −                            

= − −

x

x

z R zh x h x
x

x P xx x

z h x R z h x  

 

(51) 

where ( )( )ˆ,
TT T

t t t −=z z x , ( ) ( )( ),
TT T

t t t t t=h x h x x and 

( )( ),t t tdiag −=R R P . The Gauss-Newton method can be used 
for solving this problem. Specific steps are given as follows. 

(5.1) Set iteration number k = 0. Initialize state variables xk,t, 
set the state estimate tolerance τ > 0, and bad data detection 
threshold c > 0. 

(5.2) The Jacobian matrix and the gain matrix are evaluated 
as follows: 

( ) ( ), ,

, ,

,

k t k t

k t k t
k t

∂
=

∂





h x
H x

x
,           (52) 

 ( ) ( ) ( )1
, , , , , , ,

T
k t k t k t k t k t k t k t

−=   G x H x R H x ,       (53) 
where R is covariance matrix of measurement noise. 

(5.3) The state update vector is evaluated as follows: 

( ) ( ) ( )1 1
, , , , , , , , ,

T
k t k t k t k t k t k t k t k t k t

− −  ∆ = − x G x H x R z h x  

 .  (54) 

(5.4) Keep updating the state estimate vector by 

1, , ,k t k t k t+ = + ∆x x x .            (55) 

(5.5) If ,k t τ∆ >x ,set k ← k+1, and return to Step (5.2); 

Otherwise, set ( ) ,ˆ t k t+ =x x and ,t k t=H H  , and proceed to Step 
(6). 

(6) The covariance matrix of the state estimate is evaluated 
as follows: 

( ) 11 1
( )

T
t t t t t

−− −
+ =P H R H G  

 .        (56) 

The covariance matrix of the posteriori estimate of dynamic 
state variables, which are needed to perform prediction in the 
next time step, can be obtained by extracting the diagonal 
block of Pt(+).  

(7) Detection, identification, and correction of bad data. Bad 
data are defined as the measurements whose error exceeds the 
probable range of regular noise. They occur when there is a 
sensor malfunction, erroneous calibration, communication 
delay/failure, or false data injection attack [28-30]. 

(7.1) The normalized residuals can be obtained by dividing 
their absolutes value by the corresponding diagonal entry in 
the residual covariance matrix: 

( )
1-
2N

t t tdiag=r Ω r

  ,           (57) 

where ( ) ( ) ( )( )1
1

( )t t t

T T
t t t t t t t t

−
−

= −Ω R H H R H Hx x x x       is the 

residual covariance matrix and ( )ˆ( )tt t t += −zr h x



  is the 
residual vector. 

(7.2) Find the measurement corresponding to the largest 
normalized residual as follows: 

{ }arg max j N
t

j
u r=  ,            (58) 

where j N
tr is the jth entry of vector N

tr . 
(7.3) if u N

tr c> , then the u-th measurement will be 
suspected as bad data. Correct the measurement as follows: 

uu
u u ut
t t tuu

t

z z
R r← −
Ω

 







,             (59) 

and return to Step (5). Otherwise, process to Step (8).  
(8) Return to Step 2. 
This proposed approach requires wind speed as an input. In 

practice, the wind speed is measured by a wind speed sensor 
installed at the PMSG-WT. In the case that the wind speed is 
unknown, a number of approaches are available to resolve the 
unknown input issue for DSE (please see [36-37] for example). 
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C. MONITORING AND CONTROL OF PMSG-WT 
The plant-controller model can operate in both open-loop and 
closed-loop schemes for monitoring and control purposes, 
respectively. The system schematics under the two operation 
schemes are shown in Fig. 3a and 3b, respectively.  

In the open-loop operation scheme shown in Fig. 3a, the 
DSE intakes the raw measurements z  from the plant, and 
produces the estimated values of the PMSG-WT state variables
x̂ . The estimated states x̂  will be sent to the power system 
control center for system-wide dynamic monitoring and 
security assessment. In the closed-loop operation shown in Fig. 
3b, the DSE intakes the raw measurements z  from the plant, 
and sends the estimated measurements ẑ  to the controller 
for real-time control of PMSG-WT. In both schemes, the DSE 
filters out noise, natural bad data, and malicious false data in 
the raw measurements, making the monitoring and control 
applications more effective and reliable.  

Ⅳ. SIMULATION RESULTS  
In order to validate the effectiveness of the proposed DSE 
framework in PMSG-WT monitoring and control, simulation 
cases in the IEEE 39-bus system will be presented in this 
section. It is assumed that a PMSG-WT is connected to bus 3 
of the system. Both regular Gaussian noise and substantial bad 
data are considered in the simulations cases. The Gaussian 
noise includes both process noise and measurement noise. The 
process noise may come from model approximation and 
integration errors. Measurement noise may come from 
imperfection of the sensing process. Bad data may come from 
improper calibration, wrong connection, sensor failures, or 
cyber attacks. The DSE is carried out locally, and the sampling 
time is assumed to be 250 μs. 

A. OPEN-LOOP OPERATION FOR MONITORING  
In order to evaluate the accuracy of the proposed DSE in open-
loop operation for monitoring purpose, the estimated values 
and the measured values of the state variables will both be 
compared with the true values. Fig. 4 shows the state 
estimation results in the presence of regular Gaussian noise. 
The standard deviations of the process noise and the 
measurement noise are set to be 10-5 p.u. and 10-3

 p.u., 
respectively. In addition, the setpoint of the grid-side reactive 
power Qgref has a step increase from 0 to 0.2 p.u. at 25 s.  

As observed from Fig. 4, there is a short transient at the 
initialization stage of the simulation. Then, the system quickly 
enters the steady state owing to the control function. In 
addition, the system is also stabilized after the step change of 

PlantPlant

ControllerController

DSE

x

c

m

zx̂

             

PlantPlant

ControllerController

c

m

x

ẑ
DSE

z

 
(a)   (b) 

FIGURE 3. Open-loop and closed-loop operations. (a) Open-loop; (b) 
Closed-loop. 

 
 

   (a)   

 
                (b) 

 
     (c) 

 
                                (d) 
FIGURE 4. Four state variables in open-loop operation. (a) isd; (b) isq; 
(c) VDC; (d) ωg . 
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the grid-side reactive power control setpoint. It is evident that 
the estimated values track the true state trajectory very well, 
while the measured values present substantial variations. 

To quantitively verify the accuracy of DSE, a metric named 
the Root Mean Square Error for Monitoring (RMSE_M) is 
proposed. For a given variable, it computes the error of either 
the measured value or the estimated value with respect to the 
true value, as defined below: 

p q 2
obj,ij true,iji=1 j=1

(X X )
RMSE_M=

pq

−∑ ∑ .     (60) 

where Xobj represents the measured value or the estimated 
value of the variable, Xtrue represents the true value of the  
variable, p represents the number of time steps of a simulation, 
and q represents the number of simulations. In this case, p = 
2×105, and q = 10.  

The RMSE_M results of four state variables are listed in 
Table I. Evidently the estimated values from the DSE is much 
more accurate than the raw measured values. Therefore, the 
DSE can provide much more accurate system trajectories than 
the raw measurements as it filters out the process noise and 
measurement noise. 

In order to test the bad detection and correction capabilities 
of the proposed DSE method, in another simulation case, two 
sections of bad data ea and eb are intentionally added to corrupt 
the measurements. Specifically, ea and eb with gross errors of 
0.01 p.u. and 0.02 p.u. are added to the rotor speed 
measurement z

gω  and the DC-link voltage measurement z
DCV

from 12.5 s to 15 s, respectively. This kind of errors can be due 
to a natural sensor malfunction, or a malicious false data 
injection.  

The true values, erroneous values, and corrected values of 
the rotor speed and the DC-link voltage are shown in Fig. 5 
and Fig. 6, respectively. Evidently, the bad data from both 
measurements are effectively detected and corrected. 
Compared with the erroneous values, the corrected values 
closely keep track of the true values, making reliably 
monitoring possible under such challenging data corruption 
situations. Thus, it can be concluded that it is beneficial to 
adopt the proposed DSE instead of relying on raw 
measurements for system monitoring.  
B. CLOSED-LOOP OPERATION FOR CONTROL 
As previous described, in the closed-loop operation scheme, 
the DSE will pass the estimated results to the controller, which 
will in turn generate control signals for the plant. In order to 
demonstrate the improvement of control effects brought about 
by the proposed DSE scheme, the tracking performances of the 
state trajectories to the control setpoints with and without the 
proposed DSE in the loop will be compared. The settings of 
process noise and measurement noise are the same as in 
Section IV-A. In addition, a ramping wind speed with a slope 
of 1.1666667×10-2 m/s2 and a Gaussian white noise of 0.002 
m/s is given from 2.5 s to 12.5s. 

The true trajectories of four state variables with and without 
DSE in the loop are presented in Fig. 7. As observed, under to 
transient induced by the ramp wind, the trajectories of four 
state variables with DSE track the corresponding control 
setpoints more closely than those without DSE, respectively.  

In order to quantitatively verify the benefit of DSE on the 
control effect, a metric named Root Mean Square Error for 
Control (RMSE_C) is proposed. It computes the cumulative 
differences between the true system trajectory and the control 
setpoint with or without DSE in the loop, defined as follows:  

p q 2
obj,ij ref,iji=1 j=1

(Y Y )
RMSE_C=

pq

−∑ ∑ .      (61) 

where Yobj represents the truth value of four state variables 
with or without DSE, Yref represents the control setpoint of  
four state variables, p represents the number of time steps of a 
simulation, and q represents the number of simulations. In this 
case, it is set that p = 2×105, and q = 10. 

The RMSE_C results of four state variables are shown in 
Table II. Evidently, four state variables track the control 
setpoints more closely when the DSE is placed into the loop. 
This owes to the fact that the DSE provides more accurate 
operation information of the plant to the controller compared 
with raw measurements.  

Similarly as Section IV-B, in the closed-loop operation 
scheme, a simulation case with bad data is also performed to 
further demonstrate the benefit of the proposed DSE. 
Specifically, two bad data sections ec and ed with gross errors  

 
FIGURE 5. Estimation of rotor speed under bad data 

 
FIGURE 6. Estimation of DC-link voltage under bad data 
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TABLE I 
RMSE_M of estimated value and measured value 

RMSE_M isd isq VDC ωg 

Measured  9.186×10-3 9.313×10-3 9.724×10-3 1.128×10-2 

Estimated 
by DSE 1.975×10-3 2.876×10-3 1.718×10-3 3.949×10-3 

Performance  
Improvement  78.49% 69.11% 72.04% 64.98% 
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of 0.01 p.u. are added to the rotor speed measurement z

gω  and 

DC-link voltage z
DCV  from 32.5 s to 37.5s and 75s to 87.5s, 

respectively. The control setpoint and the true state trajectories 
with and without the DSE are presented in Fig. 8. and Fig. 9. 

As readily observed from Fig. 8 and Fig. 9, during the period 
when the bad data exists (i.e. from 32.5 s to 37.5 s and from 75 
s to 87.5 s), the trajectories of ωg and z

DCV  deviate drastically 
from the control setpoint without the DSE in place. This 
verifies the fact that bad data in measurement streams can 
severely impact the operation of PMSG-WTs. By contrast, in 
the presence of the DSE, the effect of the bad data is 
remarkably suppressed. The rotor speed and DC-link voltage 
are still able to track the control setpoint closely. This owes to 
the DSE’s capability to detect and correct bad data. Hence, the 
proposed closed-loop DSE scheme allows effective control of 
PMSG-WTs in the presence of substantial data corruptions. 

Ⅴ. CONLUSION  
In this paper, a general DSE framework for reliable monitoring 
and control of PMSG-WT is proposed. The plant model and 

TABLE II 
RMSE_C with and without DSE 

RMSE_C isd isq VDC ωg 

Without 
DSE 2.874×10-2 2.761×10-2 1.542×10-2 1.325×10-2 

With DSE 1.929×10-2 1.823×10-2 1.071×10-2 0.987×10-2 
Performance 
Improvement  32.88% 33.97% 30.54% 25.51% 

 

 
FIGURE 8. Control of rotor speed under bad data 

 
FIGURE 9. Control of DC-link voltage under bad data 
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FIGURE 7. Four state variables with and without DSE. (a) isd (b) isq 
(c) VDC (d) ωg  
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the controller model are separately derived to allow explicit 
representation of the uncertainties associated with the 
information exchange between them. Based on this result, a 
general DSE model for the physical plant of PMSG-WT is 
developed. The state transition equations and measurement 
equations are derived, and a WLS-form IEKF technique is 
presented for handling noise and bad data. 

The simulation results for both the open-loop operation 
scheme and the closed-loop operation scheme demonstrate the 
effectiveness of the proposed DSE framework. In the open-
loop simulation cases, it is shown that the DSE keeps track of 
the true state trajectories more closely than raw measurements 
in the presence of Gaussian noise and bad data. In the closed-
loop simulation cases, it is shown that the DSE improves the 
performances of the controller, allowing tighter tracking of 
control setpoints in the presence of Gaussian noise and bad 
data compared with raw measurements. As the plant model 
and the controller model are decoupled, the proposed DSE 
framework is readily applicable to PMSG-WTs with various 
control paradigms. 

The proposed DSE framework demonstrates the values of 
the technique for both monitoring and control of PMSG-WTs. 
In future studies, a general DSE framework for DFIG-WTs 
could be considered in a similar manner. It is also beneficial to 
investigate a general DSE framework for a wind farm 
consisting of a large number of wind generators. 

REFERENCES 
[1] E. Rebello, D. Watson and M. Rodgers, “Performance analysis of a 10 

MW wind farm in providing secondary frequency regulation: 
experimental aspects,” IEEE Transactions on Power Systems, vol. 34, 
no. 4, pp. 3090-3097, July 2019. 

[2] M. Hedayati-Mehdiabadi, J. Zhang and K. W. Hedman, “Wind power 
dispatch margin for flexible energy and reserve scheduling with 
increased wind generation,” IEEE Transactions on Sustainable Energy, 
vol. 6, no. 4, pp. 1543-1552, Oct. 2015. 

[3] M. Rostami and S. Lotfifard, “Distributed dynamic state estimation of 
power systems,” IEEE Transactions on Industrial Informatics, vol. 14, 
no. 8, pp. 3395-3404,Aug.2018. 

[4] Y. Chen, Y. Yao, Y. Lin and X. Yang, "Dynamic state estimation for 
integrated electricity-gas systems based on Kalman filter," CSEE 
Journal of Power and Energy Systems, doi: 
10.17775/CSEEJPES.2020.02050. (early access) 

[5] S. Prasad and D. M. Vinod Kumar, “Trade-offs in PMU and IED 
deployment for active distribution state estimation using multi-objective 
evolutionary algorithm,” IEEE Transactions on Instrumentation and 
Measurement, vol. 67, no. 6, pp. 1298-1307, Jun. 2018. 

[6] Y. Zhang, Y. Xu and Z. Y. Dong, “Robust ensemble data analytics for 
incomplete PMU measurements-based power system stability 
assessment,” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 
1124-1126, Jan. 2018. 

[7] H. Karimipour and V. Dinavahi, "Extended Kalman filter-based parallel 
dynamic state estimation," IEEE Transactions on Smart Grid, vol. 6, no. 
3, pp. 1539-1549, May 2015. 

[8] Ghahremani and I. Kamwa, “Local and wide-area PMU-based 
decentralized dynamic state estimation in multi-machine power systems,” 
IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 547-562, Jan. 
2016. 

[9] J. Zhao, M. Netto and L. Mili, “A robust iterated extended kalman filter 
for power system dynamic state estimation,” IEEE Transactions on 
Power Systems, vol. 32, no. 4, pp. 3205-3216, July 2017. 

[10] J. Zhao and L. Mili, “A theoretical framework of robust H-infinity 
unscented kalman filter and its application to power system dynamic 
state estimation,” IEEE Transactions on Signal Processing, vol. 67, no. 
10, pp. 2734-2746, 15 May15, 2019. 

[11] J. Qi, K. Sun, J. Wang and H. Liu, “Dynamic state estimation for multi-
machine power system by unscented kalman filter with enhanced 
numerical stability,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 

1184-1196, March 2018. 
[12] W. Xie, Z. Huang, W. He and K. Wang, “A square root cubature kalman 

filter based dynamic state estimation of distribution network,” 2020 
IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), 
Weihai, China, 2020, pp. 497-501. 

[13] A. Sharma, S. C. Srivastava and S. Chakrabarti, “A cubature kalman 
filter based power system dynamic state estimator,” IEEE Transactions 
on Instrumentation and Measurement, vol. 66, no. 8, pp. 2036-2045, Aug. 
2017. 

[14] N. Zhou, D. Meng and S. Lu, "Estimation of the Dynamic States of 
Synchronous Machines Using an Extended Particle Filter," IEEE 
Transactions on Power Systems, vol. 28, no. 4, pp. 4152-4161, Nov. 
2013. 

[15] Y. Cui and R. Kavasseri, "A Particle Filter for Dynamic State Estimation 
in Multi-Machine Systems With Detailed Models," IEEE Transactions 
on Power Systems, vol. 30, no. 6, pp. 3377-3385, Nov. 2015.  

[16] K. Emami, T. Fernando, H. H. Iu, H. Trinh and K. P. Wong, “Particle 
filter approach to dynamic state estimation of generators in power 
systems,” IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2665-
2675, Sept. 2015. 

[17] T. Zhang, W. Zhang and P. Yuan, “Distributed dynamic state estimation 
in active distribution system based on particle filter,” 2018 IEEE 
Innovative Smart Grid Technologies - Asia (ISGT Asia), Singapore, 
2018, pp. 664-668. 

[18] M. Z. El-Sharafy, S. Saxena and H. E. Farag, “Optimal design of 
islanded microgrids considering distributed dynamic state estimation,” 
IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 1592-
1603, March 2021. 

[19] X. Wang, X. Wei and Y. Meng, “Experiment on grid-connection process 
of wind turbines in fractional frequency wind power system,” IEEE 
Transactions on Energy Conversion, vol. 30, no. 1, pp. 22-31, March 
2015. 

[20] S. Yu, K. Emami, T. Fernando, H. H. C. Iu and K. P. Wong, “State 
estimation of doubly fed induction generator wind turbine in complex 
power systems,” IEEE Transactions on Power Systems, vol. 31, no. 6, 
pp. 4935-4944, Nov. 2016. 

[21] S. S. Yu, J. Guo, T. K. Chau, T. Fernando, H. H. Iu and H. Trinh, “An 
unscented particle filtering approach to decentralized dynamic state 
estimation for DFIG wind turbines in multi-area power systems,” IEEE 
Transactions on Power Systems, vol. 35, no. 4, pp. 2670-2682, July 
2020. 

[22] G. Anagnostou, L. P. Kunjumuhammed and B. C. Pal, “Dynamic state 
estimation for wind turbine models with unknown wind velocity,” IEEE 
Transactions on Power Systems, vol. 34, no. 5, pp. 3879-3890, Sept. 
2019. 

[23] Saad, “Dynamic state estimation of a permanent magnet synchronous 
generator-based wind turbine,” IET Renewable Power Generation, vol. 
10, no. 9, pp. 1278-1286, 2016. 

[24] S. Afrasiabi, M. Afrasiabi, M. Rastegar, M. Mohammadi, B. Parang and 
F. Ferdowsi, “Ensemble kalman filter based dynamic state estimation of 
PMSG-based wind turbine,” 2019 IEEE Texas Power and Energy 
Conference (TPEC), College Station, TX, USA, 2019, pp. 1-4. 

[25] H. Habibi, I. Howard, S. Simani and A. Fekih, “Decoupling adaptive sliding 
mode observer design for wind turbines subject to simultaneous faults in 
sensors and actuators,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 
4, pp. 837-847, April 2021. 

[26] H. W. Sorenson, “Least-squares estimation: from Gauss to Kalman,” 
IEEE Spectrum, vol. 7, no. 7, pp. 63-68, Jul. 1970. 

[27] J. Zhao, M. Netto and L. Mili, “A robust iterated extended kalman filter 
for power system dynamic state estimation,” IEEE Transactions on 
Power Systems, vol. 32, no. 4, pp. 3205-3216, July 2017. 

[28] A. Abur and A. Gómez-Expósito, Power System State Estimation: 
Theory and Implementation. New York, NY, USA: Marcel Dekker, 2004. 

[29] Y. Lin and A. Abur, “A highly efficient bad data identification approach 
for very large scale power systems,” IEEE Transactions on Power 
Systems, vol. 33, no. 6, pp. 5979-5989, Nov 2018. 

[30] Z. Li, J. Liu, Y. Lin, and F. Wang, “Grid-Constrained Data Cleansing 
Method for Enhanced Bus Load Forecasting”, IEEE Transactions on 
Measurement and Instrumentation. (early access) 

[31] L. Chen et al., “Study of a modified flux-coupling-type SFCL for 
efficient fault ride-through in a PMSG wind turbine under different types 
of faults,” Canadian Journal of Electrical and Computer Engineering, 
vol. 40, no. 3, pp. 189-200, Summer 2017. 

[32] Z. Zhang, Y. Zhao, W. Qiao and L. Qu, “A discrete-time direct torque 
control for direct-drive PMSG-based wind energy conversion systems,” 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3079298, IEEE Access

                                                              Author Name: Preparation of Papers for IEEE Access (February 2017) 

 

11                                                                                                                                                         VOLUME XX, 2017 

IEEE Transactions on Industry Applications, vol. 51, no. 4, pp. 3504-
3514, July-Aug. 2015. 

[33] M. F. M. Arani and Y. A. I. Mohamed, “Assessment and enhancement 
of a full-scale PMSG-based wind power generator performance under 
faults,” IEEE Transactions on Energy Conversion, vol. 31, no. 2, pp. 
728-739, June 2016. 

[34] B. Wu, Y, Lang, N. Zargari, K. Samir, Power Conversion and Control 
of Wind Energy Systems. IEEE Press, Wiley, 2011. 

[35] C. Wei, Z. Zhang, W. Qiao and L. Qu, "An adaptive network-based 
reinforcement learning method for MPPT control of PMSG wind energy 
conversion systems,” IEEE Transactions on Power Electronics, vol. 31, 
no. 11, pp. 7837-7848, Nov.2016. 

[36] Hamed Habibi, Hamed Rahimi Nohooji, and Ian Howard, “Optimum 
efficiency control of a wind turbine with unknown desired trajectory and 
actuator faults”, Journal of Renewable and Sustainable Energy vol. 9, 
063305, 2017. 

[37] E. Ghahremani and I. Kamwa, “Dynamic state estimation in power 
system by applying the extended Kalman filter with unknown inputs to 
phasor measurements,” IEEE Transactions on Power Systems, vol. 26, 
no. 4, pp. 2556-2566, Nov. 2011. 

 
 
 

Shaojian Song received the B.S., and M.S. 
degrees from Guangxi University, 
Nanning, China, in 1994 and 2001 
respectively. Since 1994, he has been with 
school of Electrical Engineering at 
Guangxi University, where he became 
Professor in 2010. He visited New York 
State Center for Future Energy Systems at 
Rensselaer Polytechnic Institute, USA, 

from 2014 to 2015.His current research interests include power 
electronics and energy conversion, active distribution 
networks, state estimation, optimal control and machine 
learning. 

 
 
Panzhou Wu received his B.S. degree in 
Electrical Engineering and Automation 
from Southwest University for 
Nationalities, Chengdu, China, in 2018. 
He is currently pursuing his M.S. degree 
in Control Science and Engineering at 
Guangxi University, Nanning, China. His 
research interests include state estimation 

of power systems with renewable energy. 
 

Yuzhang Lin (M’18) is currently an 
Assistant Professor in the Department of 
Electrical and Computer Engineering at 
the University of Massachusetts, Lowell, 
MA, USA. He obtained his Bachelor and 
Master’s degrees from Tsinghua 
University, Beijing, China, and Ph.D. 
degree from Northeastern University, 

Boston, MA, USA. His research interests include smart grid 
modeling, monitoring, data analytics, and cyber-physical 
resilience. He is currently serving as an Editor for CSEE 
Journal of Power and Energy Systems. 

 
Yanbo Chen (M’13, SM’20) received the 
B.S., the M.S. and the Ph.D. degrees in 
electrical engineering from Huazhong 
University of Science and Technology, 
China Electric Power Research Institute, 
Tsinghua University, in 2007, 2010 and 
2013, respectively. He is currently an 
associate professor of North China 
Electric Power University. His research 

interests include state estimation and power system analysis 
and control. He is an Associate Editor of IEEE Access. 
 
 
 
 
 
 

http://rpi.edu/cfes
http://rpi.edu/cfes

