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ABSTRACT Requirements engineering is the first phase in software development life cycle and it also
plays one of the most important and critical roles. Requirement document mainly contains both functional
requirements and non-functional requirements. Non-functional requirements are significant to describe the
properties and constraints of the system. Early identification of Non-functional requirement has direct
impact on the system architecture and initial design decision. Practically, non-functional requirements
are extracted manually from the document. This makes it tedious, time-consuming task and prone to
various errors. In this paper, we propose an automatic approach to identify and classify non-functional
requirements using semantic and syntactic analysis with machine learning approaches from unconstrained
documents. We used A dataset of public requirements documents (PURE) that consists of 79 unconstrained
requirements documents in different forms. In our approach, features were extracted from the requirement
sentences using four different natural language processing methods including statistical and state-of-
the-art semantic analysis presented by Google word2vec and bidirectional encoder representations from
transformers models. The adopted approach can efficiently classify non-functional requirements with an
accuracy between 84% and 87% using statistical vectorization method and 88% to 92% using word
embedding semantic methods. Furthermore, by fusing different models trained on different features, the

accuracy improves by 2.4% compared with the best individual classifier.

INDEX TERMS Software requirement, Machine learning, Natural language processing.

l. INTRODUCTION

EQUIREMENTS Engineering (RE) can be defined as

"a set of activities for exploring, evaluating, docu-
menting, consolidating, revising and adapting the objectives,
capabilities, qualities, constraints and assumptions that the
system-to-be should meet based on problems raised by the
system-as-is and opportunities provided by new technolo-
gies" [1]. It is documented in a form called requirements
document (RD) to be suitable for communication, analysis
and subsequent implementation. RE is a crucial phase at the
beginning of software development life cycle (SDLC). It is
one of the most important and critical role in systems and
software projects, and all subsequent stages depend on them.

Requirements document is commonly written by a soft-
ware analyst in cooperation with customer’s experts in nat-
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ural language text for ease of communication within a
community stakeholders. Several contractors who can bid
for the contract. Furthermore it may also contain diagrams
or screenshots. The decision to represent requirements in
natural language has pertinent interpretation. First, natural
language is understandable and accepted by most people.
Second, the ultimate purpose of the project is to produce a
system satisfies the user requirements. [1].

The input of requirements documentation phase are a
bunch of agreed statements of different types: general objec-
tives, system requirements, software requirements, environ-
mental assumptions, relevant domain properties and concept
definitions. They are elicited through various activities such
as one to one or group interview, workshops, questionnaires,
use-cases and prototyping. The output of the specification

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

Shreda et al.: Identifying Non-functional Requirements from Unconstrained Documents using Natural Language Processing and Machine Learning

10.1109/ACCESS.2021.3052921, IEEE Access

and documentation phase is the first version of the require-
ments document [34].

There are a wide range of techniques that are usually used
for requirements specification and documentation. Uncon-
strained document is one of these techniques. It is prose in
natural language without specific rules. This technique has
several advantages: there are no limitations in expressiveness
on what can be specified in natural language. Furthermore,
free text in natural language can be understood by all parties,
and no special training is required. On the downside, uncon-
strained requirements document prose in natural language
that is prone to several defect ,such as notably ambiguities,
noises, remorse, immeasurably statements and opacity. Other
technique, disciplined documentation in structured natural
language, where the requirements engineer follow local rules
on how statements should be written in natural language, or
global rules on how the requirements document should be
organized [2].

Typically, software requirements are classified into two
types of requirements: functional requirements (FR) and non-
Functional requirements (NFR). This classification helps to
understanding the common characteristics of different types
of needs. NFR are very significant to describe the properties
and constraints of the system.

Since the early days of software engineering NFR have
been existed. The numbers of their categories are estimated
to be more than 150 categories. IEEE-Std 830-1993 identified
only 13 NFR from 252 NFR types. The most five NFR com-
monly used in several domains are: reliability, performance,
security, maintainability, and usability. In this study, we focus
on those five NFR, in addition to availability that most of
projects types probably need.

The importance of RE is enormous to develop an effective
software and reduce software errors of software develop-
ment. For example, system design and architecture must
carefully consider constraints and NFR which directly affect
on initial design in the early stages. Undetected ignored
requirements until a later stage in software development life
cycle will be very costly and greatly affect on customer
satisfaction [35]. The arising errors have been caused by
incorrect requirements have become a significant problem
in software development. Problems caused by requirements
errors typically make up 25 % to 70 % of total software errors
in the USA in 2012 [3].

Early identification of NFR is very important in the evalua-
tion of alternatives architectural and design decisions. System
architects needs NFR to determine constraints as: security,
reliability, performance, scalability, availability etc, in order
to design the system architecture. In contrast of FR, NFR
are significantly difficult to handle changes due to absent or
missing NFR [2].

Requirements document are written in natural language
and can be processed as any text document. It contains
paragraphs, sentences, and words. It has much in common
with natural language documents challenges, such as se-
mantic and syntactic ambiguity, synonymy, coherence, and
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personality intention and style. These challenges promote
us to apply the state-of-the-art Natural language processing
(NLP) techniques such as bidirectional encoder representa-
tions from transformers (BERT) and word2vec embedding
models. These models are the most modern effective ap-
proaches that have a capability to capture the embed and
context of the requirement sentences or documents including
semantic and syntactic meaning.

Requirements analysis are considered as one of the most
common problematic activities in SDLC. Practically, require-
ments are extracted manually from the requirement docu-
ment. This makes it a tedious task, prone to various errors,
requires a lot of effort and time consuming. Where each
requirements document need to be read, analysed, and clas-
sified manually. Furthermore, the major problems of iden-
tification the requirements are concentrated in NFR, where
identification of FR are relatively easier than NFR. This is
because the user’s recitation for NFR is often unclear, am-
biguous or hidden in functional requirements. Permanently,
NFR that are identified by requirements engineers and users
manually based on their experience.

In this study, we propose an automated approach to iden-
tify and classify NFR from unconstrained requirement doc-
uments. We use syntactic and semantic analysis to extract
features from requirement sentences. Machine learning ap-
proaches are used to classify the requirement sentences into
five NFR categories.

Online website was developed in order to ease the process
of manual labeling the requirement sentences that had been
extracted from requirement documents by a group of experts
in software engineering. Furthermore, NLP techniques were
used to represent the requirement sentences features syntac-
tically and semantically in numeric forms. This task is a
prerequisite process for automatic classification. Two main
types of NLP techniques were adopted to extract features
from requirement sentences. The first one is statistical vec-
torization methods such as term frequency (TF) and term
frequency inverse document frequency (TF-IDF). The second
is word embedding methods include Google Word2Vec and
BERT, which are common distributed semantic models for
better word representation based on big data. These methods
allow words with similar semantic meaning to have similar
representation. And to classify the requirement sentences
we use four different ML approaches, Naive Base (NB),
Support Vector Machines (SVM), Logistic Regression (LR),
and Convolutional Neural Network (CNN). In this study we
also presents a new method to classify NFR by combined four
different NLP techniques into one fusion model to exploit the
best of the four extraction techniques together in one model.

The rest of this paper is structured as follows. Section 2
discusses related work in the field of requirements classifica-
tion. Section 3 provides complete details about the research
methodology. Section 4, presents the experiment and results.
Chapter5, discuss the experiment results. Finally, section 6
provides conclusion and future works.
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Il. LITERATURE REVIEW

In the last few years, there have been a lot of interest and
studies concern in developing new approaches to classify
software requirements automatically. Various learning meth-
ods have been used, including rule-based methods, machine
learning methods, genetic methods, deep learning and vari-
ous hybrid approaches.

This section elucidates various recent studies directions
observed in requirements classification. Rule-based ap-
proaches were an interesting topic to classify requirements
in the past decade as they performed well for specific dataset.
When the size of requirements documents increased and the
software fields have expanded, this issue has become more
complicated. Nowadays, researchers shift towards statistical
methods using models generated by machine learning algo-
rithms leaving rule-based methodologies out of the focus of
modern research. This section is organized in two subsections
as follows : Rule-based approaches and machine learning
approaches review.

A. RULE-BASED APPROACHES :

Rule-based approaches mainly classify text into organized
groups using linguistic analysis. These rules used to con-
struct a model using syntactic elements of a text to identify
pertinent categories based on it is content. Each rule con-
sists of pattern and a predicted category. This approach has
been demonstrated by many researchers. Sharma et al [4],
proposed a pattern based rule approach in order to parsing
the requirements based on NLP. They Suppose presence of
a certain combination of words and their relationship are
unique for each category of NFR . The researchers defined a
domain specific language for software requirements to build
textual syntactic pattern identification. The contribution of
this work confide to small set of complex rules. And the
evaluation results came with percentage recall between 60
and 85 % for five categories of NFR.

A similar approach adopted by Xiao et al [5]. They
proposed a linguistic analysis model to parse requirement
documents with semantic meaning using semantic pattern
matching .They performed a study on 115 sentences from
18 different sources, and 25 applications by IBM. The eval-
uation results were 86.2% accuracy extraction among open
source dataset and 87.5% among IBM applications.

Cleland-Huang et al [6], suggested information retrieval
approach to identify and classify NFR. They proposed a
classification approach depend on training dataset for specify
set of keyword “Indicator term” for each NFR categories. In
case the terms are identified and weighted, it can be used
in classifying the next sentence. Two levels of indicators
has been adopted, top-K terms that indicate all NFR types
and all-terms indicator" that indicate each type of NFR. A
certain threshold has been adopted for each NFR category,
and in case the score did not achieve the assigned thresh-
old, requirements are classified as FR. In this research they
obtained 79.9% overall recall and 42.5% precision. They
also found some types of NFR performed bad recall up to
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40%, In contrast, they achieved good results in usability NFR
reaching to 80%.

Another research was done by Hussain et al [2] adopted
linguistic knowledge to classify NFR in software requirement
document . The researches identified 9 groups of keywords:
adjective, adverb, model keywords, etc. Where the frequency
of each keyword was incorporated as feature in the main
feature list and it was ranked using smoothed and non-
smoothed probability measure. They set a threshold for each
keyword to attribute it to its specific NFR type. With high per-
centage recall, the research team found this knowledge can
help in classification requirements and increase the quality of
requirements .

Knauss et al, proposed a statistical approach using
Bayesian statistics to identify and classify security require-
ments [7]. The researchers used this method to calculate the
probability that the requirement is security. They achieved
good results in cases where the classifier is applied to the
requirements from the same source as it was trained with. But
when the model tested on different requirements document
from other domain, they achieved poor results. This was
expected because of syntactic meaning significantly limited
in case it is used with other data-sets.

B. MACHINE LEARNING APPROACHES :

Machine learning approaches have recently been gaining
with researchers in text classification due to its adaptability
and accuracy for automated text mining. In software re-
quirements a significant number of works has adopted ma-
chine learning approaches to identify and classify software
requirements. Kurtanovic and Maalej developed a supervised
machine learning approach based on syntactic and lexical
features [8]. They used Amazon software reviews in order
to train the model. They adopted SVM and NB algorithms to
identify both FR and NFR. This research found that part of
speech tags are the most distinctive features includes with
the cardinal number feature. The research obtained recall
between 70% - 90% without word feature selection, and
precision and recall above 70% using only 2% of feature
space.

Slankas and Williams conducted a study to aid analysis
more effectively for extracting 14 categories of NFR from
unconstrained requirements documents [9]. They used 11
requirements documents from "iTrust and PROMISE" data-
set. The study aimed to identify the sentence characteristics
that affect on classifier performance. Furthermore, they con-
ducted a comparison between 5 various machine learning
classifier to determine which is the best performance to
identify NFR. The research found that the sentence char-
acteristics such as lemma, stem and stop words had no
little performance effect. They also concluded that word
vector representation and SVM classifier performed twice
effectively compared to NB. Furthermore,they found that k
Nearest Neighbor (KNN) classifier with distance matrix had
F1 measure score (precision and recall) of 54 %, while NB
classifier had only 32 %.
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Similar research proposed by Zhang et al, conduct an
empirical study to classify NFRs using SVM classifier with
three different NLP index include individual words, multi-
word and N-gram processing [10]. They found that individual
words index outweigh the N-gram and multi-word in text
representation for short NFR sentences. They also made
recommendations that the more sample in a category in the
data set, the better classification performance.

Vectorization method is one of the common methods used
in semantic analysis. For NFR classification, Amasaki and
Leelaprute, evaluated the effect of vectorization methods on
NFR classification [11]. They suggested five vectorization
methods: TF-IDF, Word to Vector (W2V) on both CBOW
and Skip gram techniques and document to vector (D2V).The
researchers used 4 classifiers in order to prevent favor one
of vectorization techniques in case they used one classifier.
The experiment used most common classifiers in literature:
LR, NB and random forests. To perform their experiment
they used Tera-PROMISE repository. This data set contain
635 instances include 370 NFR and 255 FR. The researchers
adopted only 4 categories to evaluate vectorization method:
operational, performance, security and usability. The re-
search team found that both Doc2Vec vectorization method
and SCDV achieved higher performance than traditional
methods. Furthermore they found that some NFRs is more
difficult to identify than others.

While most studies mainly focus on classification per-
formance measure using precision and recall. Laszlos et
al, considered time factor as part of measured performance
[?]. They selected 12 classifiers such as SVM, NB, linear
kernel, KNN, Extra Trees and Linear logistic regression. The
research used TERA-PROMIS data-set. And used data-set
that consists of 625 requirements sentences. They found that
NB was the best classifier based on execution time, and both
precision and recall measurements compared with the rest of
the classifiers.

Little research performed a multi label classification
method to classify requirements documents. Jiang et al, pro-
posed a fuzzy similarity approach with KNN (FSKNN) to
classify multi-label sentence classification. In their method-
ology, a multi-label text classification propose to find the k
nearest neighbors from each training patterns [13]. In another
research, Ramadhani et al [14], proposed an automation sys-
tem of identification of non-functional requirements from the
requirement sentence-based classification algorithms. The
researchers suggested additional semantic factors to be used
with the classification algorithms of FSKNN but in single
class label using hipernim and synonym based on WordNet
library to automatically classify NFR. The research found
that the use of semantic factor with FSKNN improves the
performance of Hamming-loss by 21.9% and 43.7% for the
accuracy.

Convolution Neural Networks, are most commonly ap-
plied to analyzing visual imagery and image recognition.
Recently, there has been considerable interest in adopting
CNN in NLP. Winkler and Vogelsang proposed an approach
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that use CNN in classifying requirement specification as
requirement and information [15]. The research used 89
requirements specification documents to train the model. The
researchers found that the data-set was imbalanced. To solve
this problem,they used under sampling techniques after the
data set have been shuffled. They apply prepossessing tech-
niques includes tokenization, stemming, lemmatizing and
stop word removal.Then the requirements sentences were
transformed into vectors using random vectorization methods
to be compatible with Neural Network inputs. The research
achieved precision of 73% and recall of 89%. They also
highlighted that this approach include vulnerabilities such
as there is no insight for what it learns, Furthermore it is
not clear why these results are produced. This problem is
common among neural network Society.

In a similar study, Baker et al proposed a fully connected
ANN and CNN approaches to classify NFR [16].But in this
researcher they used random vectors to represent requirement
sentence as input for CNN. To perform their experiment
they adopted only five requirement categories: operability
, performance, security and usability. The researchers used
common data-sets called (PROMISE) that include 1165 NFR
cover 10 categories.The design has been performed in 5
steps: data pre-processing, ANN model construction, CNN
model construction and evaluation. The evaluation results of
this research achieved precision ranging between 82% and
90% and recall within range between 78% and 85% in ANN
model. Where in CNN, they achieved precision between 82%
and 94%, and recall between 76% and 97% with high F-score
equal 92%.

Dekhtyar and Fong also proposed CNN technique to iden-
tification requirements [17]. They adopted Naive Bayes over
TF-IDF and Word Count techniques as baseline to compare
with CNN approach. The research objective was to classify
the requirements into FR and NFR categories. To do this
they used SecRec dataset which labeled as security and non-
security requirements. And they also used additional require-
ments from other projects. The researchers implemented a
CNN multi-layer feed-forward neural networks using python
TensorFlow library, this library uses numerical computation
based on data flow graph. The research scored 4.74% higher
precision compared to TF-IDF, and 10.17% compared to
word count.

Among previous related studies review. We hardly found
research direction for classifying NFR using Recurrent Neu-
ral Network (RNN). Although it’s one of the most common
model used in text classification. Abdur-Rahman et al, one
of the few researchers suggested deep learning approach
using RNN [18]. They performed their research design in
three steps: data pre-processing involve removing stop words,
special characters, lemmatization and tokenization. Step 2:
word vectorization : they used Word2Vec model to convert
each word to vector (word embedding). Then they trained
three different classifiers :RNN, GRU and LSTM models.
In this research, they achieved high precision rate equal
0.961, and 0.967 recall. And they found that RNN is an
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FIGURE 1. Semi-supervised approach for requirement classification [19]

effective approach to classify NFR compared to CNN and
GRU approaches.

Automatic NFR classification has well-known limitation
because of small number of pre-labeled requirements data-
set. This problem is common within researchers who spe-
cialize in classifying requirements. One of the researchers
who proposed a semi-supervised approach to solve this issue
are Casamayor et al [19]. In their research, they reduced the
number of labelled requirements using knowledge provided
by un-categorized requirements. Through this approach they
aimed to reduce the number of instances needed for learn-
ing. To achieve this goal, they implemented expectation
maximizing strategy based on Bayesian classifiers. Figure
1 describe the proposed scheme they used. Once the initial
classifier is ready, it is used to classify other requirements.
Where requirements analysis support suggested classification
by predict unlabelled NFR. The requirements that have been
manually classified are categorized into highly confident
requirements. The research concludes that this approach will
mitigate the labelling effort by incorporating the manual
revision and classification of NFR.

In another aspect, ontology-based adopted to support num-
ber approaches to identify and classify requirements en-
gineering. Ontology-based relies heavily on the expressive
features of description logic languages. Shah et al proposed a
hybrid approach (NFR-Specifier) based on ontology to spec-
ify NFR from informal requirements [20]. Their approach
architecture starts from pre-processing, ontology formula-
tion, and NFR classification. Ontology formulation model
contain generating SRS ontology semi-automatically with
rule based approach. They construct a distance similarity
measure matrix using word feature (noun,verb, adjective).
After that, they group similar requirements into a cluster
appointed to specific NFR category. The research concludes
that this approach would have a positive impact for require-
ment engineering.

Two other studies suggested a hybrid approach with on-
tology formation and NLP to identify and classified require-
ments. Vlas and Robinson [21] presented an NLP technique
aimed to bridge between natural language and formal re-
quirement documents. They used a semi-automated method
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for discover and classify software requirements from both
unconstrained and constrained documents. In their study
they develop requirements classifier for natural language
(RCNL). RCNL constructs on multi-level ontology, where
requirements based lies on upper levels. The lower level are
grammar based. RCNL classifier constructed by graphical
development tool called "GATE". It contain annotation pat-
tern engine and annotation indexing. Finally, from 61.292
tokens, RCNL recognized 74.3% of those tokens. The rest
25.7% of tokens remain unclassified, This has happened
when the classification rule did not correspond with given
requirements. The researchers established that RCNL classi-
fier provide an alternative approach, but may be not too much
generalized to work with other data-set and needs to be more
improved.

In concordance with previous research that classified NFR
based on requirements ontology. Rashwan et al [22], pro-
posed an approach adopted SVM to classify requirements
sentences into different ontology classes. The researchers
annotated manually in total 3064 sentences from PROMISE
corpus documents data-set. The sentences were categorized
into four main classes: FR, several types of NFR, constraints
and others. Documents are prepossessing by tokenizer, split-
ter, steamer before they are classified using SVM classifier.
After that they populate NFR ontology with OWL individu-
als. This is done through linking the sentences in the require-
ment documents with the identical classes in the ontology.

While most research proposed supervised ML approach
for requirements classification. Few research proposed un-
supervised ML approach to handle the same issue. One
of them done by Mahmoud and Williams [23]. They sug-
gested a clustering techniques based on systematic analysis
to clustering NFR to its various categories, such as security
,2usability , reliability and performance. The researcher relied
on FR sentences to extract NFR. Where they assumed that
FR contain implicitly NFR. for example FR login sentence
contains security requirement. The research used wikipedia
to find the semantically meaning of the requirements sen-
tences. They adopted three NLP techniques for sentences
similarity: Latent semantic analysis (LSA), Co-occurrence
and Thesaurus method. These techniques detect the similarity
of words semantically. Then the study used partitioning and
hierarchical clustering for cohesive words to match class with
each NFR word cluster for detecting NFR sentences . In
terms of semantic analysis the research found that hierarchi-
cal clustering model is more effective than partitioning algo-
rithms. And for similarity semantic analyses. The research
found that the encyclopedia "Wikipedia" was more accurate
than other methods that relied on dictionaries.

The latest systematic literature review in NFR identifica-
tion and classification done by Binkhonain and Zhao pub-
lished in 2019, ELSEVIER journal [24]. They reported sys-
tematic review of 24 studies used ML-based approaches for
classifying NFR. The objectives of this research lie in three
questions: What ML approaches are used in selected studies?,
how the algorithms work? and how the ML results have
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been evaluated. The research found 11 studies used SVM
algorithms. While 7 studies used NB algorithms from total
of 24 studies. In question two the researcher found across
several studies the most NLP techniques used are : stem-
ming, stop words removal, part of speech, tokenization and
lematization. In evaluation phase they found that more than
70% of included studies used k-fold cross validation. And
for performance measurement techniques that performed to
evaluate the results the researchers found that three quarters
of studies used precision and recall measurements techniques
and 7 of them followed by F-score.

The most important issues that the study concluded is
the close collaboration between requirement engineering and
ML approaches. Furthermore, the results in the same ML
algorithms varies from research to research. Where algorithm
performs well in some studies and performed bad in others.
Finally ,at the end of this systematic review, the researchers
identified three open challenges. First, there is the lack of
shared training requirements dataset. Second, no standard
definition of NFR, and most of the literature didn’t use clear
feature identification and selection.

lll. RESEARCH METHODOLOGY

The literature review in the previous section highlighted the
need for semantic analysis and feature extraction techniques
to identify and classify NFR. Furthermore, we highlighted
the failures of the rule-based approach to achieve satisfying
results with different dataset. This section introduces our
methodology that adopted NLP techniques and ML algo-
rithms to identify and classify NFR from unconstrained doc-
uments. Figure 2 shows a block diagram that represents our
approach employed in this study. In our research we adopted
five NFR categories (reliability, performance, security, avail-
ability, and usability) that had been identified by IEEE-Std
830-1993 as the most commonly considered NFR in the most
domains and software projects.

| Features

NFR category
—

FIGURE 2. Overview of research approach

A. DATASET DESCRIPTION :

In this research we used PURE dataset!, which contains 79
requirements documents in different forms. It is publicly
available on the internet for research use. And described in

Uhttp://fmt.isti.cnr.it/nlreqdataset/

the article “PURE: A dataset of Public requirements doc-
uments” [25]. In this dataset requirements documents had
written in natural English language. And it can be used
for NLP tasks such as ambiguity detection, identification
and requirements categorisation. It contains 34,268 sentences
covered multiple domain. The size of documents range from
7 to 288 A4 pages, with an average of 47 pages per document.
The construction of the documents was distributed into:
structure (S), unconstrained (U) and one statement(O). Most
of the documents are combination of unconstrained content
and one-statement with about 38% of all documents, and the
requirements are represented in one sentence. The documents
with uniform formats and the structure documents were 15%
of documents. Figure 3 shows the distribution of documents
in the PURE dataset.

U+0+5

3%

u

Uu+0
38%

FIGURE 3. PURE dataset distribution [25]

1) PURE dataset manual annotation:

Supervised learning in any ML approach needs a pre-labeled
dataset in order to train the models. As mentioned earlier,
PURE dataset includes unconstrained requirements docu-
ments with unlabeled sentences. In order to conduct su-
pervised learning experiments on this dataset, a sentence-
level manual annotation is required. To perform the manual
annotation, first of all we extracted the requirements sen-
tences from the documents using a set of common criteria
that adopted in extracting sentences from documents. Where
the sentences boundary are identified by capital letters and
punctuation marks. In order to fulfill this objective, we pre-
pared these documents by parsing all the documents into an
XML format. It is worth to mention here that not all the
parsed sentences are related to the requirement sentences. But
in most cases, in the requirement document, each sentence
is talking about one software requirement. Therefore, the
annotation (labelling) process performed at sentence level.
Then we labeled the extracted sentences manually using a set
of procedures. To make it easier and from anywhere acces-
sible, we developed an online website called "Requirements
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classifier" ? for this purpose. We hired a group of experts in
software engineering to volunteer in the annotation process.
In order to use the online requirement classifier website.
First, expert have to register and providing his experience in
software engineering by selecting one of three levels based
on the years of experience in this field.

Once the volunteers registered on the website. They can
login and start annotation process. All of the extracted
sentences have been stored in a database, and the system
randomly selects a set of sentences for each expert. Each
sentence is displayed in a page with a form of options.
After the experts read the displayed sentence, they have to
decide if the sentence is describing NFR or something else.
If the expert finds a sentence which doesn’t fit in any of the
specified NFR, the other option can be selected. In case the
requirement sentence is NFR, the expert has to choose the
most appropriate NFR category out of our five target NFR
categories:( reliability, availability, usability, performance,
and security). As we mentioned before we rely on the NFR
definition identified by IEEE-Std 830-1993 [26].

Moreover, the expert has to express his confidence for each
sentence by selecting two levels of confidence: low level or
high level of confidence for each answer, as its shown in
figure 4. We avoided relying on more than two levels of
confidence to avoid the neutral choice that most volunteers
prefer. Each sentence have to be labeled at least by two
different experts to avoid annotation errors. The sub-set of
the annotated sentences that have two experts agreed on the
same label will be considered in our experiments. To ensure
accurate in labeling process, we relied on a sit of criteria to
accept each review. First, accepted review should be done at
least by two experts. Second, the two experts should have the
same answer for each review. If the experts have assigned to
two different categories, we choose the review that has the
higher confidence. While if the two confidences are equal,
the preference is for the reviewer with higher experience. In
case there is conflict with same confidence and the reviewers
have the same experience, the sentence is excluded.

Hello Qais.sh

Requirement Sentence Reviewer

The interfaces must be made ‘What is the classification of the requirement sentence?
customizable or user-
configupable to the extent

i : Non-Functional Requirement
possible. (e.g., the displayed

columns in the table, move, Usability Availability
resize, modify the appearance). Reliability Security
Such c?nflgur‘atloms mu?t be o AT Other NFR
saved in the user profile.
Other . nciuges: Funcuonal Requirament or Mot Software Requirament )
How confident are you 7
Low High

Next
D: 29 Youhave 23 Sentences to Finish ..

Skip This Requirement Sentence

FIGURE 4. Requirements manual classification page

Zhttp://requirements-bzu.com/
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After the annotation task is completed, we got 1846 re-
quirement sentences, labeled by 43 developers and software
engineers experts with different levels of experience. The
distribution of these requirements categorise are varied as
follows : usability : 222, reliability : 62, performance 163,
availability : 79, security : 204 and other requirements in-
clude functional, constraint and irrelevant sentences: 1119.
Figure 5 show the distribution of requirements for 5 types of
NFR.

1000

800

600

400

200

AT NN .
Other US SE PE A RE

FIGURE 5. PURE dataset

Usually, in any real data-sets, there are always some de-
grees of imbalance between classes. If the level of imbalance
is relatively low there should not be any big impact on ML
model performance. In our dataset as shown in the figure
5, there is high degree of imbalance between requirements
categories (classes). This issue is common in requirements
classification filed. Where the number of NFR sentences
always very small compared to FR and other contexts that
don’t include requirements. Furthermore, the number of NFR
categories in the same document are various. This issue led
us to use a set of techniques to balance the dataset in order to
obtain reliable results from the classification process.

Re-sample technique is one of the most common tech-
niques that is used for balancing text instances.This tech-
nique based on both over-sampling for the minority classes
and under-sampling for the majority classes. This technique
adopted SMOTE strategy which is based on the concept
of nearest neighbors to create its synthetic data. SMOTE
generates synthetic samples for minority class and intro-
ducing synthetic instances. This inherently comes with the
issue of creating more of the same data we currently have,
without adding any diversity to our dataset. While under
sampling techniques achieved by delete percentage number
of instances randomly. After we performed balancing task,
the dataset has become fairly balanced for each category as
its shown in figure 6.

B. THE PROPOSED SYSTEM:
The proposed system consists of three main components,
namely: dataset pre-processing, features extraction and ML

7
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FIGURE 6. PURE dataset after balancing

classification as shown in figure 7. The following sub-
sections describe each of these components:

Feature Extraction ———> ML= —>|
. model

NFR Sentences

Requirement Pre-processing }—>
Document )

FIGURE 7. System Design:

1) Pre-processing:

Basically, requirements document contains paragraphs, sen-
tences, words, numeric values, punctuation, special charac-
ter...etc. This document needs to be segmented into smaller
tokens for simpler processing and feature extraction. Fur-
thermore, some sentences or paragraphs in these documents
are irrelevant to the requirements and need to be excluded
from requirement sentences. For this purpose, we performed
this task in three steps: tokenization, data cleaning, and
normalization, that we described in the following subsequent
subsections.

Data cleaning

\—-{ Case folding }—;‘ Parts of speech tagging (POS) H Lemmatization ‘

Normalization

FIGURE 8. Data Pre-processing Tasks

2) Tokenization:

In this process, requirements document is broken up into
smaller segments. This process is also called data prepara-
tion. The requirements document In this process is broken
into paragraphs, and the paragraph into sentences. We relied
on a set of criteria to identify the boundary of the sentence
involve a capital letter for the start of the sentence and stop
marks such as full stop, question mark or an exclamation
mark for the end of the sentence. In our experiments, we used
sentence tokenization function nltk, which is a python library
used to extract English sentences from a document’. And
each requirement sentence will be chopped up into pieces of
terms.

Requirement sentence :

The number of mistakes noted by the students shall be
decreased by 50% in the first year.

Tokenized sentence :

['The’, 'number’, *of’, mistakes’, 'noted’, ’by’, ’the’,
’students’, ’shall’, ’be’, ’decreased’, ’by’, ’50°, *%’,
’in’, “the’, *first’, "year’, "]

3) Data cleaning:
Data cleaning is one of the first steps in text pre-processing.
It is an important step before the data becomes ready for
analysis. In its nature, requirement sentence as most of the
natural language texts includes noises that don’t provide
value in semantic meaning. And in order to achieve better
insights and perfect results, it is necessary to have noise-free
data.

The output of tokenization process is a set of requirements
sentences, which are segmented into tokens. These tokens
contain both relevant and irrelevant data such as punctuation,
stop words, upper-case, lower-case words, symbols, etc. The
objective of data cleaning process is to clean all irrelevant
tokens from requirement sentences that may undermine the
performance of our model. We accomplished this task in
three steps. First step, punctuation removal, in this step all
punctuation marks such as stops, question marks, commas,
colons, etc are removed from the requirement sentences.
Where, the semantic meaning in the text based on the basic
words. The second step is stop-word removal, in this step, all
high frequency words, such as (’they’, ’them’, ’their’, you,
should, from etc) don’t add any essential information to the
requirement sentence. In our model, we used python library
called Natural Language Tool Kit (NLTK). This library con-
tains most of the stop words in English language. The last
step of data cleaning task is Non-alphabetic tokens removal
that didn’t contain useful information.

Tokenized sentence :
['The’, 'number’, *of’, mistakes’, 'noted’, ’by’, ’the’,
’students’, ’shall’, *be’, ’decreased’, ’by’, ’50°, %’,

LR

in’, ’the’, *first’, "year’, ’.’]

3https://www.nltk.org/api/nltk.tokenize.html
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Cleaned sentence :
[’number’, *mistakes’, 'noted’, ’students’, ’shall’, ’de-
creased’, ’first’, *year’]

4) Normalization:

In normalization process, we aimed to convert all the words
to a more uniform sequence by transform it to a common
base form. In this task, we improve the text modelling
and matching. This task is applied on the words level by
three steps: case folding, Parts of Speech (POS) tagging and
Lemmatization.

Normalized sentence :
[’number’, ’mistake’, ’note’, ’student’, ’shall’, ’de-
crease’, “first’, "year’]

C. FEATURES EXTRACTION (VECTORIZATION) :

The second step in our methodology is to extract representa-
tive features from the requirement sentences using a various
number of features extraction techniques used in the NLP.
In our system we used four vectorization techniques in NLP.
Two of them are syntactical based methods: TF and TF-IDF.
The other two vectorizatin methods are semantically based
methods: Word2Vec* and BERT’. These methods are the
state-of-the-art language representations built on big data of
texts corpus.

Using these methods, we transform the requirements sen-
tence into a numerical representation feature in the form of
high dimensional vectors which used as input for training
machine learning classifiers. This process is also known as
vectorization. In this process, requirements sentences proper-
ties are extracted in a format supported by machine learning
algorithms, and make differences to distinguish it from other
requirements categories. This subsection explains in more
details how these NLP methods are used to transform the
requirements sentences from text to numerical vectors.

1) Term Frequency (TF) :

TF is one of the basic vectorization methods and information
retrieval in NLP. It gives indication about the significance of
a particular term within the overall requirement documents.
In our approach, we use this method to count how many
times each word in the requirement sentences appears in all
requirement documents and represent it as a vector. To per-
form TF method, we created words dictionary containing all
normalized words in the requirement document. This process
also called bag of words (BOW). In this method for each
requirement sentence vector was generated in dimension
equal to the total number of normalized unique words. The
rows corresponds to a requirement sentence and each column
represents a unique word. The occurrence number in case the
word is exist in the sentence increasing by one. While if the
word is not found the feature assigned to Zero. The following

“https://code.google.com/archive/p/word2vec/
Shttps://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-
pre.html
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example shows how requirement sentence represent as vector
using TF method: Reqg-sentence:The system shall refresh the
display every 30 seconds.

After Pre-processing : [’system’, ’shall’, 'refresh’, *display”,
’second’]

TABLE 1. Requirement sentence representation in TF

BOW : access  display refresh .... year shall system
Vector: [ 0 ] I [ 1T J[....]T o[ 1 T 1T 1]

Term ordering doesn’t be considered in TF method , and
the relationship among the words are ignored. This is an
obstacle in this method, and it was handled through N-gram
technique that improve TF to adopt local ordering when the
the vectors generated.

2) Term frequency inverse document frequency (TF-IDF):

In this technique we quantify a word in requirement docu-
ments. Weight of each word were computed which signifies
of its importance in all requirement documents. This method
is widely used in information retrieval in NLP. The weight
of the words that occur rarely in the corpus should be scaled
up. While, high frequent terms in software document such as
’system’, ,’software’ , or "should’ need to weight down. Fur-
thermore, removing stop words will also mitigate the effect
of frequent the frequent words in the Language that don’t
add much semantic meaning to the sentence. This methods
will improve the basic features that can be extracted from the
requirement sentences so that can differentiate between NFR
categories. Table 2 shows how the requirement sentence will
be represented in TF-IDF:

access  display refresh .... year shall system
Vector: [ 0 [ 07512 [ 05231 [ .... [ 0 [ 01270 | 0.3411 |

TABLE 2. Requirement sentence representation in TF-IDF

3) Word2Vec :

Word2vec is a common word embedding model provided by
Google to improve words representation. This model was
trained on nearly 100 billion of words from Google news
dataset [27]. In our research, Word2Vec is used to enhance
the numeric representation of the words through increase
the accuracy of capturing word context from a document
in semantic and syntactic words relationship. Each word in
the requirement sentences were represented in a vector of
300 dimensions. And each dimension represents one feature
encoded from millions of words. The value of each feature in
the word representation ranging from zero to one. Figure 9
shows how the word “authorized” is represented in a vector
using Word2Vec model. The objective of using this model in
this study is to invest the affect of semantic representation for
requirement sentences using big data model to achieve high
accuracy in NFR classification.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

Shreda et al.: Identifying Non-functional Requirements from Unconstrained Documents using Natural Language Processing and Machine Learning

10.1109/ACCESS.2021.3052921, IEEE Access

[8] 1 w2v_model[*authorized"]

[» array([ 2.18750@@0e-81, -7.47678312e-82, 1.61132812e-01, -1.91486250e-81,
-1.884765622-01, -1.48437588e-81, 1.82050721e-01, 6.22558504e-82,
3.025781252-61, -2.500000082-01, 2.517708202-83, -8.17371804e-03,
-6.542068752-82, -1.1660921%2-81, -1.718758002-01, 3.61328125e-81,
-2 -1. B 1, 1.25976562e-081, 1.28906258e-8l1,
4.5 -5, 2, -1.69921875e-61, 2.81171875e-81,
7 . -L.s 1, -5.32226562e-02, 1.508398625e-81,
-9.612189382-82, -7. 3, 1.11328125e-61, -9.61914862e-82,
1.8440218%2-081, -1.36718758e-81, -2.421875802-01, -8.69148625e-82,
-1.388503752-81, -1.728515622-01, -3.716937502-02, -4.472656252-81,

FIGURE 9. Word2Vec vector representation

4) BERT model:

BERT is a text representation technique stands for Bidirec-
tional Encoder Representations from Transformers. BERT is
an inflection point in the application of machine learning for
NLP and confirmed to be state-of-the-art for a wide range
of NLP tasks such semantic analysis and text classification.
This breakthrough was the result of Google research in 2018
[28]. BERT is designed to pre-train on two unsupervised
tasks, masked language and deep bidirectional representa-
tions which have deeper understanding of language on left
and right context that overflow single-direction language
models. BERT trained on a large volume Wiki Data of
2.5 billion words using two training strategies. Masked LM
and Next Sentence Prediction (NSP). In Masked LM fifteen
percent of the words in each sentence were replaced with
(MASK). Then the model trained to predict the mask words
refer to the other context in the trained dataset. While in NSP
the model shrink the sentences into two part and trained to
predict the second sequence of the sentences. In this study
we used BERT model with Masked-LM strategy to represent
requirement sentences in semantic numerical vectors. Then,
we trained the classifiers on top of the transformer output of
the BERT model.

D. ML CLASSIFIERS :

In previous stages of our proposed system, we segmented
requirements documents into sentences, then each sentence
were converted into a numerical representation in the form of
a vector in order to be used by ML models. In this Phase, we
built ML models to classify the vectors that represent require-
ments sentences into our target NFR categories (classes);
usability, availability, reliability, security, performance or
others. We choose the most common three supervised ML
algorithms applied to a similar task: NB, SVM, and LR. NB
classifier commonly adopted as baseline in most studies be-
cause of its probabilistic model based on the Bayes theorem.
While we used SVM and LR due to there results in previous
and similar studies in the literature . Furthermore, we used
CNN classifier which is considered as the state of the art
classifiers that belong to deep learning models. This classi-
fiers enhance features extraction and increase the accuracy
of classification compared with the traditional classifiers. In
the following subsections we propose how we performed the
four ML models that we used in our system:

1) SVM classifier:

SVM is a discriminative classification method which is
commonly recognized to be more accurate in NLP as we
discussed in the literature review chapter earlier in this thesis
[24]. In our system, SVM classifier were used to solve non-
linear classification problem using a “kernel trick", which is
a method for using a linear classification model to solve a
nonlinear problem by projecting the feature vectors of the
target classes into a higher dimension in which the classes are
linearly separable. Requirement sentences features vectors
are mapped to a high dimensional vector space, in which each
dimension is linearly separable by decision boundaries which
is called (hyperplanes). In our research, we have five classes
of NFR and the others class. The traditional SVM classifier is
a binary classifier, i.e. can be applied to two classes only. In
our case, we have multiple classes (i.e. six classes). To handle
this issue one-against-one and one-against-all strategies are
used. In order to maximize the margin of the hyperplane, the
weight of each feature is minimized using gradient descent
algorithm with cost function algorithm.

2) Naive Bayes classifier:

NB classifier is another classifier we adopted in our method-
ology. This classifier is a probabilistic model based on
Bayes theorem. A number of properties in this classifier
have prompted us to use it in our NFR classification model.
Naive Bayes is one of the most common used supervised
ML classifiers [24]. It is widely used to solve NLP classi-
fication problem as mentioned in Literature review. NB is
demonstrated to be accurate and reliable in natural language
classification tasks. Small number of instances is one of the
most problematic issues in requirement classification. NB
classifier does not require a lot of training data which is one
of the issues that led us to choose it in our research.NB classi-
fier needs numerical features as input. In our model. Require-
ment sentences were transformed into vectors using feature
extraction techniques (TF, TF-IDF, W2vec, and BERT). After
that, we use Bayes theorem to find the probability of each
requirement sentence to which category belongs using our
training dataset.

3) Logistic regression classifier :

Logistic regression deals with discrete classes using the
natural logarithm. It transforms its output using the logistic
sigmoid function to return a probability value which can then
be mapped to two or more discrete classes [29]. We used NLP
techniques to represent requirement sentences in suitable
form. In case of TF and TF-IDF, each requirement sentence is
represented into one vector. This makes it suitable as input for
LR. In the case of W2V and BERT model requirement sen-
tence is represented in multi dimension vectors, one vector
for each word in the sentence. Thus, we have to convert the
multiple vectors to one vector for each sentence using mean
value for all vectors represented from requirement sentence.
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4) Convolution Neural Network (CNN):

CNN algorithm is commonly applied for analyzing image
classification. CNN takes an input image as 3 dimensional
array based on the image resolution . The height and the
width of the image represented 2 dimensions of the array.
While the third dimension is the color of the pixel (RGB).
In our model we apply CNN model to identify and classify
requirement sentences. The sentences are segmented into
words. Each word is converted to vectors using the four
feature extraction techniques. The TF and TF-IDF techniques
convert the requirement sentences to random vectors, where
in the case of the Word2Vec and BERT, the sentences are
converted into vectors with adopting the semantic meaning.
These vectors pass through three layers in the CNN as shown
in figure 10.The following section describes how these layers
are performed.

Fully Connected
Pooling
)
Concatenated

Feature Map
Activation Function

Convolution Filter

B Ry

Input —

[
1
i / - v
shall L SE
easy PE
realtor
-

learn

Requirement Sentence

IIIII

FIGURE 10. CNN architecture for sentence classification

Convolution layer: The input layer of the Convolution
Layer is 2 dimensions other than what is common in case
of image recognition. The x dimension represents the vector
of each word. Where, the Y dimension represents the words
in each sentence. Figure 3 shows the representation vectors
for the requirement sentence: " The product shall be easy for
a relater to learn." in Word2Vec model.

Vector
website | 1.266 e-03 -1.718 e-01 2.812 e-01 6.494 ¢-02
shall | 5.273 e-02 -2.246 e-02 3.437 e-01 2.832 e-01
achieve | -2.275e-01 | 9.4726 e-02 -2.812e-01 | 6.738e-02
time | -4.736e-02 | -4.687 e-02 8.251e-02 1.245 e-01

TABLE 3. Sentence representation in Word2Vec model

The size of the x dimension for CNN input is equal to
x-dimension of the vector that represented by NLP method.
The size of y-dimension for CNN input is equal to the total
number of words for longest requirement sentences in the
dataset that we used. The x-dimension of convolution layer in
case of W2V and BERT model equal to 300, which is equal
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to the vectors that are represented by these models for each
word.

Feature map (filter): In our model, we perform three
sizes of feature map; two,three and four y-dimension with
full x-dimension depend on the input layer. This method,
somewhat, like bi-grams, tri-grams and 4-grams that used
in text mining and NLP tasks.The purpose of this layer is
to select new features from the words combination. The y-
dimension for both filters are the same in the convolutional
Layer, which is equal to the total number of words in the
dictionary. While, the size of x-dimension using word2vec
and BERT methods are 300 as mentioned earlier.

Stride: Stride: is the number of shift pixel (step) that the
filter move over the input matrix. In our model, the filter is
moving vertically (y-axis) only. Because the width of the
filter represents a single word and dividing this vector is
useless. The stride number for vertical move is one. So, the
feature map moves in Y-demotion one step at a time until
reaches the last word.

Fully connected layer: The function of a fully connected
layer is the last layer used to classify values from features
extracted to final classes (our five NFR categories and the
others). Fully connected layer takes the output of convolu-
tion and pooling layers and transform them to classify the
input requirement sentence into its types (Usability, Secu-
rity, Availability,..etc). After pooling layer, we convert our
matrix into one vector and feed it into a fully connected
layer like normal neural network. The resulting vector is
then multiplied by weights and pass through an activation
function. Soft-max activation function, which is common
function used in deep learning, is used in our case. After that
we forward the vector to the output layer, Where, each neuron
represents a label belongs to one of the target NFR categories
and the others.

E. FUSION MODELS

In the previous sections, we introduced different feature
extraction techniques. Each technique has its own properties
and advantages. In this paper we propose another approach
to achieve better results based on assumption that each of
features extraction technique has its own advantages and can
provide an addition value if we combine different features
together. The idea of this approach is to combine the four
NLP techniques in on fused model. The objective of this
model is to exploit all of the good features from all NLP
methods in one combined module. In this model each NLP
technique has distinctive features. For example, TF method
characterized by syntactical analysis of requirements sen-
tence. W2V models characterized by the criteria of semantic
meaning of the requirement sentence based on pre-trained
big data model. TF-IDF method characterized by giving
weight to keywords in requirements sentences based on all
documents. Finally, BERT model is bidirectional encoder
representations.To achieve our goal, we combine all sub-
systems that use different NLP methods into one overall
system to get the best classification result.
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Since the CNN is the most recent and successful approach,
We combine four CNN classifiers trained on the four different
features into one model. CNN classifiers was chosen due to
its results superiority over the rest of the other classifiers.
The output scores for all CNN models was combined into
one vector for each sentence that are used training a front-
end classifier. logistic regression uses the natural logarithm
to give wight for each feature and transform its output using
the logistic sigmoid function to return a probability value
which can then be mapped to two or more discrete classes.
Other classification algorithms were used for this task like
NB and SVM, but logistic regression achieved best results for
this mission. Figure 11 shows the architecture of proposed
combined model. In front-end, each classifier produces one
vector contains score probability for each NFR category. The
four produced scores vectors are combined into one vector
and used to train and evaluate the back-end classifier.

Back-End : 30 % Training and testing
A

- 15%

Front-End :70 % Training 30% Training ¢ 30% Testing
15%
A
7z N R ~
TF ML Model [
[CNN] =
ML Model
o ‘ IChiN] One Veck NFR Cat
ne Vector ategol
MLModel oo
T [Logisticregression]

Sr— ML Model
W2V [ — Ve

BERT ‘ ML Model

[CNN]

FIGURE 11. Fusion model architecture

F. EVALUATION :

In our methodology, the system evaluation is achieved by
randomly splitting dataset into two subsets; train and test.
The training set is used for training ML classifiers, while test
set is used only for testing the performance of the classifiers.
It is worth saying the test dataset has never been used in
training (holdout dataset).

A general thumb rule that we followed is to use 70:30
train/test split. Which is the common rule that deal with small
size dataset. The total number of requirement instances are
1247. The splitting process split 872 instances for training,
and 375 instances for testing. In fusion model, the dataset was
split as in all experiments 70:30. Training dataset was used
to train front-end classifiers. The test set was used for both
training and testing the back-end classifier. The test set was
divided into two equal non-overlapped subsets. One subset
was used to train the backend classifier and the second was
used to evaluate it. Then, the two subsets were exchanged and
the same experiment is repeated (2-fold cross-validation).
The overall system performance is reported based on the
results of the two experiments.

12

Train Mode!

Training Set Test Set

FIGURE 12. Train/Test Method

The classification performance metrics were used in all
presented experiments are accuracy, precision, recall and F1-
score [24]. Precision measures the percentage of the number
of correctly classified requirements to the total number of
true positive and false positive prediction (positive prediction
value). In other words, the percentage of retrieved NFR that
are relevant, where high precision relates to the low false
positive rate. This measure called type 1 error. Equation 1
defined precision measurement. TP "true positive" denoted
the number of correct classified requirements. FP "false pos-
itive" denoted the number of incorrect classified.this is called
type 1 error.

TP 0
precision = 7TP T FP

Recall denotes the percentage of relevant NFR that related
successfully. This is also called type 2 error. The importance
of both measurements (precision and recall) depend on the
objective behind the measurement.In this research our object
is to identity most NFR without losing a number NFR that
may be necessary in early steps of SDLC. Equation 2 shows
the formulation of recall

TP
recall = m (2)

F-measure is the weighted harmonic average of precision
and recall. Therefore, F1-score takes both false positives and
false negatives in calculation.F1-score can be formulated as:

2.precising X recall

F — measure = — (€)]
precising + recall

Statistical test was used in all experiments to evaluate
statistically the results of repeated experiments. We used
popular non-parametric test named Wilcoxon statistical test.
Wilcoxon compares two paired groups, and most of previous
studies used it in case the experiment be run many times
[30] [31]. The goal of the test is to determine if two or more
sets of pairs are different from one another in a statistically
significant manner. In this thesis we compared between four
classification algorithms using different feature extraction
techniques and evaluated through Wilcoxon statistical test
establish if they are statistically significantly different from
one another and the results are real and not caused by luck or
chance.

IV. EXPERIMENTS AND RESULTS

Recall that this study aims to investigate the effectiveness of
NLP techniques and ML approaches for NFR classification
from unconstrained requirements documents. In order to
achieve this goal, we performed various experiments using

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3052921, IEEE Access
Hanani et al.: Identifying Non-functional Requirements from Unconstrained Documents using Natural Language Processing and Machine Learning Approaches

IEEE Access

PURE dataset which were described in the previous section.
In this section, we present our experiments and their results.

In order to investigate the effectiveness of the most com-
monly used ML classifiers, we conducted a set of experi-
ments using the following four ML techniques:

1) Naiev Base (NB).

2) Support Vector Machine (SVM).
3) Logistic Regression (LR).
4) Convectional Neural Network (CNN).

Also, to study the effectiveness of the most common
feature extraction techniques, the following four common
feature extraction techniques were used in our experiments
with each ML techniques.

1) Term Frequency (TF).

2) Term frequency inverse document frequency(TF-IDF).

3) Word2Vec model (W2V).

4) Bidirectional Encoder Representations from Transform-
ers (BERT).

The main strategy in our study is to use the four NLP
techniques for mapping requirement sentences into numeric
vectors then train and evaluate the four ML classifiers, each
on the four vectors types. By this, we conducted 4 experi-
ments.

V. ENVIRONMENT SETUP:

To perform all of our experiments, we used Google Colab®
cloud service which supports GPU processor. It is Jupyter
notebook environment that runs entirely in the cloud. Table 4
shows detailed specifications of the processing capability of
Colab cloud service.

TABLE 4. Environment setup

Type Specification
1 CPU model 2 * Intel(R) Xeon(R) CPU @ 2.00GHz
2 CPUMHz 2000.168
3 cache size 39424 KB
4  Ram 32 GB
5 SSD 69 GB
6 GPU Tesla K80
7 OS Ubuntu 18.04.3
8  Environment Cloud service : Google Colab
9  Pro-Language  Python 3.7

Python programming language was used for developing
the systems and conducting all the experiments. It contains
massive number of frameworks and libraries for NLP tech-
niques and data pre-processing modules [32]. Python, with
its rich technology stack, has an extensive set of libraries for
artificial intelligence and machine learning.

VI. PRE-PROCESSING :

First of all, we applied number of pre-processing steps in
order to clean and prepare text data into a form that is
predictable and analyzable for our experiments. In all of our
experiments, we performed the pre-processing task through
three steps: tokenization, data cleaning and normalization.

Shttps://colab.research.google.com/
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A. TOKENIZATION :

Requirement sentences were extracted from requirement
document using python Texttract package’. This package
is used to extract content from any type of file without
any irrelevant markup. Then all sentences were broken up
into small chunk using python platform used to work with
human language data called natural language tool kit (Python
NLTK). This module includes tokenizer package to divide
strings into lists of sub-strings (tokens) based on white space
and punctuation.

B. DATA CLEANING :

In this step all irrelevant data are removed including punctu-
ation, stop-words and non alphabetic tokens. We also used
python NLTK package to remove English stop-word and
stripped library to remove punctuation and non alphabetic
tokens.

C. NORMALIZATION :

In normalization pre-processing step, a number of related
tasks was done meant to put all the words into a more uniform
sequence. This process consists of three steps : case folding,
part of speech tagging and lemmatization. In this mission
we used python WordNet, which is a large lexical database
contain sets of cognitive synonyms in English language.
The example below describes pre-processing task including
normalization step.

[71] 1 print(req_sent)

[» The System must allow the user to limit access to cases to specified users or user groups.

[72] 1 req_sent = clean_text(req_sent)
2 print(req_sent)

[» system must allow user limit access cases specified users user groups

67] 1 req_sent = tokenizer_sentence(req_sent
q_: = -
2 print(req_sent)

D> ['system’, 'must’, 'allow’, 'user’, 'limit’, 'access', 'cases’, 'specified’, 'users’, ‘user', 'groups']

[73] 1 req_sent - lematizer_sentence(req_sent)
2 print(req_sent)

O ['system', 'must’, ‘allow’, ‘user’, 'limit’, ‘access’, 'case’, 'specify’, 'user’, ‘user’, "group’]

FIGURE 13. Pre-Processing Tasks in python

VIl. FEATURES EXTRACTION :

Multiple NLP techniques were used to extract features from
the requirements sentences. Furthermore, NumPy Python
package were used to represent the dataset in ndarray data
structure. NumPy is the fundamental python package needed
for scientific computation, which supports large, multi-
dimensional arrays and matrices.

1) TF vectorization method :

To represent requirement sentence in TF method, dictionary
of unique words in the data set (BOW) were generated using
bow_generate function. The size of this dictionary was 1247
that equal the total number of unique words in all requirement

7https://textract.readthedocs.io/en/stable/
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sentences. This number also expresses the dimension size of
each requirement sentence represented by TF in the experi-
ments. For each word exist in the requirement sentence, one
is added to its corresponding on it’s vector.

1 for i in req_sent:

2 print(i)

[6. 8. @. ... 8. 8. 1.]
C [@. 1. @. ... @. 8. 2.]

[0. 1. 8. ... 8. @. 8.]

[0. ©. 8. ... 8. 8. 2.]

[6. ©. 8. ... @. 8. 8.]

FIGURE 14. Requirement sentence representation in TF

2) TF-IDF vectorization method :

TF-IDF is distinguished from TF method in words weighting,
where the weight of each word is calculated the signifies of
its importance in all requirement documents that we adopted.
To do that, Tfidf transformer class were used from sklearn®
feature extraction library to transform requirement sentences
to TF-IDF vectors. Each requirement sentence represented by
vector in 1247 features, which represent the total number of
unique words in all requirement document. Figure 15, shows
how TF-IDF method calculate the weight of each word in
requirement sentence. The words that are frequently repeated
will have little weights such as the word "system" as its
shown in yellow color.

[45] 1 pipe['tfid'].idf_

[ array([6.38564119, 5.37484025, 6.67332327, ..
7.87878838])

., 7.07878838, 4.93872221,

FIGURE 15. Requirement sentence representation in TF-IDF

3) W2V vectorization method :

Word2Vec is one of the most popular google model to pro-
duce word embedding. In this model, each word represented
by vector with 300 dimension. In this experiment the words
in requirement sentences convert to 300 dimensional vector.
Thus each requirement sentences will be represented in 2
dimensional vectors. In traditional ML such as NB, LR and
SVM that deal with one dimensional feature vector, we
calculate the mean value for overall words vectors in each
requirement sentence. So, one vector contain 300 features
will represent each requirement sentence. While in CNN
classifier that deal with 2 dimensional vectors requirement
sentences represented by 2 dimension numpy array. Where
x-dimension represent each word vector. And y-dimension
represent the words that make up requirement sentences.
Padding techniques are required to unifies the dimension
of numpy 2d array. The y-dimension for each requirement
sentences set to 50, which is equal to the longest requirement

Shttps://scikit-learn.org
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sentence in dataset after pre-processing task. Pad_sequences
package where used from tensorflow keras library” to han-
dle the various lengths of requirement sentences. Gensim
libraries'® also used to load W2V model which is an open-
source library implemented in Python for topic modeling
and NLP tasks. Figure 16 shows how requirement sentences
represented in this model.

[49] 1 req sent = "The System must allow the user to limit access to cases to specified users or user groups”
2 w2y = [word2vec_model[w] for w in req_sent if w in word2vec_model]
3 print(w2v)

D> [erroy([-2.42187500-01, 1.45507812¢-61, 2.68554688<-62, 7.59887605¢-03,

-2.734375002-01, -1.210937502-01, -1.745046552-01, -1.923528122-01,
-1.12304688-01, 1.35742188e-61, 6.13463326e-03,
. ~1.767578122-01, -1.57500000-01.
, 9.03326312¢-02, -4.858398442-62,
. 1.689845312e-01, 3.36914062e
2856781<-01, -2.81250000<-61,
61338122-02, 2.111516412-02,
6064453c-02, 1.44531250e-81, 1.12792069-01,

. 2.25585938e-01, 3.44238281e-02, 1.48437500e-01,
L 8.74623 , 6.8 2.421875602-01,
. 3.71093750e-02, -1.062011726-02, 3.32031250e-02,
. 8.1058568752-02, -2.20703125e-01, 1.43554688e-01,
. 3.35937508e-91, ©9.52148433e-02, 2.21679685e-01,
-3.53515625¢-81, -1.472473142-03,
-6.854765628-02, -1.
-2, , -1.61132812e-01, 1.464843752-01,
. 1.77738375e-01, 1.76757812e-01, -2.31445312e-01,
-1.58203125¢-91, -1.
1.42211814e-02,
. 8.821487432-25, -7..
. 1.17675781e-01, -2.20703125e-01, 4.66796875e-01,
-2.822875082-84, -1.08308438e-01, 8.398437502-02,
-2.92965750-01, 2.67519531e-02, 1.93027344e-01,
-3.881835042-02, 4.10156250e-02, 2.00195312e-81, 1.166992192-01,

FIGURE 16. Requirement sentence representation in W2V model

4) BERT Model :

In this experiment we used ktrain python library that contain
BERT-Base pre-trained models on tensorflow [33] using 12-
layer, 768-hidden, 12-heads and 110M parameters. As W2V
model, BERT transform the words into 300 embedding vec-
tors. And each requirement sentence was represented by 2d
numpy array. In traditional ML the 2d numpy array reshaped
into 1d features vector using mean value for all words in
requirement sentence. In CNN model requirenebt sentences
represented by 2d numpy array which is compatible with con-
volution layer. Padding technique is also required to unifies
the dimension of numpy 2d array. The size of padding in our
experiment was 50 dimension, which equal to the maximum
number of words in requirements sentences in our dataset.
Figure 17 shows how requirement sentences represented in
this model.

© 1 regsentfe]

C» array([-5.34231126e-€1, -1.831832532-01, -5.07125270e-02, -3.13918540e-03,

€-92, -1.21924385¢-01, 1.84660718¢-01, 1.75494716e-01,
-2.3649215 , -5.026217702-01, -2.50915110-01, -1.44719735¢-01,
-5.21638691e-02, 2.17247501e-01, 4.636332022-02, 7.61160553-02,
1.27847806e-01, 2.61519492e-01, 1.480298642-01, 1.92423854e-02,
-1.958520152-02, -5.33255279¢-01, -7.570961862-02, -2.94705341e-01,
1.11890055¢-01, -2.52556264e-01, 6.03336729e-02, 1.3129121le-6l,
6.34228587¢-02, -1.73626989e-02, -3.35504135e-01, 3.00361395e-0l,
-3.06813419e-01, -7.00837016e-01, 1.17891775e-02, 1.325366502-01,
6.47546500e-02, 1.76486969e-01, -3.11030179e-01, 3.7915442le-02,
» -1.41135380-02, 5.38994312e-01, -7.25948662e-02,
» -1.085857602-01, -2.47695446+00, -3.186692892-01,
, -2.86655008¢-01, -9.30476189¢-02, 1.33299127e-01,
, 2.59896398e-01, 4.01514262¢-01, 4.14985090e-01,
1.44364849¢-01, -6.16705453e-04, -2.60916613e-02, 3.62056255e-01,

FIGURE 17. Requirement sentence representation in BERT

Finally, the classifier predict based on its experience to
which category the requirement sentence belongs using soft-
max activation function. Figure 18 shows an array represents

9https://www.tensorflow.org
10https://pypi.org/project/gensim/
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how much percentage the requirement sentence belong to
each NFR category: US, RE, A, SE and Other.

[31] 1 model.predict(req sent)

[» [0.0002187, ©.0803172955, 1.8068868-86, 2.4850273e-85, £.99889475, ©.0885565793]

FIGURE 18. Output layer for CNN model

A. PARAMETERS SETTINGS FOR ML CLASSIFIERS :
With different NLP techniques we fixed the classifiers pa-
rameters to evaluate the effect of NLP techniques on classi-
fication results. We adopted the default parameters sitting as
it is in Scikit-learn library. Which is the most common free
machine learning library for Python and matlab language. In
this subsection we list all parameters for each classifiers that
were used in our experiments.

1) Naive bayes :

Scikit-learn with Gaussian NB package was used to imple-
ment NB classifiers. The setup parameters for this classifiers
was : [variance smoothing = 1e-9, Number of class = 6, Max-
iter = 100]

2) Support vector machines :

For SVM classifiers, we used scikit-learn with SVM pack-
age. The followings parameters was used in our experi-
ments for this classifier: [Regularization =True, kernel="rbf’,
coef0=0.0]

3) Logistic regression :

In LR classifiers, we used linear model library with Logistic-
Regression package. The setup parameters for LR exper-
iments : [Tolerance = 0.00L.fit intercept=True, intercept-
scaling=1, class-weight=None, random-state=None, Max-
iter = 100, Regularization =True]

4) Convolution neural network :

For all CNN based experiments, we used keras tensorflow
library which is open-source neural-network library written
in Python. Embedding dimension parameter was fixed to
300, that equal to word vector dimension generated from
embeding model. And number of output layer were fixed
to the number requirement categories target classes, which
equal to 6. While we tuned the number of filters until
the best result was converged. And filter size was fixed
to bigrams,trigrams and fourgram. The reset of parame-
ters were fixed as its defaults: [ Conv layer = 3, pooling-
Layer = 3, Embedding-DIM=300, NB-FILTERS =200, FFN-
UNITS = 512, NB-classes = 6,Stride = 1, Filter-sizes =
[2,3,4], DROPOUT_RATE =0.05, BATCH-SIZE = 32, NB-
EPOCHS = 20, regularizers = 12(0.01), activation-output=
sof-Max,training-Options = "adam’ ]
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VIIl. EXPERIMENT 1: OPTIMAL ML CLASSIFIER USING
TF METHOD
The Objective of this experiment is to identify the optimal
ML classifier using TF method. The four described ML
approaches were adopted including the three traditional ap-
proaches NB, SVM, logistic regression and deep learning
approach CNN. Each experiment was repeated 10 separate
times to verify and avoid the randomness of results. Statisti-
cal test was also performed to assess the validation of results.
For the traditional ML approaches, the requirements sen-
tences are fed to the classifier using one vector that represents
the count of all words in requirement sentence. Each item in
the list represents one feature, and the type of requirement
sentence represents the label. In CNN, the output vector of
TF method is fed to the classifier vertically as an image.
Figure 19 shows the accuracy results for the 4 classifiers in 10
runs. The median value in box plot figure represent in orange
line inside each box, while the green triangle represent the
mean of accuracy results for the 10 runs.

ML classifiers using TF method

'y
0.86

NB SVM LR CNN
Algorithm

FIGURE 19. ML classifiers accuracy using TF method

We also report three performance metrics, precision, re-
call and F1-score metrics for each NFR type using Sklearn
libraries. The results for each NFR types are shown in table
5.

A. EXPERIMENT 2: OPTIMAL ML CLASSIFIER USING
TF-IDF METHOD
In this experiment, we aim to determine the optimal ML
classifier using TF-IDF method. The TF-IDF feature vectors
representing all sentences extracted from the training dataset
are used to train the four ML classifiers. The TF-IDF fea-
tures extracted from the testing dataset are used to evaluate
each system. Each experiment was repeated 10 times. The
accuracy results for the four classifiers are shown in figure
20.

Table 6 also shows three performance metrics that used in
classifiers for each NFR types that we adopted in this paper.

B. EXPERIMENT 3: OPTIMAL ML CLASSIFIER USING
W2V MODEL

In this experiment, the Google W2C model was used to
transform the words in requirement sentences into numerical
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TABLE 5. ML performance metrics Using TF method

Naive Bayes SVM Logistic Regression CNN
Presesion  Recall ~ Fl-score | Presesion Recall Fl-score | Presesion Recall Fl-score | Presesion Recall Fl-score
(SN 0.789 0.843 0.843 0.793 0.852 0.819 0.838 0.866 0.850 0.820 0.876 0.846
RE 0.934 0.831 0.831 0.898 0.874 0.884 0.917 0.860 0.886 0.942 0.881 0.910
PE 0.847 0.739 0.739 0.810 0.883 0.844 0.806 0.880 0.840 0.847 0.870 0.858
A 0.951 0917 0917 0.896 0.960 0.926 0.949 0.865 0.904 0.939 0.929 0.933
SE 0.703 0.744 0.744 0.728 0.836 0.777 0.762 0.817 0.787 0.826 0.829 0.825
Oth 0.736 0.848 0.848 0.893 0.709 0.788 0.866 0.859 0.861 0.838 0.825 0.829
Avg 0.827 0.820 0.820 0.836 0.852 0.840 0.856 0.858 0.855 0.869 0.868 0.867
TABLE 6. ML performance metrics using TF-IDF method
Naive Bayes SVM Logistic Regression CNN
Presesion  Recall Fl-score | Presesion Recall Fl-score | Presesion Recall Fl-score | Presesion Recall Fl-score
UsS 0.823 0.867 0.842 0.830 0.907 0.863 0.814 0.818 0.814 0.842 0.867 0.853
RE 0.848 0.878 0.862 0.905 0.822 0.861 0916 0.836 0.874 0.926 0.849 0.885
PE 0.819 0.845 0.831 0.847 0.867 0.862 0.822 0.891 0.852 0.967 0.921 0.943
A 0.900 0.823 0.858 0.901 0.901 0.921 0.879 0.938 0.907 0.828 0.897 0.860
SE 0.761 0.782 0.770 0.806 0.870 0.836 0.773 0.901 0.831 0.806 0.832 0.818
Oth 0.877 0.834 0.854 0.906 0.851 0.865 0.917 0.786 0.845 0.859 0.866 0.860
Avg 0.838 0.838 0.836 0.866 0.870 0.868 0.854 0.862 0.854 0.871 0.872 0.870

ML classifiers using TF-IDF method

0.88 1

0.86

Accuracy

=k
H-H

Algorithm

FIGURE 20. ML classifiers accuracy using TF-IDF method

victors semantically. For the three traditional classifiers that
we used, a one-dimensional vector for each sentence is com-
puted as the arithmetic mean of all words vectors that consists
the sentence. The resulted sentence-level vectors extracted
from the training datatset are used to train the classifiers,
and the vectors extracted from the testing dataset to test the
classifiers.

For the CNN classifier, the word-level vectors of each
sentence are stacked into two-dimensional array, similar to
the image, and used in training and evaluation. Similar to the
previous experiments, each experiment is repeated 10 times.
Figure 21 shows the classification mean and median accuracy
in 10 runs for each ML classifiers.

C. EXPERIMENT 4: OPTIMAL ML CLASSIFIER USING
BERT MODEL

In this experiment we used Google Bert model, this model
is considered as the state of the art language model for text
representation. Similar to W2V, BERT model represents each
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FIGURE 21. ML classifiers accuracy using W2V model

word in 300-dimensional vector. For the three traditional
classifiers,as W2V one sentence-level vector is computed by
taking the mean of all word vectors. The resulting vectors
of the training dataset are used to train the NB, SVM, and
RF classifiers. The sentence-level vectors extracted from the
testing dataset are used to evaluate each of the three classi-
fiers. For the CNN classifier, the word-level BERT vectors
are stacked into two-dimensional array and used to train
and evaluate the CNN-based classifier. The accuracy of ML
classification for the 10 runs was reported through box plot,
as its shown in figure 22.

Furthermore, we present three performance metrics for
each NFR types using the BERT representation model. Table
8 shows the precision, recall and F1 score for each NFR
category.
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TABLE 7. ML performance metrics using W2V model

Naive Bayes SVM Logistic Regression CNN
Presesion  Recall Fl-score | Presesion Recall Fl-score | Presesion Recall Fl-score | Presesion Recall Fl-score
Us 0.644 0.731 0.682 0.792 0.792 0.822 0.756 0.825 0.788 0.853 0.901 0.877
RE 0.767 0.676 0.718 0.904 0.904 0.852 0.812 0.787 0.797 0.879 0.810 0.843
PE 0.752 0.667 0.704 0.843 0.843 0.863 0.819 0.801 0.808 0.950 0.891 0.919
A 0.726 0.930 0.814 0.882 0.882 0.894 0.813 0.861 0.834 0.845 0.938 0.889
SE 0.719 0.662 0.687 0.758 0.758 0.789 0.748 0.767 0.754 0.891 0.854 0.872
Oth 0.751 0.742 0.745 0.862 0.862 0.821 0.829 0.749 0.787 0.969 0.969 0.969
Avg 0.727 0.735 0.725 0.840 0.845 0.840 0.796 0.798 0.794 0.898 0.894 0.895
TABLE 8. ML performance metrics using BERT model
Naive Bayes SVM Logistic Regression CNN
Presesion Recall Fl-score | Presesion Recall Fl-score | Presesion Recall Fl-score | Presesion Recall Fl-score
usS 0.621 0.501 0.553 0.647 0.731 0.682 0.778 0.790 0.782 0.910 0.964 0.933
RE 0.609 0.559 0.581 0.678 0.652 0.660 0.884 0.769 0.820 0.962 0.941 0.950
PE 0.575 0.577 0.572 0.577 0.722 0.638 0.797 0.833 0.814 0.853 0.913 0.880
A 0.689 0.651 0.668 0.814 0.799 0.805 0.900 0.881 0.890 0.959 0.891 0.923
SE 0.593 0.706 0.641 0.674 0.706 0.687 0.738 0.801 0.766 0.986 0.836 0.903
Oth 0.536 0.652 0.587 0.765 0.617 0.681 0.779 0.792 0.785 0.863 0.914 0.915
Avg  0.604 0.607 0.600 0.693 0.705 0.692 0.813 0.811 0.810 0.922 0.914 0.915
E. OPTIMAL NLP TECHNIQUES TO TRANSFORM NFR
0.95 & USING CNN.'
090 == As noted from the results of the previous experiments, CNN

==

0.55 1 o

NB SVM LR
Algorithm

FIGURE 22. ML classifiers accuracy using BERT model

D. NFR CLASSIFICATION ACCURACY USING
DIFFERENT NLP TECHNIQUES :

After we performed the four experiments we summarize the
mean of the accuracy results for all classifiers using the used
NLP feature extraction methods, as shown in figure 23.

o
©

0.84

0.85

o
®

0.80

0.75
0.72

Accuracy

0.70

- DIEQ=
- 0. 53.-

w2v

NLP model

FIGURE 23. ML classifiers with all NLP methods
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approach achieves the best accuracy in NFR classification
with all NLP feature extraction methods. In figure 24, we
compare the accuracy of CNN classifiers using the four NLP
feature vectors.

CNN accuracy using different NLP model

—— BERT model
W2V model
1 — TF-DF
— TF

T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Experiment Run

FIGURE 24. Optimal NLP techniques using CNN classifiers

F. EXPERIMENT 5 : FUSION MODEL

The objective of this experiment is to exploit the best of
the four features extraction techniques together. In previous
experiments CNN classifiers outperforms the other classifiers
with all extraction techniques. In this experiment, we present
a system consisting of two classification stages: front-end and
back-end. In front-end part four CNN classifiers are trained
using the four different features extraction techniques. Each
classifier is configured to produce a probability score for each
NLP category (the category with the highest score is the
recognized one), i.e. each classifier produces a 5-dimensional
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scores vectors for each testing sentence. The score vectors
of the four classifiers are concatenated together into one 20-
dimensional vector. The produced concatenated vectors of
the all testing sentences are divided into equal subsets. At
back-end, a logistic regression classifier is trained on one
subset and evaluated on the second one. The two subsets
are exchanged and the same experiment is repeated. The
evaluation result of the back-end classifier using the two
testing subsets are used to find the overall fused system
performance.

It may be recalled that, the computation time in this
experiment takes four times the time of the previous experi-
ment, where we ran the model with four different extraction
techniques, in addition to back-end model that takes less
than 3 second. But mainly, the training process is a one-time
process, then the model is ready to use.

TABLE 9. Performance metrics report for fusion model

Fusion Model
Presesion  Recall  Fl-score
usS 0.95 0.98 0.96
RE 0.97 0.91 0.94
PE 1.00 0.92 0.96
A 1.00 0.98 0.99
SE 0.85 0.96 0.91
Oth 0.94 0.91 0.92
Avg 0.95 0.95 0.94

In this experiment we achieved accuracy 94.6% using
the first subset of testing data. And 94.1% accuracy for the
second subset. In average, we achieved accuracy of 94.3%.
Table 5.6 shows the classification performance matrices for
fusion system.

By this results, our fusion system outperforms all of the
previous systems, with an accuracy improvement by 2.4%
compared to the best results achieved by the BERT model.
We also performed a comparison between the CNN classi-
fiers using the four NLP methods that we adopted, in addition
to our fusion model. Figure 25 shows how the accuracy for
the BERT model outperforms the statistical-based feature
extraction techniques with the CNN classifier, and how the
fusion improves the BERT-based system.

To analyze the results obtained from fusion model we
formulated a confusion matrix, shown in figure 26 which
describes the true positive,true negative, false positive and
false negative for the fusion system results, since it gives the
best result.

G. STATISTICAL TEST :

In this study, each classification experiment is executed 10
times to estimate the variability of the results and to evalu-
ation how close to each other. Furthermore, to increase the
accuracy of the estimate assuming that no bias or systematic
error is present. We compared the obtained results using
Wilcoxon statistical test to establish if they are statistically
significantly different from one another and the results are
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real and not caused by luck or chance. Wilcoxon signed-
rank test is non-parametric statistical hypothesis test used to
compare the mean and median of the values. To do that, first
we found the mean with standard deviation for the 10 runs,
see table 10. Then, we found the median and Interquartile
range for each classifiers in the 10 runs, see table 11. Then we
calculated a wilcoxon statistic test between each classifiers.

Figure 12 represents the wilcoxon results compared two
paired groups of classifiers results. Triangle symbols (V ,
A) indicate that results are statistically significance in which
p-value < 5%. The inverted white triangle V represents the
superiority of the algorithm at the top of the table statistically
over the algorithm from the side of the table, while the black
triangle A represents the opposite relation. The dash line ( -
) indicate that there are no statistically significance between
the two classifiers, p-value > 5%.

IX. DISCUSSION
In this section we discuss the experiments results presented
in the previous section.

The objective of the first four experiments is to investigate
the efficiency of machine learning techniques to classify
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TABLE 10. Mean and Standard Deviation of Accuracy indicator.

LR

CNN

NB SVM
BERT 5.99e¢ — 012.31e—02 6.93e — 012.15¢—02
TF 8.20e — 0171.47¢—02  8.35¢ — 011.50e—02
TF-IDF 8.37e — 011.713702 8.68e — 011‘453702
w2v 7.25e — 012.266702 8.40e — 011‘246702

8.08¢ — 011.51¢—02
8.57e — 011.36e—02
8.53e — 011.47¢—02
7.94e — 012_546702

9.17e — 011 .47¢—02
8.66e — 011.01e—02
8.75¢ — 011.53¢—02
8.92e — 016.70e—03

TABLE 11. Median and Interquartile Range of the Accuracy indicator.

LR

CNN

NB SVM
BERT 5.99e — 012.12¢—02 6.91e — 013.53e—02
TF 8.20e — 0171.18¢—02  8.34e — 011 .67¢—02
TF-IDF 8.35e — 012,203702 8.66e — 012‘203702
w2v 7.25e — 011.80e702 8.44e — 011‘736702

8.08¢ — 012.27¢—02
8.60e — 011 .68¢—02
8.48¢ — 012.45¢—02
7.91e — 012_346702

9.20e — 011.20e—02
8.72¢ — 011.15¢—02
8.80e — 012.42¢—02
8.90e — 014.73¢—03

TABLE 12. Wilcoxon values of the accuracy indicator (TF, TF-IDF, W2V,
BERT).

SVM LR CNN
NB VYAAAY vvvv YAAAY
SVM VAAV V-VV
LR -VVV

NFR using three common ML classifiers and CNN. The
traditional ML approaches: SVM, NB, and LR achieved
relatively good results with the NLP techniques that adopted
syntactic analysis such as TF and TF-IDF compared with
the semantic-based embedding models such as W2V and
BERT. NB classifier achieved accuracy range from 60.3 % to
83.7%. SVM classifier achieved accuracy in range between
69% to 86.8%. While CNN outperformed all the traditional
approaches by achieving results range from 85% to 92%. By
analyzing the results of all experiments, obviously traditional
ML approaches outperform word embedding methods in
syntactic analysis methods. The CNN approach is more suc-
cessful with the word embedding models, due to the ability of
this model to handle multi dimensions inputs vectors in the
convolution layer such as word2vec and BERT model. We
can also conclude that NFR classification accuracy mainly
depends on two main factors: first: the type of classifier,
Second: the NLP extraction techniques that is used.

The results of the measurement metrics: precision, recall
and Fl-score are close to the accuracy results in the most
cases, except for the security requirement class, as shown
in tables 22 and 21. Its noted that the systems precision for
detecting the security requirement class was low in the most
traditional ML classifiers in range between 59.3% to 80.2% .
While, CNN classifier was able to improve detecting security
class with a precision range between 82% to 98% as shown
in table 22. In the average precision (positive rate) for all
classes in NB, SVM and LR, the classifiers achieved results
between 60% to 80%. While, CNN classifier was able to
achieve precision between 80% to 90%.

The sensitivity of ML models was measured using recall
metric. Recall measures the fraction of the total amount
of relevant instances that actually retrieved. In other word,
recall measures the ratio between the correctly identified as
positive NFR to the actual positive NFR. This metric also
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expresses the ability to find all relevant requirement cate-
gories. CNN classifier achieved best recall results in range
between 86% to 91.4%. This means out of every 100 NFR,
the system succeeded in extracting 91 NFR. In experiment
5, we used fusion model to employ all NLP techniques
to extract features from requirement sentence. We achieved
weighted recall equal 94%. This results can minimize the
number of unrevealed NFR from requirement document. By
these results, the number of extracted NFR increased from
the presented requirement document. And this will help the
software engineer to define most NFR that the customer has
expressed through the requirement document.

Also, we investigated the effectiveness of the NLP tech-
niques in representing the NFR categories in the uncon-
strained requirement documents. Two experiments were per-
formed for this invistigation. First, we used 4 different NLP
techniques with each ML classifier, including statistical vec-
torization methods [TF and TF-IDF], and word embedding
models [W2V and BERT]. The results in figure 23 shows how
natural language techniques affect the classification results.
And while some NLP techniques do well with some types
of ML classifiers, the others achieved lower accuracy with
other types of classifiers. For example, BERT model achieved
the highest accuracy with CNN classifier equal to 91.4 %,
while it achieved low results with traditional ML classifiers
such as NB and SVM. In contrast, the traditional ML clas-
sifiers such as NB, SVM and LR achieved better results
using random vectorization methods than word embedding
methods. Another result can be extracted from figure 5.9,
TF method achieved the lowest results in each classifier.
Anf the TF-IDF representation method achieved good results
ranging between 83 % and 87%. All of this leads us to one
conclusion: random vectorization methods achieve better re-
sults with traditional ML (SVM,NB and LR) that have lower
number of feature dimensions. Whereas, word embedding
methods that have high dimensional representation achieved
better results with deep learning approach (CNN) which have
rich information retrieval for requirement sentences, such as
word2vec and BERT model.

|[Fusion model combines the CNN-based systems with the
four feature extraction techniques. Two of these methods
represent the syntactic features from requirement sentences
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such as TF and TF-IDF. While the rest such as W2V and
BERT, represent semantic features. The results show that
fusion system outperforms all the individual proposed sys-
tems, with an accuracy of 94.3% (i.e. 2.4% improvement).
It achieves precision in range between 85% to 100%, and
recall in range between 91% to 98%. Table 5.6 presents
the classification results of the fusion model. And figure
5.13 shows a comparison between the CNN classifiers using
the four feature types, in addition to the fusion model. The
results show how the accuracy of the semantic-based BERT
features outperform the statistical-based features with the
CNN classifiers, and how the fused system improves the
accuracy of CNN-BERT system by 2.4%.

Figure 26 shows the confusion matrix of the classification
results for the fusion model, colored as a heat map. The
correct classifications (true positive) are depicted on the
diagonal, and have been highlighted through dark blue color.
For example the matrix shows that from 63 usability re-
quirements sentences the fusion model categorized correctly
62 requirement sentences as usability requirement sentences,
and categorized one as other incorrectly (false negative). By
looking at the first column (usability predicted), we see that
2 reliability sentences and other requirement sentences in-
correctly classified as usability (false positive). It can also be
noted that there are 10 NFR sentences classified as security,
where they are actually related to the other categories, such
as reliability, performance and others. This means that there
is a confusion between the security and the other categories.
We also noticed that fusion model can classify correctly 58
availability NFR categories from 59 actual sentences. While
achieved 53 reliability from 58 actual sentences. We also
find that the usability and the availability achieved the best
sensitivity value. From 63 usability requirements sentences,
the fusion model was able to categorize correctly 62 require-
ment sentences as usability from 63 usability requirement
sentences. And it was able to categorize 58 requirement
sentences correctly of the 59 sentences that are actually
represent the availability requirement sentences.

Finally, to obtained results are statistically significantly
and different from one another we used Wilcoxon statistical
test. Table 10 represents the mean and standard deviation
for the accuracy in the 10 runs of each experiment. Table
11 also represents the median and interquartile range of the
accuracy. The darker shaded level in the two tables represents
the better result. This means that the CNN classifier exceeds
all the other ML classifiers with all features types. Table 12
represents the results of Wilcoxon statistical test. This table
shows that the CNN model outperforms the other classi-
fiers in different NLP techniques in statistically significant
manner. The inverted white triangle ( V ) represents the
superiority of the algorithm on the top of the table statistically
over the algorithm from the side of the table, while the black
triangle ( A ) represents the opposite relation. And the dash
line represents that there is no statistical superiority between
the two parties. That means the relation between the two
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classifiers is not statistically significant where p-value higher
than 0.05 (> 0.05).

X. CONCLUSIONS AND FUTURE WORK:

Software requirements are mainly captured and documented
in human natural language. It is documented in a form called
requirements document. In general, requirements document
contains both functional and non-functional requirements.
Analyzing NFR is tedious and time consuming in SDLC.
In this study, we proposed an automated systems to identify
and classify five NFR from the unconstrained requirement
documents using ML algorithms and NLP techniques. Dif-
ferent NLP techniques were presented in this study, include
random and word embedding vectorization methods to feed
in different ML classifiers includes traditional approaches
and deep learning approaches.

All of the reported experiments were performed using
(PURE) public dataset, which consists of 79 unconstrained
requirements documents. The requirements sentences in the
documents were manually labelled by a group of software
experts volunteers. Serious criteria was applied to accept the
label of each requirement sentence to verify its authenticity.

A set of experiments are conducted for investigating the
effectiveness of the NLP techniques and the effectiveness of
the ML techniques for classifying the requirement sentences
extracted from unconstrained requirement documents. The
traditional well-known NLP techniques such as TF and TF-
IDF were used for representing requirement sentences into a
numerical feature vectors. Furthermore, we used state-of-the-
art word embedding techniques such as Word2vec and BERT.
TF and TF-IDF techniques exploit the statistical information
of the requirement sentence. Whereas, the embedding meth-
ods exploit the semantic information of the sentences.

The traditional ML models based on the statistical NLP
techniques achieved precision 87% and recall 86%. Where,
the CNN model achieved relatively higher precision of 92%
using the state of the art language modeling method BERT.
Furthermore, fusing four CNN systems with the four NLP
vectorization methods improved the classification accuracy
by 2.4%.

From the presented results in this paper, we can draw
three primary conclusions. First, CNN approach identifies
and classifies NFR efficiently and outperforms other tradi-
tional ML approaches such as SVM, NB and logistic regres-
sion. Second, word embedding models are more effective
than other traditional NLP methods in representing software
requirement sentences for NFR classification. Third, NLP
techniques have a valuable impact on the NFR classification
results, and fusion multiple NLP techniques, significantly
improves the classification accuracy.

A. FUTURE WORK

The research of adopted NLP techniques and ML algo-
rithm into requirement classification is still continuing. Two
primary direction can be investigated to extend our work.
First direction, expanding the number of adopted NFR cat-
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egories, such as (mutability, solubility, etc..). Second direc-
tion, continually investigating the effectiveness of the other
ML approaches in classification NFR such as recurrent neural
network (RNN) and fusion more models, in addition to using
more and different data-sets.
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