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ABSTRACT Wildfires destroy thousands of hectares every summer all over the globe. To provide an
effective response and to mitigate wildfires impact, firefighters require a real-time monitoring of the fire
front. This paper proposes a cooperative reinforcement learning (RL) framework that allows a team of
autonomous unmanned aerial vehicles (UAVs) to learn how to monitor a fire front. In the literature,
independent Q-learners were proposed to solve a wildfire monitoring task with two UAVs. Here we propose
a framework that can be easily extended to a larger number of UAVs. Our framework builds on two
methods: multiple single trained Q-learning agents (MSTA) and value decomposition networks (VDN).
MSTA trains a single UAV controller, which is then "copied" to each of the UAVs in the team. In contrast,
VDN trains agents to learn how to cooperate. We benchmarked in simulations our two considered methods
– MSTA and VDN – against two state-of-the-art approaches: independent Q-learners and a joint Q-learner.
Simulation results show that our considered methods outperform state-of-the-art approaches in a wildfire
front monitoring task with up to 9 fixed-wing and multi-copter UAVs.

INDEX TERMS Robot learning, Multi-robot systems, Unmanned aerial vehicles, Intelligent robots, Mobile
robots, Robot control

I. INTRODUCTION

Massive wildfires are spreading across the globe in past
years, while causing dramatic social, economical and envi-
ronmental effects [1]. Most tragic social effects of wildfires
include the loss of human lives, as well as injuries caused
by heat and flames, smoke inhalation, vehicle crashes, debris
and heart attacks. Economical effects of wildfires include the
loss of houses, infrastructure, livestock, timber, etc. These
losses are estimated to have reached billions of dollars for
single large wildfires. Environmental effects include both
a short term decrease in air quality due to smoke, and a
change in global atmosphere composition, as large wildfires
emit large amounts of carbon dioxide leading to a global
temperature increase. Wildfires also affect biodiversity; in
extreme cases leading to local extinctions.

In order to fight wildfires, it is vital to have accurate real-
time information of the fire spread and movement of the fire
front, fuel maps, and weather conditions. The availability of
real-time information highly increases the success of the fire
fighting effort and reduces the risk for the fire fighters [2].

Satellite images are currently one of the main sources to

obtain real-time information of a wildfire. However, these
are only received once the satellite passes over the area of
interest. Moreover, satellite images lack from a high spatial
resolution, which is not suitable for small fires [3]. Another
alternative source of information are manned aircraft, which
are costly and require a highly skilled pilot. One of the most
promising solutions to gather real-time information during a
wildfire is the use of autonomous unmanned aerial vehicles
(UAVs) [3]. Autonomous UAVs have a flight controller that
is able to accept external movement commands, in addition
to the ones commanded by the remote controller. An example
of external commands could be GNSS coordinates to which
an UAV should fly to. External commands can be either sent
from a base station using a communication link, or can be
commanded directly from a microcomputer that is mounted
on the drone and is connected physically to the flight con-
troller. Autonomous UAVs require little human resources, as
the system can be launched by a single operator. In practice,
due to the current legislation in most countries, a safety pilot
is however required to control the drone in case of emergency.

The use of multiple autonomous UAVs, instead of a

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3055651, IEEE Access

Alberto Viseras et al.: Wildfire Front Monitoring with Multiple UAVs using Deep Q-Learning

single one, has a clear advantage: it increases the system
efficiency and robustness [2]. Moreover, by using multiple
UAVs, smaller and cheaper aircraft could be used, which
would reduce the total system cost and could increase the
system adoption by organizations that are short on financial
resources. Contrarily, multiple UAVs involve an additional
challenge: the need of an algorithm that allows them to
coordinate with each other. While infrared and visible-light
image-based wildfire detection and drone hardware are near-
operational, algorithms for cooperative control of multiple
drones for wildfire monitoring are yet to be further investi-
gated [4], [5], [6], [7], [8], [9].

In the literature, cooperative control is typically achieved
by planning predefined trajectories, or by means of ap-
proaches based on decentralized control theory or receding
horizon optimization. We refer the reader to [10] for more
details. In [11] the authors present an approach that goes one
step forward, and outperforms a receding horizon optimiza-
tion method for monitoring a wildfire with two aircraft. The
method proposed in [11] uses deep reinforcement learning
(Deep-RL), and shows that learning-based approaches are a
promising alternative for cooperative control tasks. In partic-
ular, the authors use independent Q-learners [12], [13], which
is a simple and widely used approach in multi-robot learning.
This has however the disadvantage that coordination among
robots, arising in a cooperative multi-agent reinforcement
learning (cMARL) setting, is ignored.

Our objective in this paper is to investigate approaches that
can better deal with the challenges associated to cMARL in
a wildfire monitoring task with multiple UAVs. Specifically,
we propose the use of two methods that are based on deep
Q-learning (DQN): multiple single-trained agents (MSTA)
and value decomposition networks (VDN) [14]. MSTA is
a simple learning strategy (even simpler than independent
learning) that consists of first training single agents, and
then testing with multiple agents. Although MSTA does not
account for the multi-agent setting (like in independent learn-
ing), MSTA shows great benefits compared to it. Contrarily,
VDN tackle problems arising in cMARL by using a special
structure of the Q-function that is learned centrally for all
agents.

We evaluate our proposed methods in simulations in a
wildfire front monitoring task with up to 9 UAVs. To simulate
the wildfire, we use an stochastic model that incorporates
wind. Moreover we analyze two different UAV models: a
multi-copter and a fixed-wing model. Results of the simu-
lations demonstrate that our proposed methods outperform
state-of-the-art approaches. In addition, we analyze the ad-
vantages and drawbacks of both MSTA and VDN algorithms
in terms of the task complexity and of the scalability with the
number of UAVs.

A. CONTRIBUTIONS AND PAPER OUTLINE
The main contribution of this paper is a novel formulation
of a wildfire monitoring task as a cMARL problem. This
formulation allows us to apply MSTA and VDN methods to

the monitoring task. The use of MSTA and VDN brings us to
the next paper contributions:
• Our proposed cMARL formulation outperforms state-

of-the-art RL techniques both in learning speed and
resulting score.

• We analyzed the effect of the UAV model on the algo-
rithms’s performance.

• We investigated the scalability of the algorithms for up
to 9 UAVs. Previous work [11] only considered up to 4
UAVs. This demonstrates the scalability of our proposed
methods.

The remainder of the paper is organized as follows. First,
we review the related work in Section II. Then we state
the problem formally in Section III. Next we introduce in
Section IV the core concepts of RL and cMARL algorithms.
This is followed in Section V by a detailed description of the
algorithms we propose to solve a wildfire monitoring task.
Then we test our algorithms in simulations in Section VI.
We finalize with a summary and outlook of the paper in
Sections VII and VIII.

II. RELATED WORK
The use of UAVs to gather information has been studied
in a broad domain of applications. These include, but are
not limited to, smart agriculture [15], search and rescue
missions [16], post-disaster assessment tasks [17], mapping
of hazardous material [18], or wildfire monitoring [2]. For
a comprehensive survey on drone applications, we refer the
reader to [19], [20].

In this paper, we focus on a wildfire monitoring appli-
cation [2]. Infrared and visible light cameras, as well as
the combination of both of them, have been used to detect
wildfires, track the fire front or search for hot-spots after a
fire [3]. In [21], the authors outlined several infrared-light-
based techniques to track wildfires from UAVs and satellites.

Airborne wildfire monitoring and detection offers a higher
spatial and temporal resolution compared to satellite imaging
[3], [22]. In [23], the authors highlighted the operational
aspects for wildfire monitoring with a remotely controlled
UAV in large environments. Autonomous UAVs, in contrast
to remotely controlled ones, reduce the personnel cost and
operational requirements required to monitor a wildfire. In
this respect, the use of autonomous UAVs, together with
ground-based robots, was proposed in [24]. Multiple UAVs
offer clear advantages in terms of efficiency with respect to a
single-UAV system [3]. Algorithms to control a fleet of UAVs
in a simulated wildfire monitoring task were proposed in [2],
[7], [8], [25]–[27]. The authors in [28] proposed an online
decentralized method to estimate the model of a wildfire. The
proposed methods were tested using real hardware and data
obtained from an stochastic fire simulator. In [29], the authors
went one step further and proposed a cooperative algorithm,
which they tested in field experiments.

Aforementioned works rely on control theory techniques
to decide on the UAVs movement. In [11], the authors
showed that Deep-RL-based techniques outperform control
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theory techniques (in particular, a receding-horizon con-
troller) for a wildfire monitoring task with 2 aircraft using
an stochastic wildfire simulator. Specifically, DQN based
independent learners were used in [11] to train the agents.
Inspired by [11], we decided to further investigate the use of
Deep RL for wildfire monitoring with multiple UAVs.

In [6], the authors investigated a Deep RL technique to
find trees that are burning and apply a retardant to extinguish
the fire. The work from [6] focuses on the detection and
extinguishing part of the problem, and not on the monitoring
aspect as we do in this paper.

There are multiple works in the literature that focus on the
cooperative control of multiple agents for other applications
that are not related to wildfire. For example, in [30] the
authors used an equilibrium-based Q-learning variant to learn
a coverage task. In [31], a decentralized Q-learning variant
was proposed for a fully cooperative warehouse tool deliv-
ery problem. Deep-RL has been also used for information
gathering tasks. In [32], the authors proposed DeepIG, which
allows agents to learn how to gather information while avoid-
ing inter-robot collisions. DeepIG was tested in experiments
with 3 UAVs in a terrain mapping lab experiment.

The works in [11], [30]–[32] proposed algorithms to learn
a multi-robot task and exemplified the challenges that arise
in cMARL problems. In the literature, we can find a wide
range of other algorithms to tackle cMARL problems. The
most common approach is independent learning agents [12],
[13]. This uses a single RL algorithm for each agent, while it
ignores the rest of the agents in the environment. Independent
learning has been combined with deep Q-learning [11], [33],
and with policy gradient methods [32], [34].

One of the main problems that arises in independent learn-
ing is the non-stationarity of the environment [33], [35]. This
is particularly relevant in DQN-based approaches [36], which
rely on an experience replay memory (ERM) that might
become obsolete for non-stationary environments [37].

Independent learning is, due to its simplicity, one of the
standard benchmarks for cMARL algorithms. Another stan-
dard baseline is the use of a joint agent [35], which combines
all agents into a central one. A joint agent does not scale
with the number of agents, as the action space grows expo-
nentially with the number of agents. One solution to tackle
the scalability problem is central training of decentralized
policies (CTDP) [38]. CTPD is a technique that combines
independent and joint learners, and has become a standard
paradigm in multi-agent learning. Examples of algorithms
that use CTPD are COMA [39] and VDN [14], [40]. COMA
uses a centralized critic at training time to train local policies.
In particular, we use VDN [14], [40] as CTPD technique.
VDN decompose the Q-function into local ones for each
agent and use the decomposition only for central training.
As benchmarks, we select independent learners and a joint
agent, as these are the baselines that are typically considered
in the literature.

In Table 1 we present an overview of the most relevant
works in the context of this paper. This summary shows

us that the only paper that addresses a wildfire monitoring
task is [11]. Therefore, we decided to consider [11] as our
benchmark.

III. PROBLEM STATEMENT
We aim to efficiently monitor a wildfire front with multiple
autonomous UAVs. First, we introduce the wildfire and UAV
model that will be used in the rest of the paper. Then we
introduce the score, which is a metric that allows us to
evaluate the performance of the monitoring task.

A. WILDFIRE MODEL
Our stochastic wildfire model builds on the one from [11].
We define a wildfire as a two-dimensional grid. Each grid
cell (n,m) has three values associated to it: (i) an integer
value fn,m that quantifies the amount of fuel remaining in
the cell, (ii) a binary value bn,m that is 1 if (n,m) is burning
and is 0 otherwise, and (ii) an ignition probability Pn,m that
quantifies how likely cell (n,m) will start burning at current
iteration.

Algorithm 1: Stochastic wildfire simulation
Result: Updated b, f and P data structures
Initialize b with one on the desired starting fire cells

and zero on the rest;
Initialize f with the desired amount of fuel on each

cell;
Initialize probability P with zero values for each cell;
while Simulation is not finished do

for each cell (n,m) do
if bn,m == 1 then

if fn,m > 0 then
fn,m = fn,m − 1 ;

else
bn,m = 0;

else
for each neighbour cell (k,l) do

update probability Pn,m with (1) ;
Update each bn,m based on Pn,m;

Grid cell values are updated as follows: While cell (n,m)
is burning, it consumes one unit of fuel each iteration, until
there is no fuel left and it gets extinguished. If a cell has
fuel and is not burning, it might ignite. The probability Pn,m

of cell (n,m) igniting at any given time depends on all
other cells, denoted by (k, l). Let us define w as a vector
that determines wind speed and direction, dnmkl the vector
that connects cells (n,m) and (k, l), and Pnmkl denotes
the probability that cell (k, l) ignites (n,m). The latter is
separated in two terms: a term pnmkl,0 that depends only on
the distance between cells, and a term pnmkl,w that is related
to wind. These results in the following definition for Pn,m:

Pnm = 1−
‖dnmkl‖<dmax∏

k,l

[1− Pnmkl], (1)
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[11] [6] [32] This work

Used method DQN independent learners Novel extension of DQN DeepIG VDN and MSTA
UAV Type Fixed-wing Multi-copter Multi-copter Multi-copter and fixed-wing
Focused on wildfire monitoring 3 ∼ 7 3
Results Outperforms a receding-horizon controller Outperforms the proposed heuristics Outperforms entropy-driven exploration Outperforms [11]

TABLE 1: Summary of the most relevant works in the context of this paper. Note that [6] focuses on forest fire detection and
extinguishing, but not on wildfire monitoring. The only paper that addresses a wildfire monitoring task is [11], which is why
we decided to consider [11] as our benchmark.

(a) Without wind. (b) With wind.

FIGURE 1: Visualization of two wildfires simulated with (1).
On the left hand side we depict a wildfire that is not affected
by wind, while on the right hand side we depict one that is
affected by wind. Green cells correspond to cells that have
fuel and are not burning, red cells are cells that are burning,
and black cells are cells that run out of fuel.

with:

Pnmkl = max(0,min(1, pnmkl,0 + pnmkl,w)), (2a)

pnmkl,0 = κ
1

‖dnmkl‖2
, (2b)

pnmkl,w = κ
w ◦ dnmkl

‖dnmkl‖2
, (2c)

where ◦ denotes a scalar product, and κ is a parameter to
tune the probability of ignition of each cell. Also note that
neighbors that are further apart than the maximum ignition
distance dmax cannot ignite each other. This limits the compu-
tational demands of the model without losing generality for
the generation of fire hotspots that are close to the fire front,
which is a realistic assumption. We summarize the wildfire
generation in Algorithm 1.

We depict in Figure 1 a visualization of two wildfires that
were simulated with the afore-described model.

B. UAV MODEL
We consider two different UAV types: a multi-copter and
a fixed-wing aircraft. We assume for both models that they
are equipped with a flight controller that translates high-level
actions into direct motor commands. The mounted sensor is
pointing downwards, so no further conversions needs be done
depending on the angle. The sensor detects burning cells
within a range equal to dsight. UAVs fly at different heights
to avoid collisions.

A multi-copter is modeled as in [32]. Multi-copter’s i
position is denoted as (xit, y

i
t). Possible actions are one grid

cell displacement in north, east, west, or south direction. A
fixed-wing is modeled as in [11]. This is a standard model
that assumes that aircraft maintain a constant altitude and
speed v. The aircraft position and heading are denoted as
(xit, y

i
t) and ψi

t, respectively. The aircraft is controlled by
increasing or decreasing 5◦ the bank angle φit ∈ [−50◦, 50◦].
This results in the following motion equations:

ẋit = v cosψi
t,

ẏit = v sinψi
t,

ψ̇i
t =

g

v
tanφit,

(3)

with g the standard gravity.

C. SCORE METRIC
The score metric quantifies the extent of the fire that is
burning but is not being monitored by UAVs during a whole
episode. It is used as a metric to compare performance
between different methods. Let us define first the concept
of belief: For each cell (n,m), we define a belief b̂n,m that
indicates whether (n,m) was measured as burning. Essen-
tially, UAVs task is to reduce the error between the belief map
b̂ = [b̂1,1, b̂1,2, ..., b̂2,1, ...], consisting of all belief cells, and
the actual fire state b = [b1,1, b1,2, ..., b2,1, ...]. Let us also
define the momentary scaled fire missMt for each time-step
t, which counts how many cells are burning momentarily, but
are not flagged as burning in the belief map. Fire missMt is
given by the following expression:

Mt =

∑
n,m max(0, bn,m − b̂n,m)∑

t

∑
n,m bn,m

. (4)

Note that Mt is scaled with respect to the sum of cells
burning for a whole episode, which allows us to compare fires
of different sizes.

The score metric S for a whole episode is the integral of
Mt over time:

S =
∑
t

Mt ∈ [0, 1], (5)

where 0 means that each burning cell was detected immedi-
ately, and 1 means that UAVs missed the whole fire.

IV. COOPERATIVE MULTI-AGENT DEEP Q-LEARNING
In this section we introduce deep Q-learning, as well as the
challenges that arise in a cooperative multi-agent setting.
This is followed by a summary of the cMARL methods we
chose to solve a wildfire monitoring task.
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A. DEEP Q-LEARNING
Reinforcement learning (RL) allows us to solve Markov
decision processes (MDP) by trial and error [41]. It works
as follows: an agent makes an observation o(s) of environ-
ment’s state s, and selects an action a according to a policy
π : o 7→ a. This action causes the environment to transition
stochastically from s to state s′. Then the agent receives a
reward r, which indicates whether pair (s, a) was a good
(high reward) or a bad choice (low reward). Agent’s objective
in RL is to maximize the expected future reward.

In this paper, we use Q-learning as RL method. Q-learning
learns the optimal state-action values Q∗(s, a). These rep-
resent the expected future reward of selecting action a in
state s when following an optimal policy afterwards. The Q
values can be learned from transition tuples (s, a, r, s′) by
iteratively applying the so-called Bellman equation [41]. For
real-world problems, storing all transition tuples is typically
unfeasible from a memory perspective. DQN solves this by
approximating the Q-values with a deep neural network [36].
This approximation can, however, lead to instability in train-
ing. To this end, two stabilization techniques are applied [36]:
the use of two different neural networks to avoid oscillations.
An experience replay memory (ERM) is implemented, that
uses past transition tuples to decorrelate experiences. This
avoids using two consecutive experiences that can be highly
correlated and could lead to inefficient learning. The ERM
stores a certain number of experiences, which are randomly
sampled from the memory to train the network.

B. CHALLENGES IN cMARL
In a cMARL setting, we have N agents that interact with the
environment, and receive a common team reward r [42]. Let
us define a joint action a = [a1, ..., aN ], joint observation
o = [o1, ..., oN ] and joint policy πJ = [π1, ..., πN ], with
ai, oi, πi the action, observation and policy of agent i with
i = 1, 2, ..., N , respectively. Agents’ goal is to find a joint
optimal action that maximizes future team reward.

In the literature we identified fours challenges that are
associated to cMARL problems. These are the following:

1) The course of dimensionality: it refers to the exponen-
tial growth of a,o, and policy π : o 7→ a asN increases
[35].

2) The coordination problem: it arises when more than
one optimal joint action exist for a given state. If agents
select their individual actions from different optimal
joint actions, the resulting joint action might not be
optimal [12].

3) The spurious reward problem: it refers to the fact that,
as agents receive a team reward, they cannot distin-
guish whether their individual actions contributed to
the team reward. This causes the so-called "lazy agent"
problem [14], where some agents might learn that the
best action is "doing nothing".

4) The non-stationary environment problem: independent
learners use a standard RL algorithm on every agent

independently, which does not account for the exis-
tence of other agents explicitly. These other agents are
therefore part of the environment for each agent in the
standard RL framework. Since all agents learn simulta-
neously, the environment for each agent changes over
the curse of training [33].

C. IMPLEMENTED cMARL ALGORITHMS
In this paper we investigated four algorithms that tackle
and/or mitigate the aforementioned problems that arise in
cMARL. They all have in common that they transform the
cMARL problem into a single-RL one, which we solve using
standard deep Q-learning. Note that the transformation of the
cMARL problem into a single-RL one does not incur any loss
of accuracy. Specifically, we investigate four methods that we
term JOINT, INDI, MSTA and VDN. Next we summarize
each of them:

• JOINT: it corresponds to a joint agent, for which a joint
policy is trained centrally. Joint actions are also selected
centrally, from which individual actions are assigned to
corresponding agents. This agent solves challenges 2-
4, while it especially suffers from challenge 1. JOINT
algorithm is a typical baseline in cMARL.

• INDI: it refers to independent Q-learners. This means
that each agent is trained with its own single-RL
method, which has no explicit representation of the
other agents in the environment. This solves challenge
1, while it ignores challenges 2-4. Nevertheless, INDI is
the most used approach in the literature due to its sim-
plicity and good performance. We would like to remark
that our benchmark algorithm for wildfire monitoring
[11] uses INDI algorithm.

• MSTA: it refers to multiple single-trained agents. MSTA
uses a single agent in the environment for training,
and multiple instances of that single-trained agent for
testing. On the one hand, MSTA reduces the training
complexity, as a single agent is trained. On the other
hand, multi-agent coordination is not learned. Instead
team performance is driven by the individual behavior
of each agent. MSTA is particularly well suited for tasks
that can also be solved by a single-agent. MSTA solves
challenges 1,3,4 while it ignores challenge 2.

• VDN: it refers to value decomposition networks [14].
VDN is a DQN-based technique that implements CTDP.
It defines the joint Q-function as the sum of individual
Q functions for each agent:

QJ(o,a) =
N∑
i=1

Qi(oi, ai). (6)

The intuition behind VDN is that each agent learns its
own contribution to the team reward, which solves the
spurious reward problem. Training is done centrally for
QJ , while testing is decentralized using the individual
Qi, for i = 1, ..., N . Challenge 1 is mitigated, especially
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Problem JOINT INDI MSTA VDN

Course of dimensionality (1) 7∗ 3 3 ∼
Coordination (2) 3 7 7 ∼
Spurious reward (3) 3 7 3 3
Non-stationary environment (4) 3 7 3 3

TABLE 2: Summary of implemented algorithms according
to their capabilities to solve the four most common problems
that arise in cMARL. Symbols 3, 7, ∼ indicate that a prob-
lem is solved, unsolved or mitigated, respectively. Symbol 7*
indicates that a problem is not solved, and that the algorithm
particularly suffers from it.

when parameter sharing is applied. Challenge 2 is also
mitigated, while challenges 3,4 are solved with VDN.

Here we propose the use of MSTA and VDN for wildfire
monitoring with multiple UAVs. We benchmark the two algo-
rithms against JOINT and INDI, which are typical baselines
in the literature. For each of the aforementioned algorithms,
we summarize in Table 2 the cMARL problems that each
of the algorithms solve or mitigate. In Table 3 we show an
overview of the experience tuples, the Q-function evaluation,
and the greedy action selection equation [36] implemented
by each of the algorithms. Next we summarize our proposed
algorithm.

V. WILDFIRE MONITORING WITH MULTIPLE UAVS
We propose a cMARL framework that permits multiple
robots to learn how to gather information. In particular,
without loss of generality, we focus here on a wildfire front
monitoring task with UAVs. Our proposed framework is used
by the four cMARL algorithms we consider in this work:
INDI, JOINT, MSTA and VDN (see Section IV-C). First we
provide an overview of our framework. Then we describe in
detail the agent’s observation, reward, and neural network
architecture. These are based on [11], which permits a fair
comparison between [11] (INDI) and our proposed cMARL
methods (VDN and MSTA).

A. FRAMEWORK OVERVIEW
A block diagram that summarizes our proposed framework is
depicted in Figure 2. This corresponds to the steps executed
by a robot i with i = 1, ..., N . We assume an homogeneous
team of robots, which implies that the framework is identical
for all of them.

Robot i is the "brain" of our system, and it interacts with a
"physical environment" and with "other robots". On the one
hand, the "physical environment" refers to the wildfire and
UAV hardware. They are described by models introduced in
Section III-A and III-B, respectively. On the other hand, the
"other robots" refers to the rest of robots in the team. That
is, all robots j = 1, .., N ; j 6= i. Interaction between robot
i, and the "physical environment" and "other robots" takes
place through three modules: a sensor, a communication and
an actor module.

The "sensor module" samples the "physical environment"
every time step. In particular, it samples the robot i state and
the wildfire state. Robot i state is denoted as mi

r, with mi
r =

[xit, y
i
t] for the multi-copter UAV, and mi

r = [xit, y
i
t, φ

i
t, ψ

i
t]

for the fixed-wing UAV. Wildfire state is denoted as mi
w. This

is a vector that contains those grid cells that are burning, as
measured by the UAV i thermal camera within a measure-
ment range dsight.

Measurement mi = [mi
r,m

i
w], for i = 1, ..., N ,

is shared among all robots through the "communication
module". Measurement mi, together with measurements
mī = {mj ∀ j = 1, ..., N and j 6= i}, are then stored in the
"information storage". The "information storage" keeps wild-
fire and robot’s information separately in two separate sub-
modules: map and data storage. The "map storage" saves
most recent wildfire measurement for each grid cell, while
the "data storage" saves current robots’ state measurements.
Note that the "map storage" information corresponds to belief
map b̂.

The information stored in the "information storage" mod-
ule is processed by the "observation renderer" (see Sec-
tion V-B). The "observation renderer" maps the stored infor-
mation into the format required by the "policy" module. Here
the policy consists of a neural network that we train using one
of the four cMARL methods we summarized in Section IV-C.
Details on the reward used for training, as well as on the
neural network architecture can be found in Section V-D and
V-C, respectively.

The "policy" outputs a high-level action that is translated
into low level action commands by the "actor module". Since
we train and test our algorithms in simulations, the "actor
module" essentially updates UAVs state according to the
model described in Section III-B.

We propose a framework in which robot i policy can
potentially communicate with policies of other robots in the
team through a "inter-policy communication" module. This
could be used to improve the cooperation between different
agents by e.g. sharing features of the neural network [14].

Provided this framework overview, we describe next the
agent’s observation, reward and neural network architecture.

B. AGENT OBSERVATION

The agent observation has two components: an image and
a vector observation. The image observation is depicted in
Figure 3. Its number of pixels is equal to the number of the
wildfire grid cells. The image observation has two layers.
The first layer colors white the cells that are flagged as
burning in belief map b̂. Otherwise, cells are colored black.
The second layer is a coverage map, which is black for
those cells in which a measurement was taken last time-step.
Older measurements fade out to white, with white being a
measurement that was taken more than 255 time steps ago.
Both image layers are centered on each robots position for
both drone models, and rotated into the direction of travel for
the fixed-wing drone model.
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mī

FIGURE 2: Overview of our framework for cMARL information gathering from the perspective of robot i. The grey shaded
area corresponds to modules that belong to robot i, while the rest of the modules are external to the robot. Interaction between
robot i and the external modules is carried out through the actor, sensor and communication modules.

Algorithm Experience tuple Q-function Greedy action selection

MSTA (ot, at, rt, ot+1) Q(st, at) a = argmaxãt Q(ot,ãt)

INDI (oit, a
i
t, rt, o

i
t+1) Q(sit, a

i
t) ai = argmaxãi

t
Q(oit, ã

i
t)

JOINT (ot,at, rt,ot+1) Q(ot,at) a = argmaxãt
Q(ot, ãt)

VDN (ot,at, rt,ot+1)
∑N

i=1Q
i(oi, ai) a = [argmaxãi

t
Q(oit, ã

i
t)]i=1,2,...,N

TABLE 3: Summary of the experience tuples, Q-function and greedy action selection for the four methods considered in the
paper: MSTA, INDI, JOINT and VDN.

(a) Belief map. (b) Coverage map.

FIGURE 3: Image layers that constitute the agent image
observation. (a) Belief map in which white cells are those
that are flagged as burning in the belief map. Otherwise, cells
are colored black. (b) Coverage map, which is black for those
cells in which a measurement was taken last time-step. Older
measurements fade out to white.

The vector observation holds information of UAVs states.
This includes robot i state, as well as some relative quantities
calculated between robot i and robot j states, for all j =
1, ..., N and j 6= i. The vector information differs for the
multi-copter and fixed-wing UAVs considered in this work.
For a multi-copter the vector observation of robot i consists
of:

• [xit, y
i
t]: robot i position.

• [∆xijt ,∆y
ij
t ] = [xjt − xit, y

j
t − yit] : relative position of

robot j with respect to robot i.

• dijt =

√
(∆xijt )2 + (∆yijt )2: distance between robot i

and j.
• ajt−1: robot j last action.

for all j = 1, ..., N and j 6= i.
For a fixed-wing the vector information of robot i consists

of:

• φit: robot i bank angle.
• dijt : distance between robot i and j.
• ∆βij

t = arctan
(

∆yij
t

∆xij
t

)
− ψi

t: bearing angle of drone j
relative to robot i heading.

• ∆ψij
t = ψj

t − ψi
t: robot j heading relative to robot i

heading.
• φjt : drone j bank angle.

for all j = 1, ..., N and j 6= i.

C. AGENT REWARD
Robots receive a reward of +1 for each cell that (i) is
measured by any of the UAVs as burning, and (ii) is not
marked as burning in belief map b̂. This definition of reward
encourages UAVs to search for new burning cells, instead of
monitoring cells that were already detected as burning. New
burning cells typically correspond to the wildfire front, as
the front corresponds to the areas towards which the wildfire
propagates. It is possible that a burning cell is measured by
more than one UAV. In this case, robots still receive a reward
of +1; independently of the number of UAVs that measured
that burning cell.
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FIGURE 4: Neural network architecture.

Agents reward encourages UAVs to monitor the wildfire
front. However, it does not favor, explicitly, monitoring it
efficiently, which is our objective (see Section III). Note
that, although not encouraged explicitly, efficiency is favored
implicitly thanks to the RL discount factor [41]. This encour-
ages agents to maximize the future expected reward as fast as
possible, and, therefore, map the fire front efficiently.

D. NEURAL NETWORK ARCHITECTURE

The neural network architecture is shown in Figure 4. Vec-
tor and image observations (see Section V-B) are both fed
through a batch normalization layer. On the one hand, the
vector input is then processed by a dense network of three
layers, with each layer containing 50 neurons. On the other
hand, the image input is then processed by a convolutional
network. This consists of four 3x3-convolutional layers with
32 features and stride of 1. Each layer is followed by a
2x2-max-pooling layer. The output of the dense network is
concatenated with the flattened output of the convolutional
network. The resulting vector is fed through a dense network,
which consists of a dense layer with 256 neurons and a dense
layer with one output for each possible UAV action. Note
that the number of possible actions for the multi-copter and
the fixed-wing model differ, as explained in Section III-B.

The output of the neural network is a Q-function value
for each of the observation-action pairs. In order to calculate
agents’ action from the Q-values, we use a greedy action se-
lection. This is different for each of the algorithms considered
in the paper, and it is summarized in Table 3. Our framework
allows us to use the same neural network architecture for the

four methods considered in the paper (JOINT, INDI, MSTA
and VDN), as well as for a varying number of agents and
UAV models. This is achieved by simply modifying the input
and output layers accordingly.

VI. SIMULATIONS AND DISCUSSION OF RESULTS
This section describes first the simulation setup that we use to
validate our proposed methods. This is followed by a discus-
sion of the results, which we organize in several subsections
that focus on different aspects of our system. In particular,
we analyze the following: learning progression, performance
comparison against benchmarks, performance with respect to
the UAV model, and scalability with the number of UAVs in
the system.

A. SIMULATIONS SETUP

We consider a forest that measures 1000m × 1000m. The
forest area is discretized in a 100 × 100 grid, which yields
a grid cell size of 10m × 10m. In this forest we simulate
a wildfire. For each of the simulation runs, wind and forest
fuel are drawn from an uniform distribution. Wind speed is
bounded by 0 and wmax, while wind direction takes a random
cardinal direction. Fuel for each cell is bounded by fmin and
fmax. We assume the initial fire as a 5 × 5 square located in
the middle of the forest.

The fire is monitored either by a team of N multi-copter
or fixed-wing UAVs, depending on the specific simulation.
UAVs’ position is noise-free. UAVs speed is constant and
has a value of 20m/s. To allow a finer control, UAVs can
move five cells before the wildfire simulation gets updated
(nfire update). UAVs are equipped with a thermal camera point-
ing downwards that allows them to identify burning cells. We
assume that the camera has a sight range dsight = 100m,
which approximately corresponds to an UAV using a thermal
camera with a 53° x 38° field of view and a focal length
of 8 mm while flying at a height of 100 m. UAVs starting
position and orientation (for the fixed-wing model) is chosen
randomly for each episode. Episode’s length is l = 320
time steps. At the beginning of each episode, we let the
fire propagate during 12 time steps before UAVs start the
monitoring task.

We benchmark our two proposed cMARL methods (VDN
and MSTA) against JOINT and INDI methods, which are
both standard benchmarks to evaluate cMARL algorithms.
Let us remark that INDI is the approached used in our
reference paper [11]. For the four methods, we used our
own implementation of double-Q-learning [43]. This uses
an ERM that stores 800000 past transition tuples, as well
as a target network. The target network is updated every
ntarget update gradient steps. Exploration follows an ε-greedy
strategy with ε being 1 for e1 frames, and then linearly
annealed to reach a value of 0.1 at e2 frames and 0 at e3

frames. We used Adam [44] to optimize the neural network
parameters. In Table 4 we summarize the parameters used for
the simulations.
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Parameter Description Value
b batch size 128
ntarget update target network update frequency 1000
e1 exploration decay factor 80000
e2 exploration decay factor 800000
e3 exploration decay factor 3200000
γ discount decay factor 0.9
α Adam learning rate 0.0003
w, h forest width and height 1000m

forest grid cell dimensions 10m× 10m
nfire update fire update frequency 5
dmax fire maximum ignition distance 2.5
κ fire ignition factor 0.05
fmax maximum initial fuel 20
fmin minimum initial fuel 15
wmax maximum wind speed 1
N number of UAVs 1, 2, ..., 9
v UAV speed 20m/s
dsight UAV sight range 100m
l episode length 320

TABLE 4: Summary of simulation parameters.

Agents training was implemented in Python using PyTorch
and CUDA for GPU acceleration. We used an Intel I7 third
generation CPU, a Nvidia GeForce GTX 1080 Ti GPU, and
a 32GB DDR3 RAM. Trained agents were then tested in
multiple simulations. Results correspond to the average score
calculated over 100 test runs.

Next we evaluate in Section VI-B the learning progression,
and compare in Section VI-C the four methods considered in
this work. Then we evaluate in Section VI-D the performance
of the methods with respect to the UAV model. Finally we
analyze in Section VI-E the scalability of the methods as we
increase the number of UAVs in the team.

B. LEARNING PROGRESSION
In this section we present the evolution of the score, calcu-
lated with equation (5), as the number of training episodes in-
creases. In particular, we show training results for a one-agent
and a three-agents system. The number of agents is selected
to provide a fair comparison with previous work [11]. The
one-agent training corresponds to MSTA, as a single-agent is
trained for this method (see Section IV-C). The three-agents
training is carried out for VDN, INDI and JOINT. The one-
agent training converged after approx. 9000 episodes, while
the three-agents one required 15000 episodes. In terms of
training time, the one- and three-agents system converged
after approx. 12h and 60h, respectively For this analysis,
we considered the fixed-wing UAV model. The fixed-wing
model has more complex dynamics, so it is harder for the
network to learn it. The multi-copter dynamics are easier to
learn as the network only has to learn high level commands
that indicate the drone where to move next. In contrast, the
fixed-wing model must learn how to control the bank angle,
and the relationship between this angle and the next position.
Therefore, the training complexity and time increases when
using the fixed-wing model with respect to the multi-copter
one.

Figure 5 depicts the learning progression of the four
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FIGURE 5: Score obtained during the training progress for
the four considered cMARL methods using a fixed-wing
UAV. Note that MSTA curve corresponds to a single-agent
training, while the other methods were trained with three
agents.

cMARL methods considered in this work. First of all, we
would like to remark that our goal is to reach a low score.
A low score implies that a little portion of the wildfire
was missed by the UAVs (see Section III-C). MSTA is
the fastest to converge, and it does it after approx. 1000
episodes. Training performance cannot be compared against
the other methods, as only one agent is used during training,
while three agents are used for the other methods. JOINT
converges after 4000 episodes, followed by INDI and VDN,
which require approx. 15000 episodes to converge. Although
VDN requires longer to converge, it shows the best learning
performance.

C. COMPARISON AGAINST BENCHMARKS
We benchmark our proposed methods (VDN and MSTA)
against JOINT and INDI [11] in a wildfire monitoring
tasks using pre-trained agents. Training was carried out as
described in Section VI-B. Figure 6 depicts the fire miss
over time, calculated with equation (4), for three fixed-wing
UAVs. As in Section VI-B UAVs goal is to reach the lowest
fire miss over time.

First thing we observe is that all curves present a local
minima at around 50 time steps. This corresponds to the
moment in which UAVs first reach and detect the fire, which
significantly lowers the fire miss. From 50 steps till the end
of the episode, the fire miss monotonously increases for all
methods. This is essentially caused by the following: The
fire size continuously increases with time, as new cells get
ignited. Since agents thermal camera have a limited sight
range, the number of new burning cells that are missed by
the UAVs increases as the fire gets larger.

Provided a first explanation for the curves in Figure 6, we
can now compare the performance of the different methods.
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FIGURE 6: Fire miss over time for three fixed-wing UAVs.
We benchmark our proposed methods (VDN and MSTA)
against JOINT and INDI [11].

We can see that JOINT offers the worst performance. One
would expect JOINT to outperform the rest of the methods.
However, due to the bigger size of the joint action and ob-
servation spaces, compared to the other methods, the training
only converged to a local minima (see Figure 5). INDI offers
the second worst performance, and it is clearly outperformed
by VDN and MSTA.

VDN and MSTA curves present a similar behaviour. We
can nevertheless observe a small difference: MSTA performs
better at the beginning of the episodes, but it gets surpassed
by VDN as the episode progresses. MSTA agents learned
to rapidly localize the fire, as a single-agent is sufficient to
realize this task. On the contrary, VDN agents learned to
cooperate to monitor the fire, but not to localize it efficiently.
That is, as the training complexity of VDN is much higher
than for MSTA, learning landed in a local minima. This
caused that agents were not able to learn both behaviours –
monitor and localize the fire – efficiently. This explains why
MSTA outperforms VDN at the beginning of the episode.
Once the fire grows during the episode, cooperation between
UAVs acquires a higher relevance, as UAVs need to effi-
ciently monitor the forest to find new burning cells. It is at
this point when VDN outperforms MSTA, as VDN agents
learned a cooperative policy.

In order to obtain a better understanding of the four con-
sidered methods, we also analyzed the best, intermediate and
worst scores achieved by the methods. Results are summa-
rized in Table 5a. Firstly, we can again conclude that VDN
and MSTA share the best performance, and outperform both
benchmarks (INDI and JOINT). Therefore, in the following
subsections we focus our analyses on VDN and MSTA.
Secondly, VDN outperforms MSTA on the best and interme-
diate scores, but not on the worst ones. The explanation for
this behaviour is the same as the one expressed in previous
paragraph. There exist complex fire behaviours that cannot

Score All Best Intermediate values Worst

VDN 0.22 0.13 0.20 0.43
MSTA 0.23 0.15 0.23 0.32
INDI 0.33 0.19 0.31 0.69

JOINT 0.54 0.40 0.51 0.87

(a) Fixed-wing.

Score All Best Intermediate values Worst

VDN 0.27 0.16 0.25 0.52
MSTA 0.27 0.20 0.27 0.39

(b) Multi-copter.

TABLE 5: Score obtained by the four considered methods
for a system composed of three fixed-wing and multi-copter
UAVs. "All" corresponds to the average score calculated over
100 tests runs. "Best" and "worst" are the average over the 10
best and worst runs, respectively. "Intermediate" corresponds
to the average calculated over the remaining 80 test runs.

be efficiently monitored neither by VDN nor by MSTA.
However, MSTA might at least be able to localize the fire,
while VDN might not. Just by localizing the fire, MSTA
would obtains a higher score than VDN.

D. PERFORMANCE WITH RESPECT TO UAV MODEL
In this section we analyze how the performance of our
proposed methods (VDN and MSTA) gets affected by the
UAV model. Table 5 shows the results for a system of 3
fixed-wing (Table 5a) and multi-copter (Table 5b) UAVs. Let
us remark that the fixed-wing model is more complex than
the multi-copter model because the first has more complex
dynamics. VDN and MSTA offer the best results for the
most challenging scenario (Table 5a). Therefore, we further
compare these two in a more simple scenario with a multi-
copter model (Table 5b) to better understand the difference
between the two algorithms.

We can observe that VDN and MSTA present a similar
behaviour for the multi-copter UAVs (Table 5b), as well
as for the fixed-wing UAVs (Table 5a), as we discussed in
Section VI-C. However, performance for the multi-copter
UAV is lower than for the fixed-wing UAV. This is because
the multi-copter UAV cannot move diagonally and, therefore,
moves slower than the fixed-wing UAV. Note that speed plays
an important role; especially at the later stages of the episode,
when the fire covers a large area. Also note that in a real world
experiment speed also plays an important role, as the sensor
accuracy will be influenced when flying over a certain speed.
In such scenario, the UAV might need to reduce the speed
when taking a picture depending on the used sensor.

We also observed that training converged faster when
using a multi-copter UAV. The fixed-wing model is harder
to learn because of its higher order of dynamics. When
using a multi-copter UAV, actions directly translate into UAV
movement commands. On the contrary, for the fixed-wing
UAV, actions correspond to changes in the curvature, which
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implies that UAV movement dynamics need to be learned.
Nevertheless, VDN and MSTA were able to deal with the
higher training complexity of the fixed-wing model. Accord-
ing to results from Table 5a, VDN and MSTA agents learned
a policy that outperforms JOINT and INDI benchmarks.

E. SCALABILITY WITH NUMBER OF UAVS
We evaluate the performance of MSTA and VDN as we
increase the number of UAVs in the system. In particular, we
consider fixed-wing UAVs. We trained 3, 5, 7 and 9 fixed-
wing agents using VDN, and a single agent using MSTA.
Note that for a single agent, VDN and MSTA methods are
identical.

Figures 7a and 7b depict the fire miss, calculated with
equation (4), for VDN and MSTA methods, respectively. In
addition, we calculate the score with (5) as we increase the
number of agents from 1 to 9. This is depicted in Figure 7c,
and it allows us to better analyze the performance with
respect to the number of UAVs.

We can observe that the performance for VDN and MSTA
significantly increases from one to three agents. For a larger
number of agents, VDN performance stagnates and even
decreases when 9 agents are considered. This is due to a
combination of three factors: First, the problem complexity
increases with a growing number of agents, as the coordina-
tion and spurious reward problem become more significant
(see Section IV-B). In consequence, training might converge
to a local minima. Second, since the neural network size is
constant for a growing number of agents, it is possible that
the network is not large enough to deal with the increasing
complexity. Third, the linear approximation of the joint Q-
function, in which VDN is based on (see Section IV-C),
might be a inaccurate for our problem.

In contrast to VDN, MSTA performance steadily increases
with a growing number of agents. This is plausible, since
additional MSTA agents simply imply adding independent
UAV’s that were individually trained to fly towards the fire
and circle it. Although MSTA agents do not explicitly co-
operate, more new burning cells are discovered by a larger
number of UAVs, which improves MSTA performance.

According to simulation results, we can conclude that
VDN is the best alternative for a system that is com-
posed of up to 3 fixed-wing UAVs. For a larger number of
UAVs, MSTA offers the best performance. Nevertheless, we
strongly believe that VDN has the potential to outperform
MSTA for a wildfire monitoring task with multiple UAVs. In
this respect, we outline in Section VII promising directions.

VII. CONCLUSION
In this paper, we developed a cooperative multi-agent rein-
forcement learning framework to learn a wildfire monitor-
ing task with UAVs. In particular we proposed the use of
multiple single-trained Q-learning agents (MSTA) and value
decomposition networks (VDN) for this task. As baseline,
we used independent Q-learners (INDI) and a joint Q-learner
(JOINT). Both methods are standard baselines in the litera-

ture. Moreover, independent Q-learners were also used on a
wildfire monitoring task [11].

We carried out simulations using a stochastic wildfire
model and two types of UAVs: a fixed-wing and a multi-
copter UAV. First, we compared MSTA and VDN against the
considered baselines using a system composed of 3 fixed-
wing UAVs. Results showed that MSTA and VDN clearly
outperform the two state-of-the-art baselines.

Simulations also allowed us to conclude that VDN per-
forms better at the end of an episode, when the fire behaviour
is more complex and inter-UAV coordination plays a big role.
In contrast, MSTA shows a better performance at the begin-
ning of an episode, when the main objective is to localize
the fire and coordination is not that important. Moreover,
MSTA shows a smaller variance in the overall score between
different episodes, in comparison with VDN. This indicates
that MSTA learned a robust behaviour, while VDN offers a
less stable behaviour due to a higher learning complexity.

We also showed that MSTA scales better than VDN for a
team of more than 3 UAVs. This could be due to the linear
approximation used by VDN to approximate the joint Q-
function.

VIII. FUTURE WORK
In order to solve the scalability problem of the VDN method,
a possible solution could be to use a nonlinear learned ap-
proximation, as QMIX [40] does. Additionally, we strongly
believe that the use of curriculum learning [45] could be of
great advantage. We could design a curriculum that first trains
a robust single-agent policy. In a latter stage, inter-agent co-
operation could be learned with VDN for an increasing num-
ber of agents. Another promising approach to improve VDN
performance is to exploit communication between agents’
policies. Communication can be realized using predefined
communication schemes [46], or letting agents learn how to
communicate [47].

Communication is typically imperfect and is restricted. In
this scenario, it might be necessary to compress the data.
One possible approach is to use models that approximate
the fire front based on the already taken measurements. The
information of the individual models can be shared using
parameter consensus techniques, reducing the amount of data
that needs to be transmitted. In addition, models could inter-
polate between measurements, providing a better coverage of
the fire.

In this work, UAVs only obtain information from their
surroundings. We believe that having a global view of the
environment could help to improve the performance of the
system. To this extent, we could incorporate extra channels
with down-sampled information that cover a larger area but
with lower resolution.

A natural next step is to perform experiments with real
UAVs to observe how the uncertainties of the real system af-
fects the network. In addition, performing such experiments
during controlled burns will provide a better understanding
of how the controller is able to extrapolate from simulations
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FIGURE 7: VDN and MSTA scalability as we increase the number of fixed-wing UAVs in the system. On the top part, we
depict the fire miss over an episode. On the bottom part, we show the algorithms’ score for a growing number of UAVs.

to a real scenario. In this direction, first studies were carried
out in [48].
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