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ABSTRACT Recent years, 5G networks have become an important role in accelerating the development
of social intelligence. But it also increases energy consumption and data flow. In order to guarantee the
experience of network users, an adaptive SWIPT-based MEC network is proposed. The network consists of
multiple user equipment (UE) and multiple mobile edge computing (MEC) servers. The MEC server can
make up for the shortcomings of the UE’s insufficient computing capability, and Simultaneous Wireless
Information and Power Transfer (SWIPT) can send energy to the UE without pollution to make up for the
shortcomings of limited battery energy. Added, we increase the utilization of sub-channels, improve the
adaptability of the SWIPT-based MEC network to the environment, lengthen the battery life, and optimize
the UE’s energy efficiency of the network. We also propose a three-part alternative optimization algorithm
framework based on the categories of optimization variables. The first part combines the Alternating
Direction Multiplier Method (ADMM) and Dinkelbach’s algorithm to optimize continuous variables. And
for directly optimize the integer variables of the other two parts, without converting them to continuous
variables. The second part adjusts the offloading decision by comparing the energy consumption of the
two computation modes, and the third part proposes the integer Bat algorithm to assign sub-channel. The
simulation results show that the energy efficiency of the binary offloading algorithm proposed in this paper
is 11% higher than the approximate algorithm based on the binary offloading KKT algorithm, and the
relationship between various preset parameters and energy efficiency in the network is discussed.

INDEX TERMS MEC, SWIPT, ADMM, Integer Bat algorithm, Dinkelbach

I. INTRODUCTION

THE bandwidth, capacity and data rate of current 4G
mobile communications are seriously inadequate, and

it is incompetent to stimulate the development of society and
technology [1]. By 2023, there will be 8.7 billion handheld
or personal mobile communication devices connected to the
network [2]. Such a contradiction accelerated the birth of 5G
networks. Compared with the previous 4G networks, 5G can
increase the data rate to 10Gbps [3]. For today’s society, 5G
has become the driving force of development and has been
used in many fields. Including Drone-assisted Networks [4],
[5], Autonomous Driving Vehicles [6], Smart Communities
[7], Internet-of-Vehicles (IoV) [8]. The widespread applica-
tion of 5G makes devices toward smarter and more portable.
Indeed, a great amount of data calculation can make the

device smarter. But portable devices with low computing
power and energy limited are obviously incapable to meet
this case.

Currently, one of the best methods to solve the above
problems is computational offloading [9]. By transmitting
part or all of the calculation tasks to the terminal processor,
UEs can reduce the time of calculations. In addition, A.
Rudenko, et al. show that computational offloading can save
energy significantly. It is worth mentioning that portable
devices can reduce energy consumption by up to 51% when
performing larger-scale computing tasks [10]. Therefore,
Mobile Edge Computing (MEC) [11] has become a research
hotspot. Compared with cloud computing, the MEC server is
closer to UEs, which can reduce the consumption of trans-
mission energy for the UEs [12]. MEC is also outstanding in
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improving QoS. With the high computing performance of the
MEC server, calculation delay [13] and energy consumption
[14] of UEs can be significantly decreased.

In the MEC network, part of UEs have limited battery
capacity and cannot work for a long time without power
supply [15]. One way to solve this problem is to increase
the battery capacity. However, the development of battery
technology is too slow to keep up with the demands of cur-
rent UEs [16]. Therefore, wireless Energy Harvesting (EH)
has attracted much attention in recent years. The concept
of Simultaneous Wireless Information and Power Transfer
(SWIPT) was proposed in 2008 [17], making it possible to
transmit energy and information simultaneously. EH equip-
ments of SWIPT has two modes: Time Switching (TS) and
Power Switching (PS) [18]. EH and Information Decoding
(ID) of TS mode is in different time slots. PS model divides
the received signal into two signals with different powers and
performs EH and ID at the same time. These two receiving
modes enable SWIPT to cope with various MEC networks
leisurely. Therefore, SWIPT-based MEC has become a key
technology to overcome the limitation of battery performance
[19].

More and more scholars choose to embed SWIPT into the
MEC network. In [20], for improving the fairness of UEs, the
authors use PS model to adjust the downlink transmission
rate by changing the ratio of EH and ID. In [21], under
the premise of each User Equipment (UE) has sufficient
energy, the authors tend to increase the success rate of of-
floading as much as possible, and use stochastic geometry
to asymptoticly analyze the model. Besides, Full-Duplex
(FD) technology can receive and transmit signals at the same
time, which give many opportunities to SWIPT-based MEC
network and attracts a large number of scholars [22]–[24].
In [22], a SWIPT framework is proposed to combine FD
with SWIPT, which can transmit energy in both uplink and
downlink. The results show that the multi-user situation is
optimal under high power conditions. This framework makes
UE no longer worry about energy. A MEC framework is pro-
posed in [23], which uses an iterative algorithm to minimize
the uplink energy consumption in partial offload mode. In
[24], the SWIPT-MEC network is equipped with Multiple-
Input Multiple-Output (MIMO) and FD technologies, and
jointly optimize the uplink and downlink to minimize energy
consumption. OFDM can optimize the power and rate of
each sub-carrier. But it is worse than Orthogonal Frequency-
Division Multiplexing Access (OFDMA) in adapting to the
time-varying environment [25]. Therefore, many scholars
have recently used OFDMA technology to improve the ca-
pability of uplink. In [26], maximizing the throughput of the
uplink in the OFDMA-SWIPT system is regarded as the re-
search goal, and the cases of frequency division multiplexing
(FDD) and time division multiplexing (TDD) are analyzed
separately. M Li et al. proposed an OFDMA-based MEC
system and developed a heuristic algorithm that calculates
sub-carrier allocation and power allocation separately [27].

To the best of our knowledge, the introduction of SWIPT

does improve the energy efficiency of the MEC network,
but the channel allocation strategy in most of existed jobs is
static. Besides, when the channel noise and interference lasts
for a long time, UE will exhaust energy after a long local
computation. That is fatal for people equipped with human
embedded devices. To solve these problem, a multi-user and
multi-server SWIPT-based MEC network is designed in this
paper, which can provide uninterrupted power supply to all
UEs. And added OFDMA to improve usability and stabil-
ity. To simplify the algorithm, we divide the optimization
variables into three categories by judging continuity and
analyzing dependencies. And use the three-party alternate
optimization algorithm framework to optimize them. This
framework aims to maximize network energy efficiency and
ensure that UEs have sufficient energy. The main contribu-
tions of this paper are listed as follows:

• Considering the dynamic channel allocation strategy, we
propose a SWIPT-based MEC network with multiple
UEs and multiple MEC servers, which ensures that each
UE continuously receives energy and is only served by
one MEC server. Besides, the computing ability of MEC
servers and UEs in the SWIPT-based MEC network is
limited.

• An energy efficiency optimization model of SWIPT-
based MEC network is given and the power allocation,
local computation intensity, offloading decision-making
and sub-channel allocation are jointly optimized.

• To solve the energy efficiency optimization model of
Mixed Integer Non-Linear Programming (MINLP), we
divide the model into three parts according to the differ-
ent variables, and jointly optimize them through three-
part alternate optimization algorithm framework. In first
part, for local computing frequency and uplink trans-
mission power, we use Dinkelbach algorithm to trans-
form the fractional objective functions into polynomial
form. To accelerate the convergence, we use the ADMM
algorithm to alternately optimize the sub-models, and
the KKT condition is used as an optimization tool to
optimize the alternate two branchs respectively. Second,
the offloading strategy is determined by comparing the
energy consumption of the two computation modes.
Third, the integer bat algorithm is used for sub-channel
allocation.

• The simulation results show that the energy efficiency of
our proposed binary offloading algorithm is 11% higher
than one of the approximate algorithm based on binary
offloading KKT algorithm. Moreover, the increase of
parameters such as delay, sub-channel bandwidth and
number of sub-channels has a positive impact on energy
efficiency. The results also show that equipping EH sub-
channels for each UE will improve the energy efficiency
of the SWIPT-based MEC network.

The rest of the paper are structured as follows. In Sec-
tion II, the system model and energy efficiency optimiza-
tion model of the SWIPT-based MEC network are given.
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In Section III, The model is mathematically deformed and
disassembled to simplify the solution of the problem. In
Section IV, the solution algorithms are proposed for three
sub-models. Simulation results and analysis are presented in
Section V. Finally, Section VI makes a summary of the paper.

II. SYSTEM MODEL
The network in this paper is a subnet of the kubernetes
network, mainly used for user clusters. When each UE
enters the service range, its hardware information will be
uploaded to etcd through the MEC server. All MEC servers
can access etcd to obtain the required information and return
the optimized local computing intensity to the served UEs.
This paper only needs very little hardware information, so
the energy consumption of uploading hardware information
and return time can be ignored. As shown in Fig. 1, there
are multiple single-antenna UEs and multiple MEC servers
in the SWIPT-based MEC network. Let the set of MEC
servers is denoted by K = {1, 2, ...,K} and the set of UEs
is denoted by I = {1, 2, ..., I}. The MEC servers based
on binary offloading transmit information and energy to the
UEs, and each MEC server is equipped with MIMO anten-
nas, powerful computing chips and charging equipments. In
addition, OFDMA is used in the uplink in order to decrease
interference among sub-channels, save energy consumption
and enhance the network’s ability to respond to changes. The
set of sub-channels is denoted by N = {1, 2, ..., N} and the
sub-channels used by each UE cannot be shared. i,e,.

C3 :
∑
i∈I

wi,n ≤ 1 ∀n ∈ N

Here W = {Wi,n | wi,n ∈ {0, 1} ,∀i ∈ I,∀n ∈ N} means
the sub-channel n allocated to the UEi. In this scenario, the
computing capabilities of the KMEC servers are limited and
only serve UEs within a fixed range. They need to deal with
the computing tasks uploaded by the UEs and then return the
results and energy through the N sub-channels. We assume
that the calculation tasks for each UE are served by only one
MEC. Therefore we have

C4 :
∑
k∈K

bi,k ≤ 1 ∀i ∈ I

C5 : 0 ≤
∑
i∈I

FUC
i,k ≤ Fk ∀k ∈ K

where FUC = {FUC
i,k | ∀i ∈ I,∀k ∈ K} represents the

frequency that the MECk spends in calculating the tasks
of the UEi. Let B = {bi,k | bi,k ∈ {0, 1} ,∀i ∈ I,∀k ∈ K}
represents UE’s offloading strategy. bi,k = 1 represents
that the UEi offloads the computation task to the MECk;
otherwise, bi,k = 0.

A. ENERGY HARVESTING
In order to ensure sufficient energy for each UE in the MEC,
we assume that the UE can continuously receive energy
from the MEC. Besides, noise and interference is bad for

：Energy transfer

：Information transfer

MEC server K

MEC server 2

MEC server 1 etcd

FIGURE 1. Multi-UE and Multi-server SWIPT-based MEC network.

ID, but beneficial for EH. Therefore, it is reasonable and
valid to transmit energy to the local computing UE. Let
hi,n represents the gain of the sub-channel n with channel
estimation error allocated to the UEi and σ2 represents the
white Gaussian noise power. Farther, we assume that the
channel gain remains constant over a period of time [28].
Consider that computing is not the only energy-consuming
behavior, so the received energy of the UE must be more than
the calculated energy consumption. To ensure that the power
of the UE will not be exhausted, this paper uses the maximum
downlink power to transmit energy to the UE. According to
[29], the maximum energy received by the UEi in the uplink
and downlink can be denoted as

EEH
i = ζi

(∑
k∈K

PDL
i,k t

tolerant
i hEH

i,n,k + σ2

)
(1)

Where ζ = {ζ1, ζ2, ..., ζi, ..., ζI} denotes the energy absorp-
tion rate of all UEs. PDL =

{
PDL
i,k | ∀i ∈ I;∀k ∈ K

}
repre-

sents the downlink transmission power between MECk and
UEi. And hEH

i,n,k represents the gain of the sub-channel used
for energy transfer between UEi and MECk. These channels
are fixed since each UE continuously receives energy. Finally,
ttoleranti indicates the latest time when the UEi receives the
calculation result. It is assumed that the UEi receives signals
from different subcarriers through a polyphase bandpass filter
[30].

B. LOCAL COMPUTING
If the content of the calculation task is ignored, it can be
expressed as Di (bit). For a locally calculated UEi, the CPU
calculation ability is written as Xi (in CPU cycle per bit).

When UEi selects the local computing mode, the total
computation time can be expressed as

T LC
i =

DiXi

F LC
i

(2)
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where F LC
i represents the clock frequency of UEi’s CPU. For

more practical, we set the upper limit of the calculation fre-
quency for the CPU, denoted asFi, which can be equivalently
transformed into

C6 : 0 ≤ F LC
i ≤ Fi ∀i ∈ I

According to [31], the energy consumption of each CPU
cycle is proportional to the square of F LC

i during the local
computing, and it can be written as

pLC
i = k0

(
F LC
i

)2
[k0 = 1× 10−24] (3)

where k0 is a constant coefficient related to the CPU of UEi.
Therefore, the energy consumed by the UEi to calculate a
complete task can be written as

ELC
i =

(
1−

∑
k∈K

bi,k

)
pLC
i DiXi (4)

Here, the physical meaning of
(
1−

∑
k∈K bi,k

)
is to deter-

mine whether UEi selects local computing.

C. COMPUTATION OFFLOADING
Each UE that chooses to computation offloading has two or
more sub-channels, one of which is used to transmit energy.
We assume the channel bandwidth of each sub-channel as
BN . So the number of sub-channels used by the UEi to trans-
mit computing tasks can be defined as

(∑
n∈N wi,n − 1

)
.

RUL
i,n represents the transmission rate of the sub-channel n,

and it is denoted as

RUL
i,n = BN log2

(
1 +

∑
n∈K bi,khi,n,kP

UL
i,n

σ2

)
(5)

where PUL =
{
PUL
i,n | ∀i ∈ I,∀n ∈ N

}
represents the trans-

mission power set of all UEs when they upload a computation
task, and the maximum uplink power of each UE is expressed
as PMax

i . Then, the constraint can be expressed as

C7 :
∑
n∈N

PUL
i,n ≤ PMax

i ∀i ∈ I

The main steps of the computation offloading process
include: MECk receives the computation task from the UEi,
then calculates the task, and returns the computation result to
the UEi. Since the length of the computation result is much
shorter than the computation task, the time for returning
the computation result can be negligible. On the premise of
RUL

i,n 6= 0, the time for the MECk to receive the computing
task of the UEi can be expressed as TUL

i , and the time of the
MECk calculation task is TUC

i . They are respectively given
by

TUL
i =

Di∑
n∈N (wi,n − 1

N )RUL
i,n

(6)

TUC
i =

DiXi∑
k∈K F

UC
i,k

(7)

To simplify the model, we assume ttoleranti is the maximum
computation time for both local computing and computation
offloading, which can be expressed as follow

C8 : T LC
i ≤ ttolerant

i ∀i ∈ I

C9 : TUC
i + TUL

i ≤ ttolerant
i ∀i ∈ I

Uplink energy consumption can be written as

EUL
i =

∑
n∈N

PUL
i,nT

UL
i (8)

D. ENERGY EFFICIENCY OPTIMIZATION MODEL OF
SWIPT-BASED MEC NETWORK

For all UEs, the energy consumption must be less than the
maximum energy gain EEH

i . The corresponding constraint is
written as

C10 : EUL
i + ELC

i ≤ EEH
i ∀i ∈ I

In particular, the number of sub-channels for computating
offloading UE must be greater than 2, while local compu-
tation of UE at least require 1 sub-channel, which can be
expressed as the following constraint

C11 : (1−
∑
k∈K

bi,k) ln

{∑
n∈N

wi,n

}
= 0 ∀i ∈ I

C12 : 0 ≤
∑
k∈K

bi,k ln

{∑
n∈N wi,n

2

}
∀i ∈ I

To maximize the energy efficiency of the SWIPT-based
MEC network and provide enough energy for the UE’s com-
puting offload or local computing, we jointly optimize the
sub-channel allocation, offloading strategy, UE’s calculation
frequency and uplink power in this paper. For simplicity,
we assume that the energy consumption of computing tasks
is much higher than that of optimized calculations, and the
energy consumption of sending and receiving devices is
ignored [32]. Based on the above analysis and reference [33],
[34], the objective function can be expressed as P1. Since the
network is binary offloading, the total amount of data flowing∑

k∈K bi,kDi in the network is equal to the tasks offloaded by
the UE.
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P1 : max
PUL

i,n,wi,n,bi,k,F
LC
i

∑
i∈I

∑
k∈K bi,kDi

EUL
i + ELC

i

s.t. C1 : bi,k ∈ {0, 1} ∀i ∈ I,∀k ∈ K
C2 : wi,n ∈ {0, 1} ∀i ∈ I,∀n ∈ N

C3 :
∑
i∈I

wi,n ≤ 1 ∀n ∈ N

C4 :
∑
k∈K

bi,k ≤ 1 ∀i ∈ I

C5 : 0 ≤
∑
i∈I

FUC
i,k ≤ Fk ∀k ∈ K

C6 : 0 ≤ F LC
i ≤ Fi ∀i ∈ I

C7 :
∑
n∈N

PUL
i,n ≤ PMax

i ∀i ∈ I

C8 : T LC
i ≤ ttolerant

i ∀i ∈ I
C9 : TUC

i + TUL
i ≤ ttolerant

i ∀i ∈ I
C10 : EUL

i + ELC
i ≤ EEH

i ∀i ∈ I

C11 : (1−
∑
k∈K

bi,k) ln

{∑
n∈N

wi,n

}
= 0 ∀i ∈ I

C12 : 0 ≤
∑
k∈K

bi,k ln

{∑
n∈N wi,n

2

}
∀i ∈ I

(9)

III. SIMPLIFICATION OF THE ENERGY EFFICIENCY
OPTIMIZATION MODEL
The energy efficiency optimization model proposed in the
previous section is MINLP and non-convex. This section
will mathematically simplify the original model to make the
problem solvable and decrease complexity.

For simplify the objective function, we divide the nu-
merator and denominator by TUL. After the operation, P1
becomes P2.

P2 :

max
PUL

i,n,wi,n,bi,k,F
LC
i

∑
i∈I

∑
k∈K bi,k

∑
n∈N (wi,n − 1

N )RUL
i,n∑

n∈N P
UL
i,n +

ELC
i

TUL
i

s.t. C1 ∼ 12 (10)

where
ELC

i

TUL
i

= (1−
∑
k∈K

bi,k)k0

(
F LC
i

)2
Xi

∑
n∈N

(wi,n −
1

N
)RUL

i,n

(11)

In the case of local computing, the term
(
1−

∑
k∈K bi,k

)
is always equal to zero. Else,

∑
n∈N (wi,n − 1

N ) is always
0. Therefore, (11) has no effect on the denominator and
can be deleted. In the same way, the

∑
k∈K bi,k in (10) can

also be removed. At this time, the practical meaning of the
objective function is to maximize the energy efficiency of
the UE of computation offloading , regardless of the UE of

local computing. This will cause an imbalance between UEs.
To provides the best services to all UEs, we added energy
efficiency of the UE of local computing to the objective
function, as shown in P3.

P3 : max
PUL

i,n,wi,n,bi,k,F
LC
i

∑
i∈I

(∑
n∈N (wi,n − 1

N )RUL
i,n∑

n∈N P
UL
i,n

+
(1−

∑
k∈K bi,k)Di

ELC
i

)
s.t. C1 ∼ 12 (12)

In P3, the value of TUL
i is influenced by ttolerant

i − TUC
i ,

and TUC
i is constrained by ttolerant

i − TUL
i . Obviously, C12 is

a constraint that has physical meaning but is not solvable. So
we use new constraints replace C12 to limit the minimum
value of RUL. The modified model is as follows:

P3′ : max
PUL

i,n,wi,n,bi,k,F
LC
i

∑
i∈I

(∑
n∈N (wi,n − 1

N )RUL
i,n∑

n∈N P
UL
i,n

+
(1−

∑
k∈K bi,k)Di

ELC
i

)
s.t. C1 ∼ 8, 10 ∼ 12

C9 : Rmin
i,n ≤ RUL

i,n ∀i ∈ I,∀n ∈ N (13)

where Rmin
i,n is the minimum transmission rate of each sub-

channel. The reason why this paper does not choose to limit
the overall rate of UE is to make full use of each sub-channel.
As the number of sub-channels held by UE increases, the
transmission rate of each sub-channel will be decreased while
the overall speed remains unchanged. Using subchannels in
this way is very luxurious.

IV. THREE-PART ALTERNATE OPTIMIZATION
ALGORITHM FRAMEWORK

In this section, the optimization algorithm framework pro-
posed in this paper will be introduced in detail. In order
to accurately match variables and algorithms, this paper
classifies the optimized variables. Since continuous variables
and discrete variables need to be processed by different
algorithms, PUL and F LC are regarded as one part, and B
and W are classified as another. However, the optimization
of W needs to depend on PUL and B. Therefore B and W
have to be handled separately. SinceF LC belongs to hardware
information and is only related to B, the UE can obtain the
optimal F LC from the MEC and store it after uploading the
hardware information. When bi,k = 0, the CPU works with
the optimal F LC, else, not work. Whatmore, the other three
variables are dependent on each other. So this paper uses a
three-part alternating optimization method to optimize them.
The algorithm framework is shown in Fig. 2:
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Begin Offloading[PUL]

Part:1

Part:3

Part:2

Part:1

Offloading
strategy[B]

Sub-channel
allocation[W ]

Local[F LC]Optimal?End

No

Yes

FIGURE 2. The three-part alternate optimization algorithm framework.

First, the submodels of part one can be written as P3′ − a
and P3′ − b.

P3′ − a : max
F LC

i

∑
i∈I

[
1−

∑
k∈K b̄i,k

k0X(F LC
i )2

]
s.t. C6, C8, C10 (14)

P3′ − b : max
PUL

i,n

∑
i∈I

[∑
n∈N (w̄i,n − 1

N )RUL
i,n∑

n∈N P
UL
i,n

]
s.t. C7, C9 ∼ 10 (15)

Here, b̄i,k and w̄i,n are the current optimal solutions obtained
from the other two parts. The first part uses Dinkelbach algo-
rithm to transform the objective function of each sub-model
into a polynomial. Then we combine the ADMM algorithm
and KKT conditions to optimize them. After completing
the first part, the framework will determine whether the
change in energy efficiency is less than the preset accuracy.
If yes, return the result, otherwise, enter the second part. And
Algorithm 1 is used in part two to complete the offloading
decision. Finally, the third part uses integer bat algorithm to
get the sub-channel allocation strategy and returns the result
to the first part. Repeat like that until the optimal solution is
obtained.

Algorithm 1 Algorithm of computation offloading strategy
1: Initialize i = 0;
2: for i ∈ I do
3: if EUL

i < ELC
i then

4: UEi offloads tasks to corresponding MECk;
5: FUC

k = FUC
k + DiX

ttolerant
i −TUL

i
;

6: if FUC
k ≤ Fk then

7: Force UEi local computing;
8: end if
9: else

10: Local computing;
11: end if
12: end for

A. PART-1: DINKELBACH
Dinkelbach is an algorithm for fractional objective program-
ing. Its main principle is to approach the optimal value step

by step through iteration. Obviously, the objective function
of this paper is also fractional, so we use this algorithm to get
a solution. According to the description in [35], P3′ − a and
P3′ − b can be converted into

P4a : max
F LC

i

∑
i∈I

[
(1−

∑
k∈K

b̄i,k)− qF
i k0X(F LC

i )2

]
s.t. C6, C8, C10 (16)

P4b : max
PUL

i,n

∑
i∈I

[∑
n∈N

(w̄i,n −
1

N
)RUL

i,n − qP
i

∑
n∈N

PUL
i,n

]
s.t. C7, C9 ∼ 10 (17)

qP
i and qF

i is the auxiliary variable led into by the algorithm,
which will gradually increase with the advance of iteration
and tend to be flat. We define the error judgment function of
P4a and P4b as F (F LC

i ) and F (PUL
i,n)

F (F LC
i ) =

∑
i∈I

(
qFi [j]− qFi [j − 1]

)
(18)

F (PUL
i,n) =

∑
i∈I

(
qPi [j]− qPi [j − 1]

)
(19)

which is used to evaluate the accuracy of the calculation
result. Their values will slowly decrease until the accuracy
requirements are met. The specific process of using Dinkel-
bach algorithm is presented in Algorithm 2. Where, J is the
maximum of iterations and εD is the convergence tolerance.

Algorithm 2 Dinkelbach algorithm
1: Initialize j = 0;
• Local Computing

2: while j ≤ J and F (F LC
i ) ≤ εD do

3: Solve for P4a to get the optimal solution {F LC};
4: qF

i =
∑

i∈I

[
1−

∑
k∈K b̄i,k

k0X(F LC
i )2

]
;

5: j = j + 1;
6: end while
• Computation Offloading

7: while j ≤ J and F (PUL
i,n) ≤ εD do

8: Solve for P4b to get the optimal solution {PUL};
9: qP

i =
[∑

n∈N (w̄i,n− 1
N )RUL

i,n∑
n∈N PUL

i,n

]
;

10: j = j + 1;
11: end while

B. PART-1: ADMM
ADMM is widely used in solving constrained optimization
problems. It is easy to decompose and converges well on
medium and low precision problems. The ADMM algorithm
divides the original problem into two or more branches by
introducing auxiliary variables to perform alternate optimiza-
tion. Refer to [36]–[38], this paper created a new variable

ˇPUL as a copy of PUL, similarly, ˇF LC corresponds to F LC,
which makes it possible to alternately optimize P4a and
P4b.
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L1
F (F LC

i ) =
∑
i∈I

(∑
k∈K

b̄i,k − 1 + qF
i k0X(F LC

i )2 + λF
i (F LC

i − ˇF LC
i ) +

ρF
2
‖F LC

i − ˇF LC
i ‖+ γF2

i (ELC
i − EEH

i )

+ γF3
i (DiX − F LC

i ttolerant
i )

)
(23)

L2
F ( ˇF LC

i ) =
∑
i∈I

(
λF
i (F LC

i − ˇF LC
i ) +

ρF
2
‖F LC

i − ˇF LC
i ‖+ γF1

i (F LC
i − Fmax

i )
)

(24)

1) Local Computing
The P4a can be written as

P5a.1 : min
F LC

i

∑
i∈I

(∑
k∈K

b̄i,k − 1 + qF
i k0X(F LC

i )2+

λF
i (F LC

i − ˇF LC
i ) +

ρF
2
‖F LC

i − ˇF LC
i ‖

)
s.t. C8 : DiX ≤ F LC

i ttolerant
i ∀i ∈ I

C10 : ELC
i ≤ EEH

i ∀i ∈ I (20)

P5a.2 : min
ˇF LC
i

∑
i∈I

(
λF
i (F LC

i − ˇF LC
i ) +

ρF
2
‖F LC

i − ˇF LC
i ‖

)
s.t. C6 : 0 ≤ ˇF LC

i ≤ Fmax
i ∀i ∈ I (21)

here, we give C6 to the auxiliary variable ˇF LC, and leave
the rest to F LC. C8 moved F LC

i from the left to the right, so
as to avoid fractional calculations and facilitate subsequent
processing. The two optimization variables cooperate to op-
timize the problem alternately. In the process of optimization,
the two variables will become closer and closer. This is
because the penalty function in the objective function is at
work. ρF is the penalty coefficient, which represents the
sensitivity to the difference between the two variables. In
addition, λF

i is the Lagrangian coefficient, which is obtained
by the constraints F LC

i = ˇF LC
i introduced by the ADMM

algorithm. Its update formula is as follows.

λF
i [t+ 1] = λF

i [t] + ρF (F LC
i − ˇF LC

i ) (22)

For λF
i , the value of t + 1 iterations is determined by

the value of t iterations and the difference between the two
variables. For F LC

i and ˇF LC, KKT is used to solve it in
this paper. According to the three constraints of P5a.1 and
P5a.2, the Lagrangian function L1

F (F LC
i ) and L2

F ( ˇF LC
i ) can

be written as (23) and (24).
The KKT condition introduces that the partial derivative

of the Lagrangian function should tend to 0 when reaching
the optimum. Thus, update method of F LC

i and ˇF LC
i can

be obtained by calculating the partial derivative of the two
variables respectively. The specific expression is:

F LC
i =

[
−λF

i + ttolerant
i γF3

i + ρF
ˇF LC
i

ρF + 2Xk0(DiγF2
i + qF

i )

]+

(25)

ˇF LC
i =

[
λF
i − γF1

i

ρF
+ F LC

i

]+

(26)

where [•]+ limits the range of • , which can only be [0,+∞).
γF1
i , γ

F2
i andγ

F3
i represent the Lagrangian coefficient of con-

straint C6, C8, C10. Similarly, the update algorithm of the
introduced auxiliary variable is as follows

γF1
i =

[
γF1
i +∇F1( ˇF LC

i − F
max
i )

]+
(27)

γF2
i =

[
γF2
i +∇F2(ELC

i − EEH
i )
]+

(28)

γF3
i =

[
γF3
i +∇F3(DiX − F LC

i ttolerant
i )

]+
(29)

where,∇F1,∇F2,∇F3 is the weight of the update step.

2) Computation Offloading

Same as above, model P4b can become P5b.

P5b.1 : min
PUL

i,n

∑
i∈I

(
−
∑
n∈N

(w̄i,n −
1

N
)RUL

i,n + qP
i

∑
n∈N

PUL
i,n

+ λP
i

∑
n∈N

(PUL
i,n − ˇPUL

i,n) +
ρP
2

∑
n∈N
‖PUL

i,n − ˇPUL
i,n‖

)
s.t. C9 : Rmin

i,n ≤ RUL
i,n ∀i ∈ I,∀n ∈ N

C10 : EUL
i ≤ EEH

i ∀i ∈ I (30)

P5b.2 : min
ˇPUL
i,n

∑
i∈I

(
λP
i

∑
n∈N

(PUL
i,n − ˇPUL

i,n)+

ρP
2

∑
n∈N
‖PUL

i,n − ˇPUL
i,n‖

)
s.t. C7 : ˇPUL

i,n ≤ P
Max
i,n ∀i ∈ I (31)

Using the same algorithm, let ˇPUL
i,n satisfy C7 and allocate

the rest to PUL
i,n . ρP is the coefficient of the penalty function

in the computation offloading model. λP
i is the Lagrangian

coefficient corresponding to the constraint PUL
i,n = ˇPUL

i,n , and
the update formula is

λP
i [t+ 1] = λP

i [t] + ρP
∑
n∈N

(PUL
i,n − ˇPUL

i,n) (32)

In this part, KKT conditions are still used to solve each
branch of alternate optimization. Formula (33) and (34) show
the Lagrangian functions L1

P (PUL
i,n) and L2

P ( ˇPUL
i,n) corre-

sponding to P5b.1 and P5b.2.
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L1
P (PUL

i,n) =
∑
i∈I

(
−
∑
n∈N

(wi,n −
1

N
)RUL

i,n + qP
i

∑
n∈N

PUL
i,n + λi

∑
n∈N

(PUL
i,n − ˇPUL

i,n) +
ρp
2

∑
n∈N
‖PUL

i,n − ˇPUL
i,n‖

+
∑
n∈N

γP2
i,n(Rmin

i,n −RUL
i,n) + γP3

i (
∑
n∈N

PUL
i,n −

∑
n∈N (wi,n − 1

N )RUL
i,nE

EH
i

Di
)
)

(33)

L2
P ( ˇPUL

i,n) =
∑
i∈I

(
λi
∑
n∈N

(PUL
i,n − ˇPUL

i,n) +
ρp
2

∑
n∈N
‖PUL

i,n − ˇPUL
i,n‖+

∑
n∈N

γP1
i,n( ˇPUL

i,n − P
Max
i,n )

)
(34)

By calculating the partial derivative, the update formula of
PUL
i,n and ˇPUL

i,n can be denoted as

PUL
i,n =

[√
X2

4
− G

ρP
∑

n∈K b̄i,khi,n,k
− X

2

]+

(35)

ˇPUL
i,n =

[
PUL
i,n +

λi − γP1
i,n

ρP

]+

(36)

where

X =
λi + qP

i + γP3
i

ρP
+

σ2∑
n∈K b̄i,khi,n,kN

− ˇPUL
i,n (37)

G = (1 + γP2
i,n +

γP3
i E

EH
i

Di
)
∑
n∈K

b̄i,khi,n,k(w̄i,n −
1

N
)
BN

ln 2

+
σ2(λi + qP

i − ˇPUL
i,nρp + γP3

i )

N
(38)

γP1
i,n, γP2

i,n and γP3
i represent the Lagrangian coefficient of

constraint C7, C9 ∼ 10, and iterative formula can be written
as

γP1
i,n =

[
γP1
i,n +∇P1( ˇPUL

i,n − P
Max
i,n )

]+
(39)

γP2
i,n =

[
γP2
i,n +∇P2(Rmin

i,n −RUL
i,n)
]+

(40)

γP3
i =[
γP3
i +∇P3(

∑
n∈N

PUL
i,n −

∑
n∈N (w̄i,n − 1

N )RUL
i,nE

EH
i

Di
)

]+

(41)

also,∇P1,∇P2,∇P3 is the weight of the update step.

C. PART-3: INTEGER BAT ALGORITHM
For W , which is an integer variable of 0 or 1, the common
method is to turn it into a continuous variable to facilitate the
solution. But the authenticity is weakened by approximation.
In [39], although the final result is only 0 or 1, the process
of allocating sub-channels needs to calculate the gradient
with the help of KKT conditions. This is still distorted. Bat
algorithm is a meta-heuristic optimization algorithm [40]
and is superior to the Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) algorithm. The Bat algorithm
mainly imitates the hunting of bats and achieves the optimal
solution by continuously moving to the temporary optimal
bat. It does not need to calculate the derivative, so we choose
to develop a new algorithm based on the bat algorithm.

Algorithm 3 Solve ADMM model with KKT condition
Input: JADMM : maximum of iterations;
Output: Optimal F LC and PUL

1: Initialize j = 0;
• Local Computing

2: while j ≤ JADMM do
3: Branch 1: Update F LC

i and γF2
i , γ

F3
i with (25,28,29);

4: Branch 2: Update ˇF LC
i , γF1

i with (26,27);
5: Update λF

i with (22);
6: j = j + 1;
7: end while
• Computation Offloading

8: while j ≤ JADMM do
9: Branch 1: Update PUL

i,n and γP2
i,n, γ

P3
i with (35,40,41);

10: Branch 2: Update ˇPUL
i,n , γ

P1
i,n with (36,39);

11: Update λP
i with (32);

12: j = j + 1;
13: end while

First, the prey of the bats needs to be expressed, which
is the objective function. This function is composed of all
polynomials related to W in P5b.1 and P5b.2, to jointly
optimize PUL

i,n and ˇPUL
i,n , it can be expressed as

LW =
∑
i∈I

[
−(1 + γP2

i,n +
γP3
i E

EH
i

Di
)
∑
n∈N

(wi,n −
1

N
)RUL

i,n

]
(42)

We think of W as a bat. Since it is
∑

n∈N (wi,n − 1
N )

instead of W that has effect on the value of LW , the number
of sub-channels allocated to each UE can be regarded as
the positions of the bats. The process of the suboptimal
bat approaching the optimal bat becomes a process of a
20-dimensional vector approaching another 20-dimensional
vector. Based on this principle, we divide UEs into two
categories according to the number of sub-channels held. The
classification standard can be expressed as{

UEi ∈ Nbig N [UEi]
W > N [UEi]

Wbest

UEi ∈ Nsmall N [UEi]
W < N [UEi]

Wbest
(43)

where N [•]W indicates the number of sub-channels obtained
by UEi under the sub-channel allocation strategy W . Wbest

represents the temporary optimal strategy. Since the position
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of the bat is 20-dimensional, the speed at which each bat ap-
proaches the optimal bat can be defined as a 20-dimensional
array V = {Vi | ∀i ∈ I}. The algorithm is as follows

Vi =
[
Qi(N [UEi]

W −N [UEi]
Wbest)

]
ceil

(44)

here, Q = {Qi | ∀i ∈ I} is a positive random number
less than 1, meaning the vibration frequency of the bat.
And the function [•]ceil rounds the value • to the smallest
integer not less than it. After all bats have moved one step,
it will be judged whether the current optimal strategy is still
optimal. For convenience, we assume that the UEi choosing
computation offloading is classified as UEO.

We kept the dithering operation of the bat algorithm during
the optimization process. In order to prevent the optimization
result from being a sub-optimal solution, it is possible to
randomly change the optimal solution during each iteration.
And only when the modified optimal value is greater than the
original, the optimal strategy will be updated. The probability
of jitter increases as the iteration progresses, and the move-
ment speed and frequency of the bat will gradually decrease
until the optimal value is obtained. The entire algorithm has
been shown in Algorithm 4.

D. COMPUTATIONAL COMPLEXITY
This subsection will provide the computational complexity
of the algorithm. By analyzing Algorithm 2 and Algorithm
3, the computational complexity of the first part isO(INK).
Similarly, the complexity of the second part is O(I), and the
third part is O(INK). Suppose that the three-part alternate
optimization requires ψ cycles. The computational complex-
ity of this algorithm framework is O(ψINK). However in
our network, the computational complexity of the algorithm
in [39] is O(I2NK).

V. SIMULATION AND RESULT ANALYSIS

TABLE 1. Simulation Parameters

Parameters Value
Subchannel bandwidth BN 12.5 KHz
Noise σ2 10(−13) W
Bit length of the task Di 1000 ∼ 1500 bit
Operational capability X 1000 cycles/bit
Maximum transmission power PMax

i,n 0.5 ∼ 0.6 W
Downlink power PDL

i,k 2.5 ∼ 2.6 W
Tolerance time ttolerant

i 9 ∼ 10 ms
The maximum CPU frequency of UE Fi 0.2GHz
The maximum CPU frequency of MEC Fk 0.5GHz
Random Raylaigh Fading Channel gain hi,n CN (0, 0.01)

In this part, we give the experimental results and make
further analysis, the parameter settings refer to [41], [42] and
are listed in the Tab. 1. In addition, we also specified the num-
ber of devices and sub-channels in the SWIPT-based MEC
network, let I = 20,K = 7,N = 128. The initialization
before the algorithm starts is as follows: when calculating the
local computing area and computation offloading area, except
that W and B initially require a random strategy, the other

Algorithm 4 0-1 integer bat algorithm
Input: sizep: Number of bats;

A/r: Sonic loudness/pulse of bat (size: sizep × 1);
Af/Rf : Loudness/pulse update factor;
ε: Maximum error;
Jmax:The maximum number of iterations;
τ :Dithering coefficient;

Output: Optimal W ;
1: ReferenceB randomly allocates sub-channels to all bats;
2: According to (42) find the best bat Wbest;
3: while [j < Jmax] and [L

[t−1]
W − L[t]

W ≥ ε] do
4: for each s ∈ [1, sizep] do
5: for each UEm ∈ {Nbig} do
6: UEm give V sub-channels to UEg ∈ {Nsmall}

(m 6= g);
7: end for
8: WStemp = Ws ; is = 0;
9: Generate a random number m ∈ [1,N ];

10: if m ≥ r then
11: WStemp = Wbest;
12: repeat
13: For UE ∈ UEO, randomly select UEa to give

UEb a sub-channel (a 6= b)
14: is + 1;
15: if N [UEa]WStemp < 2 then
16: Return this UEa’s sub-channel
17: end if
18: until is > τsize(UEO);
19: end if
20: end for
21: Calculate LS

W with WStemp by (42) ;
22: if m < A and LS

W < LW then
23: Let Ws = WStemp and LW = LS

W

24: A = AfA;
25: r = r0 ∗ (1− e−Rf j)
26: end if
27: if LS

W < Lmin then
28: Let Wbest = WStemp and Lmin = LS

W

29: end if
30: j = j+1;
31: end while
32: return W = Wbest

initial values are all zero. Algorithm 1 does not require initial
settings. For Algorithm 4, let A = r = N and sizep = 50.

Fig. 3 shows the impact of varying number of UEs on
energy efficiency of SWIPT-based MEC Networks. It can
be found from the Fig. 3 that the energy efficiency of the
network increases with the increase of the number of UEs.
This is because the energy efficiency is sum of that of each
UE. It proves that our algorithm is capable of serving more
UEs and is suitable for green communication.

We evaluate the energy efficiency of our proposed algo-
rithm and compare it with the algorithm of [39], computation
offloading only and local computing only. Given the fixed
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FIGURE 3. Comparison of energy efficiency with varying number of UEs.

value of I, the result of our proposed algorithm is the best
one. When I = 20, the energy efficiency of our proposed
algorithm is 11% higher than the algorithm of [39]. When not
considering computation offloading, the energy efficiency is
lower than the one of considering computation offloading,
so binary offloading can improve the energy efficiency of
SWIPT-based MEC Network.

In Fig. 4, we analyze the energy efficiency of SWIPT-
based MEC Network under different numbers of sub-
channels and MEC servers. The results show that no matter
how the number of sub-channels and MEC servers change,
the energy efficiency of the network will increase with the
number of the UE increases. In the case of multiple users,
the increase of servers will improve the energy efficiency of
the network. In addition, The increase of sub-channels is also
beneficial to the network. Therefore, the algorithm can be
used in the networks with more sub-channels.
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FIGURE 4. Analysis of sub-channels and MEC server in the network.

Fig. 5 shows the relationship between SWIPT-based MEC
network energy efficiency and the task lengths. Keeping other
parameters unchanged, when the length of tasks reached
2500bit, the energy efficiency decreases significantly. This is

because the maximum computing capability for each MEC
server has an threshold. When the computing capacity of
the MEC server is exceeded its threshold, other UEs that
request for computation offloading will be rejected. So these
UEs have to compute their tasks locally. As shown in Fig.
5, with the increase of CPU, the capacity of MEC server
is strengthened, this problem will be solved. And this paper
assumes that multiple CPUs cooperate perfectly.
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FIGURE 5. Influence of sub-channel bandwidth and computing capability of
MEC server on energy efficiency according to different task lengths.

Fig. 6 shows that the energy efficiency of the SWIPT-
based MEC network will decrease as the number of EH sub-
channels increases. This is because the sub-channel held by
ID is used for EH, then the UE has to increase the uplink
power in order to meet the rate requirement. Besides, the
energy efficiency of the computation offloading model is
obeyed log2(1+x)

x , and the energy efficiency of local comput-
ing mode is only related to the calculation frequency, so the
uplink power of the network is inversely proportional to the
energy efficiency.
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FIGURE 6. Analysis of the network under different delay times and different
channel gains.

It is worth mentioning that the error of channel estimation
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is inevitable in reality [43]. In order to capture this effect,
we try to simulate the reduction of channel estimation error
in Fig. 6 to observe the influence of channel quality on the
network. We assume that σ2

h is the variance of the complex
Gaussian distribution (h ∼ CN (0, σ2

h)). The results show
that the energy efficiency of the model increases as the error
decreases. Additionally, as the delay increases, the uploading
power of UEs can be decreased. Thereby, the overall energy
efficiency of the network can be improved. It also can be seen
in Fig. 6, the difference between σ2

h = 0.01 and σ2
h = 0.02

becomes smaller at 12.5ms. This is because as ttolerant in-
creases, both F LC and PUL decrease. According to (4), (8),
(25) and (35), the energy efficiency of local computation
is more sensitive to the increase of ttolerant. That makes it
exceed the energy efficiency of computation offloading under
the condition of {ttolerant = 12.5 ∼ 15ms, σ2

h = 0.01},
resulting in abnormal results. It can be seen from Fig. 6 that
when the channel estimation error is small, the UE is more
willing to offload the task to the MEC server. If the channel
estimation error remains the same, the UE tends to offload the
calculation task to the MEC server when processing urgent
tasks, and tends to calculate the task itself when processing
non-urgent tasks.

VI. CONCLUSION
In this paper, we propose an adaptive SWIPT-based MEC
network, and jointly optimize the computation offloading
strategy and sub-channel allocation. Since the energy effi-
ciency optimization model is a non-convex MINLP problem,
we propose an algorithm framework of three-part alternate
optimization. The framework divides the optimization vari-
ables into three parts, and solves each part in turn. Through
alternate optimization, the framework will approach the op-
timal solution in a spiraling way. The simulation results
show that in terms of energy efficiency, the proposed binary
offloading bat algorithm is 11% better than the [39] algorithm
in solving the problem of sub-channel allocation and compu-
tation offloading strategies.
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