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ABSTRACT When a large-scale disaster happens, critical infrastructure is destroyed, and many people
are displaced. Unmanned aerial vehicle (UAV)-enabled disaster recovery networks can be used to support
people in disaster-hit areas. However, determining UAV routes is critical to communicate with refugees.
In this work, we propose a method to determine UAV locations to collect and deliver messages for
UAV-enabled disaster recovery networks. Our method involves two stages: the received signal strength
sensing stage and the message collection and delivery stage. We theoretically analyzed the computational
complexity in terms of the number of steps and consequently evaluated the performance of our method
using experimental data obtained from rural, suburban, and urban areas.

INDEX TERMS Correlation, Received signal strength, Tensor completion, and Unmanned aerial vehicles.

I. INTRODUCTION

NATURAL disasters such as earthquakes, floods, hurri-
canes, wildfires, and tornadoes have been increasing

recently, partly because of global warming, which has in-
creased the global temperature to its highest level in the past
millennium [1].

Large-scale disasters displace many people, forcing them
to live as refugees in shelters. For refugees, it is of utmost
importance to communicate with their families about their
situation as early as possible. However, terrestrial informa-
tion networks often fail to function in these emergencies.
For example, 400,000 people were displaced due to the
2011 Great Japan Earthquake, and terrestrial information
networks perfectly became operational after more than a
month [2]. Therefore, information network systems, which
can be quickly constructed without infrastructure, are critical
for disaster recovery.

Moreover, recent advancements in unmanned aerial ve-
hicle (UAV) play an essential role in various commercial
applications and wireless communication networks, such as

the fifth-generation (5G) network [3]. One of the advantages
of UAVs is that they can fly anywhere with great flexibility,
efficiency, and speed, which are highly needed for disaster
recovery [4]. Let us consider UAV-enabled disaster recov-
ery network involving one or more UAVs starting from a
countermeasure office, visiting shelters to collect information
from and deliver it to refugees, and returning to the office.
In the case of ground logistics, ordering shelters in a time-
and energy-efficient way has been well-discussed using the
vehicle routing problem (VRP) [5], [6]. The main difference
between ground logistics and aerial communication is that
an automobile can visit a predetermined location in the two-
dimensional (2D) plane to serve each person, whereas a
UAV can freely visit an energy-efficient location in the three-
dimensional (3D) region to collect and deliver messages for
each shelter. Thus, determining UAV locations for message
collection and delivery needs to be addressed to wirelessly
collect and deliver messages for refugees.

UAVs have the 3D mobility but typically operate for up to
40 min [7] due to their limited battery capacity. To visit as
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many shelters as possible in a short period, it is necessary to
reduce energy consumption by shortening the time required
for message collection and delivery and flying. If a UAV di-
rectly accesses individual refugees in a shelter, it would take
longer, since a long connection time usually accompanies in
each access. Therefore, pre-installing a server in each shelter
to store all messages at once and send them in bulk using
a UAV can save energy. In Japan, for an area that will pre-
sumably be damaged by a Nankai Trough earthquake, servers
have been installed in some shelters and can communicate
with UAVs as delay-tolerant network ferries [8].

Another energy-saving approach is to determine a UAV
location where a better wireless link condition is obtained
between the UAV and each server. In most wireless com-
munication standards, the data transmission rate increases
as the received signal strength (RSS) increases. Thus, the
UAV should come closer to each server. However, this is not
energy-efficient since the UAV consumes more energy for
rising [9], and the flight time is prolonged due to the extended
route length. Consequently, the UAV can be designed to
collect and deliver messages for refugees while hovering
over the shelter where the RSS is higher. Furthermore, in an
area with multiple concentrated shelters, determining a UAV
location to collect and deliver messages for multiple servers
in bulk can be less time-consuming.

In a disaster-hit area, let us assign a 3D region with
multiple servers to a UAV. Similar to a 2D or 3D geographical
map used in ground logistics and transportation, the UAV
uses a 3D RSS map to determine UAV locations for message
collection and delivery. However, unlike a geographical map,
the RSS map is server location-dependent, so spatial RSS
sensing is required server by server. Because RSS sensing
all over the region is extremely energy-consuming, the UAV
should construct RSS maps for multiple servers by sparsely
sensing RSSs while following a pre-determined route. In this
case, we should note that the UAV can sense an RSS only for
one server at a time, and even if the UAV stops at a targeted
location for a while, it cannot always sense all RSSs [10] due
to extremely low RSS values, packet collisions, and channel
scanning mismatches.

In this work, we propose a method for determining UAV
locations to collect and deliver messages for UAV-enabled
disaster recovery networks. The proposed method involves
two stages: the RSS sensing stage and the message collection
and delivery stage. In the RSS sensing stage, 3D RSS maps
are constructed for multiple servers from sparsely sensed
RSS data through tensor completion. In the message collec-
tion and delivery stage, fewer locations adequate for multiple
servers are determined by solving a combinatorial problem
through utilizing normalized cross-correlations among con-
structed RSS maps to reduce computational complexity.

This article is organized as follows: Section II provides a
literature review on UAV-enabled disaster recovery networks,
VRP for UAVs, and RSS maps. Section III presents the mod-
els and assumptions, and Section IV provides the problem
statement. Section V includes the tensor completion-based

method for constructing RSS maps. Section VI provides the
correlation-based method for determining message collection
and delivery locations. Section VII involves the evaluation
of the proposed method using experimental data obtained
in rural, suburban, and urban areas. Finally, Section VIII
presents the conclusions of the work.

II. RELATED WORK
In recent years, several studies have been conducted on UAV-
enabled disaster recovery networks. In [4], a cluster-based 2D
framework for UAV locations was proposed. In [11], using
node locations, 2D formation for UAVs was considered.
Hourani et al. [12] proposed the optimal altitude to achieve
maximum coverage area on the ground using a statistical
propagation model that depends on the environment and
the elevation angle from users. Moreover, UAV-based 3D
location determination was investigated for wireless base
stations in [13]– [15]. In [13], a circle packing-based method
to maximize the total coverage area was proposed. Alzenad
et al. [14] attempted to maximize the number of users within
the coverage area using the minimum required transmitted
power. In [15], by optimizing the UAV locations, the number
of UAVs was minimized. Wang et al. [16] formulated a
problem of altitude and power control using channel mod-
els of UAVs, satellites, and base stations. They discussed
selecting a UAV as a gateway in flying ad hoc networks [17].
These problems are also discussed in the fifth-generation
(5G) network and beyond [3], [18].

3D wireless channels may complicate channel conditions
because of surrounding buildings. When the wireless chan-
nel condition is significantly affected by the distribution of
surrounding buildings, it is difficult to correctly find UAV
locations with better the conditions using statistical models.
By using 3D RSS maps, we can find the optimal UAV
locations because the estimated 3D RSS map includes the
effect of surrounding buildings. Therefore, in this work, we
focus on constructing 3D RSS maps using UAV.

Moreover, as aerial relay stations, UAVs play a critical role
in wireless sensor networks (WSNs) [19]– [23]. In a WSN,
UAVs wirelessly collect data from stationary sensors and
deliver them to the base station. Therefore, the UAV routing
problem is formulated as a VRP or a traveling salesman
problem (TSP) [24], which is a special case of the VRP.
In [21], the data acquisition latency was reduced using a
modified nearest neighbor (NN) algorithm, where the NN
algorithm is typically used to solve the TSP. In [22], [23], to
extend the network lifetime, energy-efficient algorithms were
proposed. Dorling et al. [25] considered a VRP in a UAV
delivery problem and showed that the energy consumption of
the UAV was proportional to the payload and battery weight.
In [26], considering multiple charging stations and battery
recharge on the way to collect and deliver packages, an
algorithm to solve the VRP for multiple UAVs was proposed.
In [27], with a UAV’s power consumption model based on
measured data, the minimization of energy consumption was
formulated. In this problem, the UAV heading speed and
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route were optimized by taking a shorter flying time and
vulnerability to wind into consideration. In this work, we
also considered the UAV routing problem and solved it with
a TSP algorithm. However, our proposed method reduces
the total route length by reducing the number of points for
sensing through the tensor completion-based 3D RSS map
estimation.

RSS maps can be used to design UAV locations or the UAV
routing problem because they provide the spatial structure of
shadowing due to surrounding obstacles in the 3D space. In
[28], with an RSS map generated by ray-tracing simulations,
the 3D locations of UAVs was defined. In [29], a maximum
likelihood-based segmented regression method was proposed
for 3D RSS map estimation. In [30], a total variation and
low-rank tensor completion [31] were applied to efficiently
construct a 3D RSS map by sensing RSSs in the partial
region. This work is an extension of [32], where the location
of a UAV to collect and deliver messages was determined
using RSS maps estimated by a tensor completion-based RSS
estimator in [30]. In addition to the contributions provided
in [32], multiple locations can be determined using our
method. In the case of the determination of a single location,
all transmitted signals with sufficiently higher RSSs cannot
always be received. To solve this problem, we formulated the
optimization problem with multiple locations. Note that the
conventional method in [32] is a special case of the proposed
method. In section VII, we evaluated the performance of the
proposed method against the number of locations. Another
advantage of our method is that in addition to the field
experiments in the urban area in [32], we evaluated the
proposed method based on field experiments conducted in
rural and suburban areas.

In this work, we do not compare our proposed method with
other methods because of the following two reasons. First,
the proposed method is a type of joint sensing and commu-
nication systems, that is, it is composed of two stages: the
RSS sensing stage to estimate an RSS map and the message
collection and delivery stage to select locations of the UAV to
collect and deliver messages. To the best of our knowledge,
this is the first demonstration of such a system utilized for dis-
aster recovery systems. Second, although several algorithms
for the VRP have been studied in the literature [21]–[23],
[26], the objective of the work was not to outperform these
algorithms but show the framework of the joint system. In
other words, existing heuristic algorithms can be applied to
the proposed method. Therefore, in this work, to validate the
proposed method, we evaluated the performances of the RSS
sensing stage and the message collection and delivery stage
compared with those of the full sensing method and the brute
search method, respectively, which will be explained in the
following sections.

Notation: We use bold uppercase Roman letters for sets, e.g.,
A, bold uppercase italic letters for matrices, e.g., B, bold
lowercase Roman letters for column vectors, e.g., c, bold
uppercase Greek letters for families of sets, e.g., ∆ and

FIGURE 1. Layout model.

uppercase calligraphic letters for third-order tensors, e.g., E ,
and we mean that lowercase italic subscripts are integers. In
addition, we define f> as the transposition of f , A ⊕ B as
the direct sum of A and B, and |A| as the cardinality of
A. Furthermore, we define ‖B‖∗ as the nuclear norm of B,
‖G‖F as the Frobenius norm of G, and ‖(·)‖n as the `–n norm
of (·), where (·) can be a vector or matrix.

III. MODELS AND ASSUMPTIONS
A. SYSTEM MODEL
We assumed that multiple shelters were present in a disaster-
hit area in which refugees have messages to transmit/receive
and that a UAV with a wireless communication tool visits
the area to collect and deliver messages while hovering
over the area. In addition, we assumed that a server was
installed in each shelter to temporarily store messages from
refugees/UAV, so the UAV collects and delivers messages not
directly from the refugees but via the server. Hereinafter, we
refer to servers in shelters as transceivers (TRXs).

Regarding the message collection and delivery process, we
assumed that it was composed of two stages: the RSS sensing
stage and the message collection and delivery stage. In the
RSS sensing stage, the UAV senses RSSs for TRXs, and
in the message collection and delivery stage, it collects and
delivers messages at fewer locations selected according to the
result of RSS sensing. Note that once adequate locations are
determined, the RSS sensing stage can be skipped.

We considered that shelters were deployed in public areas
such as elementary and junior high schools and parks. In
Osaka City, Japan, more than 400 elementary and junior
high schools are present within 223 km2. We assumed that
the schools were placed within a square area with a size of
223 km2. In this case, the average distance between the two
nearest schools was about 0.7 km. When the UAV flies at a
speed of 40 km/h for 40 min [7], it can visit a maximum of
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38 shelters with a full battery charge. We assumed that each
stage was conducted by one UAV with a full battery charge.
Multiple batteries or UAVs will be considered in future work.

B. LAYOUT MODEL
Fig. 1 shows the layout model involving a 3D region of
interest, P stationary TRXs located out of it, and a UAV
flying in it. The region has a size of Xm × Ym × Zm, and
it is divided into N1 × N2 × N3 = Nv voxels with a size
of ∆Xm × ∆Ym × ∆Zm, where N1, N2, and N3 denote
the numbers of voxels dividing the region along directions
of x, y, and z-axis, respectively. Defining the location of the
center of gravity of the voxel as gijk = [xi, yj , zk]>, we
form the set of all gijk’s as G = {gijk|1 ≤ i ≤ N1, 1 ≤ j ≤
N2, 1 ≤ k ≤ N3}, whose elements are simply referred to as
points. In addition, defining the location of the pth TRX as
tp = [ap, bp, cp]>, we form the set of all indexes for TRXs
as S = {p|1 ≤ p ≤ P}.

In the RSS sensing stage, the UAV visits M points (M ≤
Nv) out of G along a predetermined route and senses RSSs
for TRXs at each point. Defining the location of themth RSS
sensing point as um = [xim , yjm , zkm ]>, we form the set of
all um’s as U = {um|1 ≤ m ≤ M} (U ⊆ G). Here, RSS
sensing efficiency is a key metric for the system, so we define
the sensing rate as Esense = M/Nv.

Note that the RSS in this work includes only a near-
far effect determined by the locations of transceivers and
shadowing determined by the surrounding environment, such
as the distribution of buildings. In other words, the RSS does
not include a time-varying fading effect. To construct an RSS
map by 3D spatial sampling, its resolutions need to be short
enough as compared with the decorrelation distance due to
shadowing [33] as

∆X,∆Y,∆Z < ddecor. (1)

Then, in the message collection and delivery stage, the
UAV visits Q (Q ≤ M ) points out of U along a predeter-
mined route, and it collects and delivers messages at each
point. Defining the location of the qth message collection
and delivery point as wq = [xiq , yjq , zkq ]>, we form the
set of all wq’s as W = {wq|1 ≤ q ≤ Q} (W⊆U ).
In addition, defining the set of indexes for TRXs whose
messages are collected and delivered at the qth point as Sq
with Pq elements, where Pq satisfies

Q∑
q=1

Pq = P, (2)

we form the family of all Sq’s as Σ = {Sq|1 ≤ q ≤ Q}.
The UAV needs to collect and deliver a message for any
TRX at a single point without duplication, so S needs to be
decomposed in the form of a direct sum as

S =
Q
⊕
q=1

Sq. (3)

TABLE 1. SYMBOLS AND NOTATIONS USED IN THIS WORK.

Notation Definition
P Number of TRXs

gijk Center of gravity of the voxel
Nv Number of all voxels
G Set of all gijk’s
tp pth TRX
S Set of all indexes for TRXs
M Number of UAV visit points
um mth RSS sensing point
U Set of all um’s

Esense Sensing rate
wq qth message collection/delivery point
Q Number of wq

W Set of all wq’s
Sq Set of indexes for TRXs whose messages are

collected/delivered at the qth point
Pq Number of elements in Sq

Σ Family of all Sq’s
Vuav UAV flying speed [m/sec]
Lab Link length from ua to ub [m]

Tf(ua,ub) Time required for flying from ua to ub [sec]
Csense RSS sensing probability for the pth TRX at

um

Bp Set of sensing point indexes for the pth TRX
R(um, tp) RSS at um for the pth TRX

Rp RSS map of the pth TRX
Ts(um) Time required for sensing RSSs at um [sec]

Tc(wq , tp) Message collection/delivery time [sec]
Dp Total size of messages to collect/deliver [bit]

C. UAV MODEL
We assumed that the UAV was equipped with a global
positioning system (GPS) receiver to exactly know its 3D
location and a wireless communication tool to communicate
with TRXs and that it flew at a constant speed (Vuav). In
addition, we define the link length and period required for
flying from ua to ub as Lab = ‖ub−ua‖2 m and Tf(ua,ub)
s, respectively.

D. WIRELESS COMMUNICATION MODEL
In the RSS sensing stage, P TRXs transmit their wireless
signals for the UAV, and the UAV tries to receive them to
sense their RSSs. However, the UAV cannot receive all of
them at each RSS sensing point, so we define the probability
that the UAV can sense the RSS for the pth TRX at um as
Csense.

By defining the set of indexes for the points where the UAV
can sense RSSs for the pth TRX as Bp, the RSS map of the
pth TRX is given by

Rp = {Rpimjmkm = R(um, t
p)|m ∈ Bp}, (4)

where R(um, t
p) denotes the RSS at um for the pth TRX.

We refer to the RSS map for M = Nv and Csense = 1 as the
full RSS map and the one for M < Nv as the partial RSS
map. In addition, we defined the time required for sensing
RSSs at um as Ts(um) and assumed that Ts(um) ≈ Ts (1 ≤
m ≤M ).

In the message collection and delivery stage, we defined
the data transmission rate when collecting or delivering mes-
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sages from the pth TRX at wq as f(R(wq, t
p)). Defining

the total size of messages to collect and deliver as Dp bit,
although the messages may be fragmented, we assumed that
the message collection and delivery time was given by

Tc(wq, t
p) = Dp/f(R(wq, t

p)). (5)

When TRXs have data with different sizes, the data collection
and delivery time may be longer than expected because
the message collection and delivery stage does not provide
the optimal solution in such a case. We considered two
approaches to solve this problem. One was to formulate
the optimization problem in the stage by taking account of
the data size. The other was to fragment the messages of
each TRX into data with a maximum size of D and collect
and deliver messages over multiple rounds of the message
collection and delivery stage. In this work, we considered
the latter method, which is appropriate when all TRXs have
sufficiently large data compared with D, and assumed that
Dp ≈ D (1 ≤ p ≤ P ).

IV. PROBLEM STATEMENT
A. RSS SENSING STAGE
When the UAV sequentially visits u1,u2, . . . ,uM , the mini-
mization of the total RSS sensing time is given by

find Û ⊆ G which minimizes

Ttotal =
M∑
m=1

Ts(um) +
M−1∑
m=1

Tf(um,um+1). (6)

B. MESSAGE COLLECTION AND DELIVERY STAGE
When the UAV sequentially visits w1,w2, . . . ,wQ, the min-
imization of the total message collection and delivery time is
given by

find Ŵ ⊆ U, Σ̂ which minimizes

Ttotal =

Q∑
q=1

∑
p∈Sq

Tc(wq, t
p) +

Q−1∑
q=1

Tf(wq,wq+1). (7)

V. SOLUTIONS IN RSS SENSING STAGE
In the RSS sensing stage, since Ts(um) ≈ Ts and Tf � Ts,
assuming constant UAV speed, we reformulated the mini-
mization of the total route length as

find Û ⊆ G which minimizes

Ltotal =
M−1∑
m=1

Lm+1m. (8)

A. PARTIAL SENSING (PS) AND FULL SENSING (FS)
METHODS
We applied a solution method in the TSP to find the shortest
RSS sensing route, where the UAV leaves u1, visits M
sensing points, and returns to uM+1 = u1:

Ltotal =
M∑
m=1

Lm+1m. (9)

In detail, we randomly selected RSS sensing points U′ =
{u′1,u′2, . . . ,u′M} out of G and then reordered U′ so that
Ltotal can be the shortest:

randomly select U′ ⊆ G

Û = arg min
U=U′

Ltotal. (10)

This method is referred to as the PS and FS methods, espe-
cially for M = Nv and Csense = 1. Note that the solution
method is excluded from the scope of this work since many
methods have been applied elsewhere for the TSP, such as the
genetic algorithm [34] and the ant colony system [35].

B. TENSOR COMPLETION (TC) METHOD
Selected RSS sensing points do not give high RSSs for TRXs.
As M decreases, the RSS sensing time becomes shorter;
on the contrary, the message collection and delivery time
becomes contrarily longer although Q increases. Thus, we
proposed a method to shorten both the RSS sensing time
and the message collection and delivery time based on tensor
completion.

Defining a third-order tensor for the full RSS map of the
pth TRX as

Hp ={Hijk|1 ≤ i ≤ N1,

1 ≤ j ≤ N2, 1 ≤ k ≤ N3}, (11)

the total-variation low-rank tensor completion method [31]
constructs the full RSS map as (1 ≤ p ≤ P )

Ĥp = arg min
Hp

λ
3∑

n=1

‖F nHp
(n)‖1

+ (1− λ)
1

3

3∑
n=1

‖Hp
(n)‖∗ (12)

subject to
Hp
ijk = Rpimjmkm (m ∈ Bp), (13)

where Hp
(n) denotes the mode-n unfolding matrix of Hp,

and F n = {fl1l2} denotes the smoothness constraint matrix,
whose element is given by

fl1l2 =

 1 (l2 = l1)
−1 (l2 = l1 + 1)
0 (otherwise)

(14)

with a changeable size according toH(n), that is

1 ≤ l1 ≤ N1, 1 ≤ l2 ≤ N2 ×N3 (n = 1)
1 ≤ l1 ≤ N2, 1 ≤ l2 ≤ N3 ×N1 (n = 2)
1 ≤ l1 ≤ N3, 1 ≤ l2 ≤ N1 ×N2 (n = 3).

(15)

The first and second terms of (12) indicate the total variation,
and low-rank tensor completion, respectively and λ is a
tunable parameter to balance them (0 ≤ λ ≤ 1). This method
is referred to as the TC method, whose computational order
is given by [36], [37]

OTC = O(max(N1, N2, N3)4). (16)
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VI. SOLUTION IN MESSAGE COLLECTION AND
DELIVERY STAGE
In the message collection and delivery stage, since Tc � Tf ,
the minimization problem is simplified as

find Ŵ ⊆ U, Σ̂ which minimizes

Ttotal =

Q∑
q=1

∑
p∈Sq

Tc(wq, t
p). (17)

In (17), the dominant factor to determine the message collec-
tion and delivery time at wq is the maximum of Tc(wq, t

p),
namely, the minimum of f(R(wq, t

p)). Therefore, by tak-
ing into consideration that f(R(wq, t

p)) is an increasing
function of R(wq, t

p), the problem is reformulated by the
maximization of the sum of RSS as

Ŵ, Σ̂ = arg max
W⊆U,Σ

R (18)

R =

Q∑
q=1

Rq (19)

Rq = min
p∈Sq

R(wq, t
p). (20)

A. BRUTE SEARCH (BS) METHOD
One method is to pick up a combination of W and Σ, which
gives the maximalR in (18) out of all possible combinations.
For the PS method without the TC method, to evaluate (20),
it is necessary to check the condition whether the RSSs of the
TRXs included in Sq are sensible at wq , that is,

q ∈
⋂
p∈Sq

Bp (21)

for each of all the combinations of W and Σ, which seems
complicated. However, by adding RSS values low enough
(typically −200 dBm) to be identified as RSS-unsensible
points to the pth RSS map as

R̃p = Rp
⋃
{Rpimjmkm = Rlow|1 ≤ im ≤ N1,

1 ≤ jm ≤ N2, 1 ≤ km ≤ N3,m /∈ Bp} (22)

R becomes searchable for all combinations of W and Σ,
and finally a solution automatically rejects RSS-unsensible
points. This method is referred to as the BS method, whose
computational order in terms of the number of steps is lower-
bounded by (Appendix A)

OBS = O(P ×MQ). (23)

Note that when M and Q are large, this method becomes un-
usable due to its extremely higher computational complexity.

B. CORRELATION (CO) METHOD
The normalized RSS correlation between Rp and Rp′ (1 ≤
p, p′ ≤ P, p 6= p′) is defined as

ρ(Rp,Rp′) =
Cov(Rp,Rp′)

σRpσRp′
, (24)

where variables are averaged over only the RSS sensing
points commonly included in Bp and Bp′ as

1

|Bp
⋂

Bp′ |
∑

m∈Bp
⋂

Bp′

(·). (25)

It is reasonable that the UAV can collect and deliver mes-
sages jointly for multiple TRXs with higher RSS correlations
among them at a point; in other words, S should be decom-
posed into subsets, where intra-subset elements have higher
RSS correlations, whereas inter-subset elements have lower
RSS correlations. Therefore, defining an RSS threshold as
ρth, S can be decomposed as

find Σ̂

subject to{
ρ(Rp,Rp′) ≥ ρth (p, p′ ∈ Sq, p 6= p′)

ρ(Rp,Rp′) < ρth (p ∈ Sq, p
′ ∈ Sq′ , p 6= p′)

(1 ≤ q, q′ ≤ Q, q 6= q′).

This decomposition can be reformulated as a graph coloring
problem (GCP) (Appendix B), and many solution methods
have been proposed to solve the GCP [38].

When Sq is given from (20), Rq is reduced to wq . There-
fore, by using Σ̂ = {Ŝq|1 ≤ q ≤ Q}, we can divide the op-
timization problem (18), (19), and (20) into Q sub-problems,
and wq (q = 1, 2, . . . , Q) is obtained by maximizing Rq
instead of R:

ŵq = arg max
wq∈U

Rq (26)

Rq = min
p∈Ŝq

R(wq, t
p). (27)

This method is referred to as the CO method, whose compu-
tational order is given by (Appendix C)

OCO = O(P 2 ×M). (28)

Note that the solution does not give the shortest route, so W
should be finally reordered to make the route the shortest.

TABLE 2. DETAIL ON THE FIRST EXPERIMENT CONDUCTED IN THE
RURAL AREA.

Location Mimamisouma City

Origin of the sensing region
Latitude: 37◦31′12.99′′N
Longitude: 141◦1′47.59′′E
Altitude: 10 m

Sizes of sensing region X = 150 m ×Y = 80 m ×Z = 40 m

Sensing resolution
∆X = ∆Y = ∆Z = 10 m
N1 = 15, N2 = 8, N3 = 4,
and Nv = 480

Number of TRXs (Q) 1
Wireless communication tool 5 GHz band PSK

Transmission power 30 dBm
Antenna Vertically polarized dipole antenna

Antenna gain 2.14 dBi
UAV Hexaroter
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FIGURE 2. Photos of the first experiment, which was conducted in the rural area.

(a) Full RSS map. (b) Partical RSS map. (c) Constructed full RSS map.

dBm dBm dBm

FIGURE 3. RSS maps for Esense = 0.25 and λ = 0.07 obtained from the first experiment, which was conducted in the rural area.
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FIGURE 4. Dependency of the RSE on λ obtained from the first experiment,
which was conducted in the rural area.

VII. PERFORMANCE EVALUATION
A. COMPARISON OF COMPUTATIONAL EFFICIENCIES
First, for the FS method combined with the BS method, by
setting M = Nv in (23), its computational order is lower-
bounded by

OFS/BS = O(P ×NQ
v ). (29)
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FIGURE 5. Dependency of the RSE on Esense obtained from the first
experiment, which was conducted in the rural area.

Second, for the PS method combined with the CO method,
by setting M = bEsense × Nvc in (28), its computational
order is upper-bounded by

OPS/CO = O(P 2 × Esense ×Nv). (30)

Third, for the PS method combined with the CO and TC
methods, since max(N1, N2, N3)4 in (16) is usually much
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larger than P 2×Esense×Nv in (28), its computational order
is given by

OPS/TC/CO = O(max(N1, N2, N3)4). (31)

Comparing (29) with (30), if Esense < NQ−1
v /P , which

is always satisfied when Q > 1, the PS/CO method is
computationally more efficient than the FS/BS method.

Moreover, from (31), the computational order of the PS
method combined with the CO and TC methods is region
shape-dependent, but since

N
1
3
v ≤ max(N1, N2, N3) ≤ Nv (32)

comparing (29) with (31), when Q ' 3, the PS/TC/CO
method is computationally more efficient than the FS/BS
method.

B. FIELD EXPERIMENTS
To evaluate the performance of the proposed method, we
conducted experiments in rural, suburban, and urban areas.
The first and second experiments were preliminary to confirm
the relationship between the sensing rate of the PS method
and the full RSS map constructability by the TC method, and
the third experiment was to demonstrate the effectiveness of
the CO method combined with the PS and TC methods. In
each experiment, we predetermined the 3D spatial sampling
resolutions to satisfy (1) (Appendix D).

As the performance metric of the full RSS map con-
structability, we used the relative square error (RSE) defined
as

RSE =

√∑P
p=1 ||Hp − H̃p||F

2√∑P
p=1 ||Hp||F

2
. (33)

All performance metrics shown in the following figures are
medians obtained over 1,000 random selections of RSS sens-
ing points.

1) Rural Area
Figs. 2 (a)–(c) show the photos of the first experiment, where
the sensing region was a rice field in a rural area. We placed
a single TRX on the ground, and a UAV was used to sense its
RSS. Table 2 summarizes the details of the experiment.

Figs. 3 (a)–(c) show the comparison of the full RSS map
by the FS method, partial RSS map by the PS method, and
full RSS map constructed from the partial RSS map by the
TC method, where Esense and λ are set to 0.25 and 0.07,
respectively. The sensing region had a flat ground surface,
but groves were located to the west and south of the land, so
the effect of reflected wireless signals by them was observed
in Fig. 3 (a). The RSS was simply not a monotonically
decreasing function of the distance between the UAV and
the TRX, in other words; some higher and lower RSS values
were locally observed. Comparing the RSS maps in Figs. 3
(a) and (c), we deduced that by sensing RSSs in only 25% of
the entire region, the TC method can construct the full RSS
map well.

Figs. 4 and 5 show the dependencies of the RSE on λ and
Esense, respectively. We can see from these figures that the
RSE improves as Esense increases, where λ can minimize the
RSE at around 0.1 for Esense more than 0.25, and the RSE
for Esense more than 0.1 is sufficiently small.

TABLE 3. DETAIL ON THE SECOND EXPERIMENT CONDUCTED IN THE
SUBURBAN AREA.

Location Tarumizu city

Origin of the sensing region
Latitude: 31◦30′55.11′′N
Longitude: 130◦46′48.55′′E
Altitude: 30 m

Sizes of the sensing region X = 30 m ×Y = 35 m ×Z = 25 m

Sensing resolution
∆X = ∆Y = ∆Z = 5 m
N1 = 6, N2 = 7, N3 = 5,
and Nv = 210

Number of TRXs (Q) 1
Wireless communication tool 5 GHz band PSK

Transmission power 27 dBm
Antenna Vertically polarized dipole antenna

Antenna gain 2 dBi
UAV Hexaroter

2) Suburban Area
Figs. 6 (a)–(c) show the photos of the second experiment,
where the sensing region was involved in a suburban area. We
placed a single TRX on the ground and used a UAV to sense
its RSS. Table 3 summarizes the details of the experiment.

Figs. 7 (a)–(c) show the comparison of the full RSS map,
partial RSS map, and constructed full RSS map, whereEsense

and λ are set to 0.25 and 0.07, respectively. Similar to the
results in the first experiment, it seems that by sensing RSS
in only 25% of the entire region, the TC method can construct
the full RSS map well.

Figs. 8 and 9 show the dependencies of the RSE on λ and
Esense, respectively. In these figures, we can see tendencies
similar to those in the first experiment, and especially, λ
can minimize the RSE at around 0.1 for Esense more than
0.25, as shown in Figs. 4 and 8, although the surrounding
environments are different for the rural and suburban areas.
We can also see from Fig. 9 that there is a threshold value for
Esense to minimize the RSE but the threshold of 0.15 in Fig. 9
is higher than that of 0.1 in Fig. 5 because the RSS fluctuates
more than above the buildings owing to their reflections in
the second experiment.

3) Urban Area
Figs. 10 (a)–(e) show the photos of the third experiment,
where the sensing region was the one surrounded by build-
ings in Osaka City University. We placed 7TRXs indoors
near the exterior wall windows, which transmitted the 2.4
GHz band Wi-Fi [39] signals. The experimental site was
located in an urban area, so piloting a UAV in the air was
strictly prohibited, so instead of a UAV, we used a receiver
(RX) attached to the top of a pole, as shown in Fig. 10 (g).
Table 4 summarizes the details of the experiment.

Figs. 11 (i)–(vii) show the comparison of the full RSS
map, partial RSS map, and constructed full RSS map for
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FIGURE 6. Photos of the second experiment, which was conducted in the suburban area.

(a) Full RSS map. (b) Partical RSS map. (c) Constructed full RSS map.

dBmdBm dBm

FIGURE 7. RSS maps for Esense = 0.25 and λ = 0.07 obtained from the second experiment, which was conducted in the suburban area.
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FIGURE 8. Dependency of the RSE on λ obtained from the second
experiment, which was conducted in the suburban area.

the 7TRXs, where Esense and λ are set to 0.25 and 0.07,
respectively. Similar to the results in the first and second
experiments, it seems that by sensing RSS in only 25% of

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

R
el

at
iv

e 
sq

ua
re

d 
er

ro
r

Sensing rate (Esense)

TC

FIGURE 9. Dependency of the RSE on Esense obtained from the second
experiment, which was conducted in the suburban area.

the entire region, the TC method can construct the full RSS
map well.

Fig. 12 shows the dependency of the RSE on λ. No distinct
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FIGURE 10. Photos of the third experiment, which was conducted in the urban area.

TABLE 4. DETAIL ON THE THIRD EXPERIMENT CONDUCTED IN THE
URBAN AREA.

Location Osaka City University

Origin of the sensing region
Latitude: 34◦35′32.98′′N
Longitude: 135◦30′14.87′′E
Altitude: 1 m

Sizes of the sensing region X = 30 m ×Y = 8 m ×Z = 10 m

Sensing resolution
∆X = ∆Y = ∆Z = 2 m
N1 = 15, N2 = 4, N3 = 5,
and Nv = 300

Number of TRXs (Q) 7
Wireless communication tool 2.4 GHz band Wi-Fi
Transmission Power 16 dBm
Antenna Vertically polarized dipole antenna
Antenna gain 2.1 dBi

λ, which minimizes the RSE is present, but λ of around 0.1
is a proper choice for reducing the RSE. Fig. 13 shows the
dependency of the RSE on Esense, where Esense more than
0.2 can make the RSE flat. At Esense = 0.25 and λ = 0.07,
we obtained RSE = 0.050 for the third experiment, whereas
RSE = 0.017 and RSE = 0.032 for the first and second
experiments, respectively.

Fig. 14 shows Ltotal versus Esense for the RSS sensing
stage, where we solved the TSP with the genetic algorithm
solver in the MATLAB global optimization toolbox [40]. It
is quite natural that Ltotal increases as Esense increases, and
the PS method with Esense = 0.25 can make Ltotal less than

one-third of that for the FS method. In the following, we set
Esense = 0.25 and λ = 0.07, and this is also the reason why
we set so in Figs. 3, 7, and 11.

Fig. 15 shows Ttotal versus Q, where we assumed D =
100 MB and f(R(wq, t

p)) was in Mbps for the IEEE 802.11-
2016 standard (20 MHz band) as [41]:

f(R(wq, t
p)) =



6.5 (−82 ≤ R(wq, t
p) < −79)

13.0 (−79 ≤ R(wq, t
p) < −77)

19.5 (−77 ≤ R(wq, t
p) < −74)

26.0 (−74 ≤ R(wq, t
p) < −70)

39.0 (−70 ≤ R(wq, t
p) < −66)

52.0 (−66 ≤ R(wq, t
p) < −65)

58.5 (−65 ≤ R(wq, t
p) < −64)

65.0 (−64 ≤ R(wq, t
p))

.

(34)

We solved the GCP with the MATLAB optimization toolbox.
In Fig. 15, since the FS/BS method gives the performance
lower-bound, we can see that for the experimental layout, the
UAV can collect and deliver all messages for the 7 TRXs
almost in the shortest time at 2 or 3 points (Q = 2 or 3)
if they are adequately selected. Comparing the performances
by the FS method by setting M = Nv and Csense = 1, we
found that there is no large difference in Ttotal between the
FS/BS and FS/CO methods, so the CO method can find truly
adequate message collection and delivery points for all TRXs
while reducing computational complexity. Ttotal by the 25%-
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dBm dBm dBm

dBm dBm dBm

dBm dBm dBm

dBm dBm dBm

(a) Full RSS map. (b) Partical RSS map. (c) Constructed full RSS map.

(a) Full RSS map. (b) Partical RSS map. (c) Constructed full RSS map.

(a) Full RSS map. (b) Partical RSS map. (c) Constructed full RSS map.

(a) Full RSS map. (b) Partical RSS map. (c) Constructed full RSS map.
(i)TRX#1.

(ii)TRX#2.

(iii)TRX#3.

(iv)TRX#4.
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(a) Full RSS map. (b) Partical RSS map. (c) Constructed full RSS map.

dBm dBmdBm

(a) Full RSS map. (b) Partical RSS map. (c) Constructed full RSS map.

(a) Full RSS map. (b) Partical RSS map. (c) Constructed full RSS map.

dBm dBmdBm

dBm dBmdBm

(v)TRX#5.

(vi)TRX#6.

(vii)TRX#7.

FIGURE 11. RSS maps for Esense = 0.15 and λ = 0.07 obtained from the third experiment, which was conducted in the urban area.

PS method tends to be longer than that by the FS method,
but there is no difference between them at Q = 1. Since
Ttotal by the PS/TC/CO method is a little longer than that
obtained by the PS/CO method for Q ≥ 3, the TC method
is effective when selecting the number of message collection
and delivery points much smaller than that of TRXs.

Fig. 16 shows the message collection and delivery prob-
ability versus Csense. As Csense decreases from 1.0, since
the number of points decreases where the UAV can collect
messages jointly for multiple TRXs, the message collection
and delivery probability decreases, especially more abruptly
for smallerQ. Moreover, since the TC method constructs full
RSS maps for all TRXs, it can always collect and deliver all
the messages, even for lower Csense.

Figs. 17 and 18 show the comparison of the dependency of
Ttotal onCsense between the PS/CO and PS/TC/CO methods.
For the PS/CO method, asQ decreases, Csense increases, and
Ttotal goes to infinity. For the PS/TC/CO method, with its full
RSS map constructability, it can always keep Ttotal finite.
However, for lower Csense, since the TC method wrongly
constructs full RSS maps, Ttotal becomes longer, approach-
ing 180 s.

Finally, Fig. 19 shows the total route length required for all
message collection and delivery versus Q. We can see from
this figure that the total route length when the UAV collects
and delivers messages at 2 or 3 points (Q = 2 or 3) can be
less than one-sixth or half of the one when the UAV collects
and delivers messages at a different point for each TRX (Q =
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FIGURE 12. Dependency of the RSE on λ obtained from third experiment,
which was conducted in the urban area.
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FIGURE 13. Dependency of the RSE on Esense obtained from third
experiment, which was conducted in the urban area.

7).

VIII. CONCLUSION
In this work, we proposed a method for the 3D determina-
tion of message collection and delivery locations for UAV-
enabled disaster recovery networks. Our method is based on
two functions: the 3D RSS map construction based on tensor
completion and the message collection and delivery location
determination based on the correlation calculation of RSS
maps. The theoretical analysis of the computational complex-
ity revealed that the proposed method can reduce the com-
putational order in terms of the number of algorithm steps
compared to the brute search-based method. Furthermore, the
experimental performance evaluation conducted in the rural,
suburban, and urban areas revealed that the proposed method
can save time and energy while constructing 3D RSS maps
and determine the message collection and delivery locations
using the constructed 3D RSS maps.

We have conducted experiments in small sensing areas
since it is likely that a dense TRX occurs, even in small sens-
ing areas, if there are multiple TRXs in a shelter or a shelter
is located next to another. In the future, we will conduct more
experiments in a larger area in addition to experiments using
a UAV in urban areas. Furthermore, we need to tackle the
problem of joint determination of a cyclic route and message
collection and delivery locations to minimize the total energy
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FIGURE 15. Dependency of Ttotal on Q obtained from the third experiment,
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consumption. In addition, data transmission technologies
with multiple antennas could be used in UAV-based disaster
recovery networks. For example, MIMO techniques not only
increase the data transmission rate but also enable the UAV
to collect and deliver messages simultaneously from/to TRXs
deployed in different shelters.

.

APPENDIX A COMPUTATIONAL COMPLEXITY OF BS
METHOD
The number of ordered arrangements ofQ points selected out
of M points is given by

NW = MPQ. (35)

In addition, the number of partitioning S with P elements
into Q non-empty subsets is given by the Sterling number of
the second kind as [42]

NΣ =
1

Q!

Q∑
n=1

(−1)
Q−n

QCnn
P . (36)

For each combination of W and Σ with the total number of
NW ×NΣ,

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3065698, IEEE Access

Danjo et al.: 3D Determination of Message Collection and Delivery Locations for a UAV-Enabled Disaster Recovery Networks

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

li
ty

 o
f 

se
le

ct
in

g 
co

ll
ec

ti
on

 p
oi

nt
s

RSS sensable probability (Crec)

PS/CO(Q=1)
PS/CO(Q=2)
PS/CO(Q=3)
PS/CO(Q=4)
PS/CO(Q=5)
PS/CO(Q=6)
PS/CO(Q=7)

PS/TC/CO

FIGURE 16. Message collection/delivery probability versus Csense obtained
from the third experiment, which was conducted in the urban area.

100

110

120

130

140

150

160

170

0 0.2 0.4 0.6 0.8 1T
ot

al
 d

at
a 

co
ll

ec
ti

on
 ti

m
e 

(T
to

ta
l)

 [
s]

RSS sensable probability (Crec)

PS/CO(Q=1)
PS/CO(Q=2)
PS/CO(Q=3)
PS/CO(Q=4)

PS/CO(Q=5)
PS/CO(Q=6)
PS/CO(Q=7)

100

120

140

160

180

200

220

0 0.2 0.4 0.6 0.8 1

T
ot

al
 d

at
a 

co
ll

ec
ti

on
 ti

m
e 

(T
to

ta
l)

 [
s]

RSS sensable probability (Crec)

FIGURE 17. Dependency of Ttotal on Csense using the PS/CO method
obtained from the third experiment, which was conducted in the urban area.

• Finding a minimal RSS for the TRXs labeled with Sq
requires Pq − 1 steps (1 ≤ q ≤ Q), so from (2), the
number of steps for (20) is calculated as

Nmin =

Q∑
q=1

(Pq − 1) = P −Q. (37)

• The number of steps for (19) is written as

Nadd = Q− 1. (38)

Furthermore, finding the maximal R in (18) requires steps of

Nmax = NW ×NΣ − 1, (39)

so from (35)–(39), the number of steps for the BS method is
written as

NBF = (Nmin +Nadd)×NW ×NΣ +Nmax. (40)

The computational order of NW is given by

OW = O(MQ), (41)

and NΣ is lower-bounded by

NΣ ≥ 1, (42)
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FIGURE 18. Dependency of Ttotal on Csense using the PS/TC/CO method
obtained from the third experiment, which was conducted in the urban area.
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FIGURE 19. Total route length for message collection and delivery versus Q
obtained from the third experiment, which was conducted in the urban area.

so substituting (37)–(39), (41), and (42) into (40), the com-
putational order of the BS method is finally lower-bounded
by

OBF = O(P ×MQ). (43)

APPENDIX B FORMULATION OF CO METHOD AS A
GRAPH COLORING PROBLEM (GCP)
We consider an undirected graph, where vertexes are com-
posed of TRXs. The set of vertexes is given by

V = {vp|1 ≤ p ≤ P} (44)

and the adjacency matrix is given by

A = {app′ |1 ≤ p, p′ ≤ P} (45)

app′ =

{
0 (ρ(Rp,Rp′) ≥ ρth)

1 (ρ(Rp,Rp′) < ρth)
, (46)

which means that edges connect only vertexes with lower
correlations. The decomposition problem is transformed into
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a GCP to partition V into Q non-empty subsets whose
elements are not connected with edges as

find Σ̂ which satisfies

app′ =

{
1 (p ∈ Sq, p

′ ∈ Sq′ , q 6= q′)
0 (p ∈ Sq, p

′ ∈ Sq′ , q = q′)
. (47)

For anA, which is determined by a given ρth, the GCP may
give no solution, so we need to repeatedly solve it until it
gives a solution by changing A through ρth ← ρth + ∆ρ
(0 < |∆ρ| < 1).

Now, let us consider the computational complexity when
applying a BS method to the GCP. The number of partitioning
P vertexes into Q subsets is given by (36), which is upper-
bounded by [43]

NΣ ≤
1

2
PCQQ

P−Q, (48)

and the number of examining any pairs of vertexes whether
they have an edge or not is written as

Nexam = PC2. (49)

In addition to these, when applying a bisection method to
search a solution with a higher ρth, the maximal number of
iterations is given by [44]

Nitl = log2(2/|∆ρ|) = 1− log2 |∆ρ|. (50)

The number of steps for solving the GCP is given by multi-
plication of NΣ, Nexam, and Nitl, so from (48), (49), and
(50), its computational order is upper-bounded by

Ogcp = PQ+2 ×QP−Q × (1− log2 |∆ρ|). (51)

APPENDIX C COMPUTATIONAL COMPLEXITY OF CO
METHOD
First of all, (24) contains additions, subtractions, multiplica-
tions, and a division, but from (25), the number of steps for
the correlation evaluation is upper-bounded by

Nρ ∝
P−1∑
p=1

P∑
p′>p

|Bp
⋂

Bp
′
| ≤ PC2M. (52)

Secondly, the order of solving the GCP is given by (51).
Thirdly, in (26) and (27), for a given Ŝq , finding a minimal
RSS requiresPq−1 steps at wq (1 ≤ q ≤M ), and finding
a maximal RSS among them requires M − 1 steps, so the
number of total required steps becomes

Nmin−max =

Q∑
q=1

{(Pq−1)M+(M−1)} = PM−Q.

(53)
Consequently, from (52), (51), and (53), takingM � P ,Q
and | log2 |∆ρ||, the computational order of the CO method
is upper-bounded by

OCO = O(P 2 ×M). (54)

APPENDIX D DETERMINATION OF THE 3D SPATIAL
SAMPLING RESOLUTIONS
For the wireless signals with carrier frequencies of more than
800 MHz, it is well-known that the auto-correlation function
of shadow fading in land mobile communications has a single
exponential decay with a decorrelation distance of ddecor.
Typical values of ddecor are listed in [45], such as 37 m
(rural macromodel), 40 m (suburban macromodel), and 37
m (urban macromodel), so (1) is satisfied when setting ∆X ,
∆Y , and ∆Z < 10 m.
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