
IEEE Xplore ® 
Notice to Reader 

 
“A Novel Effective Distance Measure and a Relevant Algorithm for Optimizing the Initial Cluster 
Centroids of K-means” 
 
by Yang Liu, Shuaifeng Ma, and Xinxin Du 
 
published in IEEE Access Early Access 
 
Digital Object Identifier: 10.1109/ACCESS.2020.3044069 
 
It is recommended by the Editor-in-Chief of IEEE Access that this article will not be published in its final 
form. 
 
We regret any inconvenience this may have caused. 
 
Derek Abbott 
Editor-in-Chief 
IEEE Access 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044069, IEEE
Access

 

VOLUME XX, 2017 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2017. Doi Number 

A Novel Effective Distance Measure and a 
Relevant Algorithm for Optimizing the 
Initial Cluster Centroids of K-means 
 
Yang Liu1, Shuaifeng Ma2，Xinxin Du2 
1 School of Statistics, Southwestern University of Finance and Economics, Chengdu, 613000 China 
2 Big Data Operation Center, Jingdong Century Trading Co., Ltd., Beijing, 100000 China 

 

Corresponding author: Yang Liu (e-mail: statsyangliu@163.com). 
This work was supported in part by the commercial project of Jingdong Century Trading Co., Ltd. under Grant JB34947B. 

 

ABSTRACT The traditional K-means algorithm is very sensitive to the selection of clustering centers and the 

calculation of distances, so the algorithm easily converges to a locally optimal solution. In addition, the 

traditional algorithm has slow convergence speed and low clustering accuracy, as well as memory bottleneck 

problems when processing massive data. Therefore, an improved K-means algorithm is proposed in this paper. 

In this algorithm, the selection of the initial points in the traditional clustering algorithm is improved first, and 

then a new global measure, the effective distance measure, is proposed. Its main idea is to calculate the effective 

distance between two data samples by sparse reconstruction. Finally, on the basis of the MapReduce framework, 

the efficiency of the algorithm is further improved by adjusting the Hadoop cluster. Based on the real customer 

data from the JD Mall dataset, this paper introduces the DBI, Rand and other indicators to evaluate the clustering 

effects of various algorithms. The results show that the proposed algorithm not only has good convergence and 

accuracy but also achieves better performances than those of other compared algorithms. 

INDEX TERMS K-means; clustering center; distance measurement; MapReduce; parallel computing

I. INTRODUCTION 
A. Literature review 

The big data era has led to the rapid development of machine 

learning technology. As one of the most commonly used 

traditional clustering algorithms, K-means has been 

successfully applied in a wide range of areas due to its 

simplicity, high practicality and high efficiency. Representative 

applications include document clustering, market segmentation, 

image segmentation and feature learning (Dhanachandra et al., 

2015; Habib & Zahid, 2018; Siddiqui & Mat Isa, 2011; Tleis et 

al., 2017). Typically, the K-means algorithm consists of three 

stages: feature selection, feature extraction, and data clustering 

based on the calculated similarities between data points. The 

aim of clustering is to divide data into multiple classes or 

clusters so that the data in the same cluster possess high 

similarity and the similarity between data in different clusters is 

low (Sridharan & Sivakumar, 2018). Generally, clustering 

algorithms fall into two categories: hierarchical clustering and 

partitional clustering (A & B, 2017). Hierarchical clustering 

algorithms build a high-level hierarchy of clusters called a 

dendrogram according to the similarities between data points. A 

dendrogram can be constructed by two different approaches: 

agglomerative clustering (merging clusters bottom-up) and 

divisive clustering (splitting clusters top-down). On the other 

hand, partitional clustering algorithms require predefining the 

number of clusters and the initial cluster centroids. These 

algorithms divide a dataset into multiple clusters without 

overlap by minimizing a specific loss function (Tal, 2015; 

Topchy et al., 2004). Proposed in 1967, K-means clustering is 

one of the most widely used clustering algorithms. It has been 

widely employed in a large number of applications due to its 

simplicity and superior performance compared to other 

clustering algorithms. However, K-means has some limitations. 

First, the number of clusters k needs to be predefined. 

Additionally, the initial cluster centroids of K-means are 

usually selected randomly. Finally, the performance of K-

means can be influenced by outliers in the data. To address the 

above issues with regard to K-means, researchers in different 

fields have proposed various improved algorithms (Gu, 2016; 

Premkumar & Ganesh, 2017; Rodriguez & Laio, 2014). Please 

see section II for a detailed illustration of the K-means 

algorithm. 

The K-means clustering algorithm is a dynamic hard 

clustering algorithm based on the similarities between static 

data objects. Compared with other clustering algorithms in 

terms of complexity, the K-means clustering algorithm is 

simple to implement and has low linear time complexity, so it is 

widely used in data science, industrial application, and other 

fields. However, the K-means clustering algorithm also has 

some shortcomings, including its inability to determine the 

proper number of clusters, the high randomness of its clustering 

results, and its great dependence on the selection of the initial 

clustering center. The clustering results are greatly influenced 

by the initial clustering centers, and this causes the clustering 

algorithm to fall into the local optimal solution rather than the 

global optimal solution. Furthermore, pretreatment is too costly 

in cases of massive data analyses, and this influences the 

overall performance of the algorithm (Ailon et al., 2009; 

Cohen-Addad, 2018; Friggstad et al., 2019; Stemmer, 2020). 
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In view of the shortcomings and defects of K-means, many 

scholars have improved and optimized the K-means algorithm, 

and these improved algorithms are widely used in different 

fields (Frey & Dueck, 2007; J. Shi & Luo, 2010; Xu & Ii, 2005). 

For the selection of K values, as early as 1998, (Rezaee et al., 

1998) proposed that the best K value is within the range of (1, 

n ), where n is the data size. This also provided a direction for 

later improvements to the traditional K-means algorithm. Based 

on the relationship between the clustering number K and the 

sum of squared errors SSE, (Chakraborty & Das, 2017) selected 

the K value corresponding to the elbow point as the optimal 

clustering number according to the variation trends of the SSE 

for different K values. To solve the problem of indistinct "dots" 

in the relation between K and the SSE, (Celebi et al., 2013) 

determined the optimal K value by combining parameters such 

as the exponential function parameter, weight term and bias 

term. For the problem in which the optimal clustering number 

K needs to be determined by manually analyzing the decision 

graph, in combination with a statistical method, (Lei et al., 2016; 

Rodriguez et al., 2014) used linear regression to fit the points in 

the decision graph and determined the optimal K value and the 

initial clustering center according to the differences between the 

observed values and the actual values. 

 With regard to the selection of clustering centers, (Xiong et 

al., 2016) first calculated the densities of all data objects, 

determined the average density of the dataset, selected the data 

object with the largest density value as the first initial clustering 

center by taking the data objects with larger values than the 

average density as the high-density point set, and selected the 

remaining clustering centers according to the principle of 

maximum distance from the previously selected clustering 

centers. Additionally, based on this density-based improvement 

method, to avoid taking two high-density points in a cluster as 

the initial clustering center, (Xin et al., 2017) used the basic 

idea that the distances between the clustering center point and 

other center points should be relatively large and selected the 

center point by combining the relative distance with the high-

density point. (Tanir & Nuriyeva, 2017) first proposed selecting 

the two points in the dataset with the largest distance between 

them as the initial clustering centers, assigning the remaining 

data objects to the corresponding clusters according to their 

distances from the clustering center points, updating the 

clustering centers, and continuing to find the points farthest 

from the clustering center as the next center points until the 

number of clustering center points was K. By combining the 

minimum spanning tree algorithm in graph theory with the 

traditional K-means algorithm, (Xiao-bin et al., 2014) first used 

the Prim algorithm to generate a minimum spanning tree based 

on the hierarchical K-means algorithm, then divided the 

minimum spanning tree into m subclusters according to the 

maximum splitting distance principle, found the k (k ≤m) 

clusters with the most data objects from the subclusters, and 

calculated the mean value of each cluster as the initial 

clustering center for traditional iterative K-means processing. 

 Regarding distance measurement, (Visalakshi & Suguna, 

2009) proposed a spatial similarity measurement for the K-

means algorithm in view of the problem that the traditional K-

means algorithm is not effective in classifying non-clustered 

data, used the spatial density similarity distance measure to 

compensate for the shortcoming that Euclidean distance cannot 

accurately express the similarities between flow data objects, 

and obtained clustering results by combining the new clustering 

centers with the iterative model. (Fan et al., 2017) applied the 

K-means algorithm to text clustering; measured and compared 

the similarities between text data objects by using the Euclidean 

distance, squared Euclidean distance, Manhattan distance, 

cosine distance and valley distance measures; and concluded 

from the clustering results of different methods that Euclidean 

distance has some limitations in terms of measuring similarities 

in text, and that different similarity measurement methods 

should be selected according to the datasets in question. (Yan et 

al., 2018) calculated the weight values of each feature in a 

dataset using information gain and feature selection algorithms, 

took the average value as the final feature weight value, and 

combined it with the Euclidean distance as the weighted 

distance for K-means clustering, thereby achieving good results. 

In addition, (Pawlak, 1994; Qian et al., 2008; Xian-Cai, 2008) 

proposed rough set theory, which is a soft computing tool for 

dealing with uncertain and fuzzy knowledge and has unique 

advantages in processing classified attribute data. (Albanese et 

al., 2011; C. B. Chen & Wang, 2006; Parmar et al., 2007) used 

rough set theory for clustering attribute data. (Albanese et al., 

2011; Breunig et al., 2000) carried out many studies focusing 

on the problem of handling outliers when performing clustering. 

 
B. Motivation 

K-means exploits the similarities in data through clustering. 

It has advantages in several aspects, such as simplicity and high 

efficiency. However, it also suffers from some shortcomings. 

First, it is difficult to estimate the number of clusters. The 

algorithm is easily trapped in local minima with randomly 

selected initial cluster centroids (Jain, 2010; Jianbin et al., 2013; 

Xu & Ii, 2005). Many algorithms have been proposed to 

improve K-means, but the existing algorithms still do not fully 

address its problems. For example, (Wang et al., 2015) 

determined the appropriate number of clusters and initial cluster 

centroids based on ideas from image segmentation. This 

algorithm segments the original dataset using the data density 

and watershed algorithm. The centroids of the segmentation 

regions are used as the initial data centroids, and the number of 

segmented regions is adopted as the number of clusters k. 

Although this method can obtain accurate values of k and initial 

cluster centroids to some extent, the watershed algorithm is 

sensitive to noise and prone to over-segmentation. Therefore, 

the performance of this algorithm drops significantly if the 

dataset contains noise. (Pelleg & Moore, 2002) proposed the X-

means algorithm. This algorithm relies on the Bayesian 

information criterion (BIC) to calculate scores for selecting the 

local centroids to be further split. Each region corresponding to 

a selected centroid is then split into two subregions based on 

some criteria to determine the optimal number of clusters. This 

method has high computational complexity due to the 

calculation of variance. Additionally, it cannot achieve good 

performance for datasets with outliers. Based on the previous 

discussion on K-means, this paper proposes an improved K-

means algorithm, IKM, which is detailed in section II of this 

paper. IKM includes two stages. The first stage selects the 

initial cluster centroids and determines the appropriate number 

of clusters. The second stage performs K-means clustering 

based on the centroids and number of clusters determined in the 

first stage. Additionally, the traditional K-means algorithm 

relies on the Euclidean distance measure to compute the 

distances between data samples. However, the Euclidean 

distance only considers the pairwise distance between two 

samples. It does not take the structure of the global data 
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distribution into account (D. et al., 2013; Patrick et al., 2001; 

Rammal et al., 2014; Xiang et al., 2008). Therefore, this paper 

proposes a novel measure considering the global data 

distribution, namely, the effective distance measure. The main 

idea is to calculate the effective distances between data samples 

using sparse reconstruction. Third, a cluster analysis running on 

a single machine is usually bottlenecked by RAM and CPU 

speed when the dataset is large. An effective solution is to 

parallelize the algorithm and run it distributively on a cluster of 

multiple machines (X. Chen et al., 2017, 2018; He et al., 2012; 

Kusuma et al., 2016). Therefore, to address the aforementioned 

problems, this paper proposes a highly efficient parallel K-

means algorithm based on MapReduce for big data 

environments. The proposed algorithm not only improves the 

quality of clustering but also enhances the efficiency of 

clustering in big data environments. 

Specifically, IKM has two advantages compared to K-means. 

First, given a partition of attributes, IKM can determine the grid 

cell for each sample as well as the number of samples in each 

grid cell in a single pass. Although the number of potential grid 

cells could be very large, it is only necessary to create grids for 

nonempty cells and assign each sample to a cell. The time 

complexity of this algorithm is O(n), which is much lower than 

that of K-mean++. Second, the result of the proposed algorithm 

does not change when the input sequence changes. It is a 

multiresolution algorithm that relies on densities and grids to 

determine the correct number of clusters and recognize 

complex data patterns automatically. It selects the initial cluster 

centroids that are most likely to lead to fast convergence, 

thereby improving the overall efficiency of the algorithm. 

Moreover, K-means usually relies on Euclidean distance to 

calculate the distances between samples in many situations. 

However, Euclidean distance only focuses on pairwise 

distances, and it does not consider the structure of the global 

data distribution. To take global structural information into 

account, this paper proposes a new algorithm for the distance 

measure, EK-means, which is described in section II. The idea 

of EK-means is to construct a connectivity matrix for data 

samples. The effective distance is calculated using a ratio-based 

measure, and the output distance is then used in K-means 

clustering. Compared to the commonly used Euclidean distance 

and geodesic distance measures, the proposed effective distance 

considers the global structural information located between data 

samples, so it better exploits hidden structures and patterns in 

data. As a result, replacing the Euclidean distance with the 

effective distance can be used to better extract relation 

information from samples, and the effective distance is 

impervious to factors such as the distributions of samples and 

the geodesic distances between samples. Third, this paper 

proposes a highly efficient parallel algorithm for K-means 

based on MapReduce to address the problems that influence the 

performance of the traditional K-means algorithm, including 

slow convergence depending on the selection of initial cluster 

centroids, low accuracy in clustering, bottlenecks in RAM 

when handling big data, and high costs for analyzing and 

preprocessing in applications with big data. The proposed 

method adjusts Hadoop clusters automatically to further 

improve the efficiency of the algorithm. 

Overall, the traditional K-means algorithm has the following 

shortcomings. First, the overall robustness is weak due to the 

random selection of the initial cluster centroids, which also 

leads to the possibility of the algorithm converging to 

suboptimal solutions. Additionally, the results can be 

influenced by outliers due to the random selection of the initial 

cluster centroids. Next, the selection of initial centroids can lead 

to slow convergence and low clustering accuracy. Finally, there 

exists a bottleneck in RAM and high costs for analyzing and 

preprocessing data in applications with big data. This paper 

addresses the above problems. The contributions of this study 

are three-fold. (1) Based on the above discussion on K-means, 

this paper proposes an improved algorithm to select initial 

cluster centroids, determine the appropriate number of clusters 

and recognize complex data patterns; (2) this paper proposes a 

novel global measure, the effective distance measure, to take 

the global structural information in data into account; (3) this 

paper proposes a highly efficient parallel algorithm for K-

means based on MapReduce; it adjusts Hadoop clusters 

automatically to further improve the speed of the algorithm. 

This paper performs experiments on the UCI dataset (US 

Census data from 1990) and JoyBuy dataset, with several 

evaluation measures, including DBI and Rand. The proposed 

improved K-means algorithm achieves the best performance 

among six different clustering algorithms in terms of four 

evaluation measures. It achieves first place in the average rank 

comparison, higher than the average score of the DEC 

algorithm as well as the average scores of the other three 

clustering algorithms. In terms of speed, the proposed algorithm 

also shows a significant advantage. Overall, the results 

demonstrate not only excellent convergence and accuracy but 

also improved efficiency. 

 
II. Traditional K-means algorithms 
Principles of the K-means Algorithm  

The K-means algorithm is an unsupervised learning and 

clustering algorithm based on partitions, and it generally uses 

Euclidean distance as a measure of similarity between data 

objects. The similarity is inversely proportional to the distance 

between the data objects, so the greater the similarity is, the 

smaller the distance. In the algorithm, it is necessary to specify 

the numbers of initial clusters K and initial clustering centers k 

in advance to be able to constantly update the locations of the 

clustering centers according to the similarities between the data 

objects and the clustering centers and reduce the sum of 

squared errors (SSE) between clusters. When the SSE does not 

change or the objective function converges, the clustering 

process ends, and the final result is obtained. 

The core idea of the K-means algorithm is to randomly select 

K initial clustering centers C i (1 ≤ i ≤ k) from the dataset 

first, calculate the Euclidean distances between the other data 

objects and the clustering center Ci , determine the nearest 

clustering center to the target data object C i , assign the target 

data object to the correct clustering center, calculate the average 

value of the data objects in each cluster as the new clustering 

center, and carry out the succeeding iterations until the 

clustering center no longer changes or the maximum number of 

iterations is reached. 

The computational formula for the Euclidean distance 

between data objects and clustering centers in space is as 

follows: 

               ( ) ( )
2

1

,
m

i j ij

j

d x C x C
=

= −             （1） 

where x is a data object, Ci is the ith clustering center, m 

is the dimension of the data object, and xj and Cij are the j-th 

attribute values of x and Ci, respectively. 

The computational formula for the SSE of the entire 
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dataset is: 

( )
2

1

,
i

k

i

i x C

SSE d x C
= 

=        （2） 

where the size of the SSE represents the quality of the 

clustering results and k is the number of clusters. 

 
Flow of the K-means Algorithm 

Description of K-means algorithm: 

Input: cluster number k, dataset D, D =(
1 2, ,..., nx x x ); 

Output: clustered dataset and k clustering centers 

Begin 

T=1/T represents the number of iterations 

Randomly select k sample data points in the dataset as 

the initial clustering center 

Repeat; 

for (int i =0; i <n; ii =){ 

for (int j =0; j <k; jj =){ 

} 

} 
2

1

( )

1

2

1

( ) ;

1; / / Seek the next cluster center

for(int 0; ; ){

1
;

}

( )
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Output clustering results

nd

i j

j

i j

k

c i j
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fn

j i

ij
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i j

c

J x c
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t x c

T t
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Z x
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x c
J T

Until J T J t

E

= 

=

= 

= −

= +

=  + +

=

−
=

−   





 
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The K-means clustering algorithm is an iterative 

process(L. Shi et al., 2017). As shown in Figure 1, the original 

dataset has four clusters, where x and y in the graph represent 

the horizontal and vertical coordinate values of the data points, 

respectively. The K-means algorithm was used to cluster the 

dataset, and the final clustering result was obtained after two 

iterations of the algorithm. 

 

  
 

 

 

 
 

  
(a) Raw data           (b) Randomly select initial cluster 

centers 
 

 

 

 

 

 

 

 

 
(c) First iteration                   (d) Second iteration 

 

 

 

 
 

 

 
 

 

 
 

(e) Final clustering result 
Figure 1 Iterative Process of the K-means Algorithm 

    The K-means clustering algorithm is efficient for large 

datasets, and its algorithmic complexity is O(nmkT). n is the 

size of the dataset, m is the feature dimension of the data object, 

k is the number of specified clusters, and T is the total number 

of iterations, as shown in the flow chart in Figure 2. 

 
Figure 2 Flowchart of the K-means Clustering Algorithm 

 

III. Improvement of the K-means Algorithm 
A. Improved K-means Algorithmic principle 

1. Methods 

This study proposes an improved K-means (IKM) 

algorithm based on the previous discussion of the K-means 

algorithm. The IKM algorithm is divided into two stages:○1  

select the initial clustering centers and determine the number of 

clusters; ○2  execute the original K-means algorithm based on 

the results of ○1 . The flow of the IKM algorithm is described 

below; the execution process of the IKM algorithm is shown in 

Figure 3. 

Suppose there is a sample dataset,  1 2, , , nS x x x= , 

and k initial cluster centers: 1 2, , , kz z z . 

According to the given data set, randomly select k data 

objects as the initial cluster centers. 

According to Eq. 1, calculate the Euclidean distances 

between the remaining data objects and the cluster center. 

Calculate the mean value of the data objects in each cluster 

as the new cluster center, then calculate the SSE values of 

all clusters according to Eq. 2. 

According to the Euclidean distances, assign the data 

object to the cluster with the nearest cluster center. 

Determine whether the total 

SSE value has changed. 

NO 

YES 

End the clustering process and output the final clustering 

result. 
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Definition 1: The Euclidean distance between two data 

objects is as follows: 

( ) ( )
1

2 2 2 2

1 1 2 2,i j i j i j ip jpd x x x x x x x x= − + − + + − (3) 

where ( )1 2, , ,i i i ipx x x x=  and ( )1 2, , ,j j j jpx x x x= are 

two p-dimensional data objects. 

Definition 2: The average distance between sample points 

is as follows： 

        ( )2

1
 AvgDist ,i j

n

d x x
C

=             (4) 

where n is the total number of sample points, 
2

nC  is the 

number of possible combinations of two points out of the n total 

points, and ( ),i jd x x  is the distance between data objects ix  

and jx . 

Definition 3: For any data object point p in the space, the 

number of data objects in the area with point p as the center and 

AvgDist as the radius is called the density parameter of point p, 

which is recorded as density ( ,  AvgDist )p . 

( )
1

1, 0
( )

0,Otherwise

 density ( ,  AvgDist )  AvgDist 
n

i

i

x
u x

p u p p
=

 
= 

 

 = − −



 (5) 

where u(x)  is a defined function and ip p−  is the 

Euclidean distance between ip  and p. 

Definition 4: The neighborhood distance of the data object 

is: 

              ( )
1

DIS ,
n

i i j

j

d x x
=

=                (6) 

where jX  is a set of data objects in an area centered 

about iX  with a radius of AvgDist. 

In the traditional K-means algorithm, the initial cluster 

centers are randomly selected, and the similarity between each 

pair of data objects is measured by Euclidean distance. The 

smaller the distance is, the more similar the objects, and the 

larger the distance is, the greater the difference. AvgDist is the 

average distance between the samples of the data object. If the 

data points p in the space are distributed in a space with 

AvgDist as the radius, the more distributed the points are, the 

greater the density parameter density ( ,  AvgDist )p , which 

means that point p is in a high-density distribution area. Taking 

point p as the cluster center is most conducive to the 

convergence of the objective function. According to the above 

principles, k points with the largest density parameters in the 

data object distribution are chosen as the initial clustering center 

points. The specific steps of this process are shown in Figure 3 

below: 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 IKM Algorithm Flowchart 
 

2. Comparison of the IKM algorithm and K-means algorithm 

Assume there are n input data points, the dimension of 

each data point is d, the total number of grids is g, and the 

number of determined clusters is k. The time complexity of 

the algorithm is analyzed as follows: 

1) Calculate the distance from each data point to the 

clustering center and assign the point to the nearest cluster. 

The time complexity is O(nkd). 

2) Calculate the minimum value of each cluster and 

reconfigure the new clustering center. The time complexity is 

O(nd). 

3) Determine whether the distortion value converges; if 

so, stop the clustering analysis. The time complexity is O(nd). 

Through the above analysis, we know that when the 

dataset approaches infinity, the overall time complexity of the 

IKM algorithm is O(n). 

Let n be the number of inputs. Let d be the dimension of each 

data point. The computational cost of a single iteration of K-

means consists of three components. First, step 2 and step 3 of 

K-means have computational complexities of O(nkd). Next, the 

computational complexity of step 4 is O(nd). Finally, the 

complexity is O(nd) for the calculation of the loss value to 

determine convergence and decide if the clustering process 

should be stopped. 

The above comparisons between IKM and K-means 

demonstrate two advantages of IKM. First, given a partition of 

attributes, IKM can determine the grid cell for each sample as 

well as the number of samples in a grid cell for a single pass. 

Although the number of potential grid cells could be very large, 

it is only necessary to create grids for nonempty cells and 

assign each sample to a cell. The time complexity of this 

algorithm is O(n), which is much higher than that of K-mean++. 

Second, the result of the proposed algorithm does not change 

when the input sequence changes. It is a multiresolution 

algorithm that relies on density and grids to determine the 

appropriate number of clusters and recognize complex data 

patterns automatically. It selects the initial cluster centroids that 

are most likely to lead to fast convergence, thereby improving 

the overall efficiency of the algorithm. 

3. Experiments 

Step 1. Calculate the distance between two 

data objects according to Eq. 

3. ( ), , , 1,2, ,i jd x x i j n= . 

Step 2. Calculate the average distance 

AvgDist between data objects according to Eq. 4. 

Step 3. Calculate the density ( ,  AvgDist )p  

of all data objects according to Eq. 5 to form a set 

D. 

Step 4. Scan the density parameter set D of the 

data object to find the set with the largest density 

parameter. If the set is not unique, calculate the 

field distance of the corresponding object in the set 

according to Eq. 6, and select the data object with 

the smallest distance in the neighborhood as the 

cluster center. Data objects whose distances from 

the cluster center are less than AvgDist are deleted 

from the sample dataset. 

Step 5. Repeat steps (2)-(4) until k cluster 

centers are found. 
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The clustering performance is determined by four measures: 

accuracy (AC), precision (PE), recall (RE) and the number of 

iterations. The definition of AC, PE and RE are as follows: 

1

k

i

i

a

AC
n

==


； 1

k
i

i i i

a

a b
PE

k

= +
=


； 1

k
i

i i i

a

a c
RE

k

= +
=


  (7) 

where n denotes the number of samples in the dataset, 

ia denotes the number of true positives for class i, ib  denotes 

the number of false positives for class i, ic  denotes the 

number of false negatives for class i, and k is the number of 

clusters. 

To examine the effectiveness of the proposed algorithm, 

three subdatasets are selected from the UCI dataset (“Drug 

Review Dataset”, “Diabetes 130-US hospitals for years 1999-

2008”, and “Mushroom”) to make comparisons between the 

proposed algorithm, K-means and K-mean++ (Arthur & 

Vassilvitskii, 2007). Tab. 1 describes the selected data. 
TABLE 1 

DESCRIPTION OF DATASETS 

Dataset Samples Attributes 
Classes 

I II 

Drug Review Dataset 435 16 267 168 

Diabetes 130-US 

hospitals for years 

1999-2008 

699 16 458 241 

Mushroom 8124 22 3916 4208 

The results of K-means depend on the selection of the 

initial cluster centroids. In other words, the results change 

with different selections of cluster centroids. Therefore, 100 

initial centroids are randomly selected for the Drug Review 

Dataset, Diabetes 130-US hospitals for years 1999-2008 and 

Mushroom datasets, and each algorithm is run 500 times. The 

effectiveness of the algorithms is evaluated by their mean 

clustering performances. Tab. 2-4 shows comparisons 

between the performances of different algorithms on different 

datasets. 
TABLE 2 

COMPARISON OF ALGORITHMS ON THE DRUG REVIEW DATASET 

Validation Measure K-means K-mean++ IKM 

AC 0.821 0.871 0.894 

PE 0.812 0.826 0.847 

RE 0.832 0.858 0.880 

Iterations 3.69 3.94 3.47 

TABLE 3 
COMPARISON OF ALGORITHMS ON THE DIABETES 130-US HOSPITALS 

FOR YEARS 1999-2008 DATASET 

Validation Measure K-means K-mean++ IKM 

AC 0.858 0.861 0.872 

PE 0.789 0.805 0.822 

RE 0.622 0.686 0.690 

Iterations 3.72 3.85 3.94 
TABLE 4 

COMPARISON OF ALGORITHMS ON THE MUSHROOM DATASET 

Validation Measure K-means K-mean++ IKM 

AC 0.715 0.752 0.778 

PE 0.682 0.691 0.694 

RE 0.776 0.794 0.802 

Iterations 5.82 6.42 5.98 

Based on the data in Tab. 2-4, IKM with a novel method 

for selecting initial cluster centroids achieves the best 

performance on the Drug Review Dataset, Diabetes 130-US 

hospitals for years 1999-2008 and Mushroom datasets. Its 

performance is better than that of K-mean++. The 

experimental results demonstrate the effectiveness of the 

proposed method for selecting initial cluster centroids in IKM, 

which achieves higher accuracy than the other algorithms with 

fewer iterations. 

 
B. Improvement of Distance Measurement -- Clustering 

Algorithm Based on Effective Distance 

1. Concept of effective distance 

(D. et al., 2013) proposed a nontraditional effective 

distance measurement method in a study of the factors 

affecting the spread of infectious diseases. Their distance 

measure is based on the population mobility ratio between 

two places due to air transport. The effective distance between 

a location and the origin of the pathogen is fixed and 

proportional to the time when the pathogen reaches the 

corresponding location. Moreover, their simulation of the 

transmission of the H1N1 and SARS viruses using this 

effective distance measure perfectly matched the real situation. 

Taking real pathogen transmission as an example, the 

effective distance method can also successfully determine the 

transmission source of infectious bacteria and predict the 

future transmission state. In contrast, the simple Euclidean 

distance measure cannot achieve satisfactory results in these 

cases. These facts show that the distance between two objects 

in the real world actually depends on more than the Euclidean 

distance or geographical distance between their geographical 

coordinates. When measuring the distance between two 

objects, in addition to considering the relationship between 

them, it is also necessary to consider the influences of other 

related objects, that is, to consider the global structural 

information of the data. 

Therefore, in this paper, an effective distance measure is 

proposed to reflect the global structural information between 

samples in terms of probability. A specific diagram 

demonstrating the effective distance measure is shown in 

Figure 4. Assuming that there are 4 data sample points A, B, 

C, and D, Figure 4 (a) shows the directed relationships 

between the four sample points, and the weights of all sides 

are equal in Figure 4(a). In Figure 4(b), the weight of each 

side between the sample points in the directed graph is 

obtained by calculating the probability value P (n |m), and the 

wider an edge is, the greater the weight. The probability value 

P (n |m) represents the ratio of the number of direct paths 

from point m to the number of direct paths from point n. For 

example, the probability P (B |A)=1/4 means that the 

probability from A to B is 1/4, where 4 refers to a total of 4 

paths from point A and 1 refers to 1 of these paths reaching 

point B directly. In addition, Figure 4(b) shows that the 

probability of arriving at point D from point B (e.g., P (D 

|B)=1) is significantly greater than the probability of arriving 

at point D from the point of departure (e.g., P (D|C)= 1/5). 

According to the idea of effective distance put forward by 

Brockmann et al., the smaller the probability value P (n |m) is, 

the greater the effective distance from point m to point n, and 

vice versa. Compared with the common Euclidean distance or 

geographical distance, because effective distance considers 

the global structural information between data samples, it can 

reflect the hidden pattern information between data samples. 

Therefore, replacing the Euclidean distance measure with the 

effective distance measure leads to a more comprehensive 

demonstration of the correlation information between samples, 

and effective distance is completely unaffected by the sample 

distribution, geographical distance and other factors. 
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(a)                         (b) 
Figure 4 Directed Relational Graph 

 

2. Methods 

Traditional K-means clustering algorithms generally use 

Euclidean distance to evaluate the similarity between two data 

samples. Considering the idea of effective distance, an EK-

means clustering algorithm based on effective distance is 

proposed in this paper. 

(1) The construction of effective distance 

As mentioned before, the proposed effective distance takes 

the global information in the data into account. Specifically, 

sparse representation can effectively express the global 

characteristics of data. Therefore, this paper proposes a method 

for calculating the effective distance based on sparse 

representation. The detailed steps are as follows: 

Step 1. Construct a directed graph based on the coefficient 

weights of data samples in the sparse representation: 

    
2

2 1
min  s.t. 0

iw i i i ix Bw w w− +     (8) 

where  
T

1 2 1 1, , , , , ,i i n− +=B x x x x x  represents a dataset 

X  with ix  removed. 

A coefficient weight matrix  1 2, ,...,
T

nW w w w= can be 

obtained by minimizing Eq. 8. ijW  is the weight of sample ix  

in the sparse representation of jx ;   is a regularization 

parameter. (0,1] . The larger   is, the sparser the 

coefficients. 

Step 2. Normalize the coefficient weights. 

           

1

ij

ij n

ij

i

W
P

W
=

=



                 (9) 

A normalized coefficient weight matrix P  can be 

obtained by Eq. 9. The higher ijP  is, the larger the weight of 

ix  in the sparse representation of jx . A higher ijP  also 

illustrates a higher ranking of ix  among the nearest 

neighbors of jx , a higher similarity between ix  and jx , 

and a smaller effective distance between the two samples. 

Step 3. Calculate the effective distances between samples: 

          1 lnij ijED P= −             (10) 

A matrix of effective distances, ED , can be obtained by 

Eq. 10. Since 0 1ijP  , ln 0ijP , 1ijED . 

(2) EK-means clustering algorithm 

The objective function of the EK-means clustering 

algorithm is: 

2
11 ji, , ,

1 1

min ( , )
v c

c n

ijv v v
j i

J u
= =

=U V D       (11) 

where Dij is the effective distance from a data sample xi 

to the clustering center vj, and 

           ( ) ,

1

1
,

jq

m

ij i j i r

q

D f ED
m =

= = x v                (12) 

In Eq. 12, m represents the number of data samples 

contained in the cluster, and rjq represents the number of data 

samples belonging to the q-th cluster in the original data 

sample. 

The specific flow of the EK-means algorithm is as 

follows. 

Input: sample set  1 2, , ...,
T

nX x x x= , number of categories c 

from pre-clustering 

Output: c sample classes 

1. Calculate the effective distance between each pair of raw 

data samples by the sparse representation method and 

construct the effective distance matrix n nED R  ; 

2. Randomly initialize the clustering centers 1 2, ,..., c   ; 

3. Calculate the effective distance between each data 

sample ix  and each clustering center kv  according to Eq. 

12, and then assign the data sample to the cluster nearest to it; 

4. Recalculate the clustering center of each cluster; 

5. Continue until the central point of clustering does not 

change or the number of iterations exceeds 100, and then stop; 

6. Return 1 2, , ..., c   . 

The section uses an example to demonstrate how to 

calculate effective distances, as well as the implementation 

steps of EK-means. 

Input: Assume we have five sample points in three-

dimensional space:  
T

1 3,1,2x = ,  
T

2 5,2,4x = , 

 
T

3 2,6,7x = ,  
T

4 4,6,8x =  and  
T

5 5,7,2x = . The random 

cluster centroids are selected as  
T

1 1 3,1,2x= =v  and 

 
T

2 2 5,2,4x= =v .
 

Output: two sample clusters 

Step 1. Construct the effective distance matrix. 

1. Calculate the coefficient weight matrix according to Eq. 8. 

Taking 1w
 

as an example, the objective function to 

minimize is as follows: 

1 1

2

2 11 1min  s.t. 0w ix Bw w w− +  

This is equivalent to 

11 12 13

2

11 11

12 2, , , 11 12 11

13

3

132 1

3 5  2  4  5

min 1 2  6  6  7  s.t. 0,

2 4  3  8  

,

2

w w w

w w

w w w w w

w w



      
      

− +
      
             

2w , 3w , and 4w  can be calculated using a similar method, 

leading to the coefficient weight matrix 

 1 2 3 4, , ,
T

W w w w w= . 

2. Normalizing the coefficient weights using Eq. 9 leads to: 

0.0552  0.3794  0.0624  0.0588  0.0215

0.7276  0.2765  0.4002  0.9039  0.2749

0.2171  0.3440  0.5373  0.0372  0.7036

P

 
 
 
  

= . 

3. Calculating the effective distances between samples 

according to Eq. 10 yields: 
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3.8968  1.9691  3.7742  3.8336  2.7846

1.3180  2.2855  1.9158  1.0103  2.1984

2.5274  2.0671  1.6211  4.2914  3.4749

ED

 
 

=
 
  

. 

Step 2. Choose random cluster centroids as  
T

1 1 3,1,2x= =v  

and  
T

2 2 5,2,4x= =v . 

Step 3. Calculate the distances between each sample ix  and 

the cluster centroids 1 2,v v according to Eq. 12, and assign the 

sample to the nearest cluster. The effective distances between 

3x  and the centroids 1 2,v v  are 2.226 and 3.748, 

respectively. Therefore, 2x  is assigned to cluster 1v , 4x  is 

assigned to cluster 1v , and 5x  is assigned to cluster 2v . 

Step 4. Recalculate the centroids for each cluster and repeat 

the above steps until convergence is achieved. Thus, the 

sample points are divided into two clusters. 
 

3. A comparison between EK-means and K-means 

In the K-means algorithm, Euclidean distance is usually 

used to measure the distance between two data objects. 

However, the Euclidean distance only represents the distance 

between each pair of samples. It does not consider the global 

distribution of the data. In contrast, this paper proposes a 

global measure, effective distance, to model global structural 

information. The idea is to construct a connectivity matrix for 

the data samples, calculate the effectives distance between 

samples based on ratios, and use the obtained results in K-

means. Compared to the commonly used Euclidean distance 

and geodesic distance, the effective distance takes the global 

structural information in data into account, so it better 

describes the hidden patterns and structures in data. Therefore, 

using the effective distance to replace the Euclidean distance 

enables the utilization of global information to better exploit 

the relations between samples. Additionally, the result of this 

method is not influenced by factors such as the sample 

distribution and geodesic distances. 

The following uses the same UCI dataset and 

discrimination criteria as in section III.A.3 to conduct 

experiments for the purpose of comparing the performance of 

the EK-means algorithm with those of the K-means and K-

mean++ algorithms. Tab. 5-7 are based on the performance 

comparisons between various algorithms on different datasets. 
TABLE 5 

COMPARISON OF ALGORITHMS ON THE DRUG REVIEW DATASET 

Validation Measure K-means K-mean++ EK-means 

AC 0.715 0.741 0.790 

PE 0.662 0.681 0.694 

RE 0.794 0.815 0.820 

Iterations 3.75 3.94 4.08 
TABLE 6. 

COMPARISON OF ALGORITHMS ON THE DIABETES 130-US HOSPITALS FOR 

YEARS 1999-2008 DATASET 

Validation Measure K-means K-mean++ EK-means 

AC 0.802 0.851 0.880 

PE 0.751 0.774 0.794 

RE 0.821 0.858 0.872 

Iterations 4.19 4.52 4.96 
TABLE 7 

COMPARISON OF ALGORITHMS ON THE MUSHROOM DATASET 

Validation Measure K-means K-mean++ EK-means 

AC 0.712 0.715 0.728 

PE 0.786 0.806 0.821 

RE 0.801 0.826 0.849 

Iterations 3.64 3.81 3.67 

Based on the data in Tab. 5-7, EK-means with a novel 

distance measurement achieves the best performance on the 

Drug Review Dataset, Diabetes 130-US hospitals for years 

1999-2008 and Mushroom datasets. Its performance is better 

than that of K-mean++. The experimental results demonstrate 

the effectiveness of the method, which achieves higher 

accuracy than other algorithms with fewer iterations. 
 
C. Design of an Efficient Parallel Algorithm for K-means 

1. Method 

The K selection sorting algorithm is a heap sort 

algorithm that selects the first K elements of a set to establish 

a binary tree. When a new element is added, it is compared 

with the parent node of the binary tree; if the new element is 

greater, the parent node is replaced, and the tree is readjusted 

until all the elements are processed. 

The most common sampling method is line-by-line scan 

sampling, which can retain the original data format by 

traversing the global data. When a small number of data 

samples are taken, this method is simple and feasible, and the 

data samples can be obtained quickly. However, as the 

number of samples increases, the method increases the power 

consumption of the system, and the running time increases 

linearly; this is not suitable for sampling and computations 

with big data. 

With regard to the defects of progressive scan sampling, 

based on the MapReduce framework, this paper uses the K 

selection sorting algorithm for parallel random sampling. The 

specific process is as follows: 

Input: sample size K, random number range X(0<X<K), 

Reduce number 
nR . 

Output: K data samples. 

Step 1: In the Map stage, randomly generate an integer 

from 0 to X for each data point as its key; the data content is 

the value, forming a <key, value> output. 

Step 2: Merge the randomly generated key data to form 

<key, list <value1,value2,…,valuen>> and carry out internal 

sorting according to the keys. 

Step 3: each Reduce stage outputs the first K/Rn data. 

The core code of the algorithm is as follows: 

Map stage: 

Random rd =new Random(); 

int tmp=rd.nextInt (X); 

Context.write (new IntWritable (key), new Text 

(value.toString)); 

Reduce phase: 

for (Text value: value){ 

i=0; 

if <K/R in){ 

// Internal ranking 

Context.write (null, new Text (val.toString)); 

i++;} 

} 

In the algorithm proposed in this paper, we first 

determine the formula according to the sample size, use the K 

selection sorting algorithm to sample randomly on the basis of 

the MapReduce framework, and save the collected sample 

data to a sample file. Then, we select the initial clustering 

values from the sample files through the sample preprocessing 

strategy to carry out pre-clustering. Then, in the iterative 
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process, we start MapReduce and perform the MapReduce 

task once per iteration, and we determine the new initial value 

by using the iterative replacement method. The perturbation 

of the clustering results of a single point is reduced by mean 

iteration. When the initial clustering value meets the set 

deviation threshold, the iterative process ends, and the 

clustering results are saved to the final clustering file. 

 
IV. Results and discussion 
A. Experimental data 

This paper evaluates the performance of the improved K-

means algorithm on the UCI dataset and Jingdong dataset. 

The UCI dataset contains US census data from 1990. It has 68 

dimensions and 2 458 285 samples. Please see (UCI, 2010) 

for more details. Additionally, this paper uses 150 million 

user data points between 1 Jan 2014 and 31 Jun 2020 from 

JoyBuy. The reasons for the selection of these two datasets 

are as follows. First, it is highly convenient to evaluate the 

performances of algorithms using data from two different 

areas with different structures that were captured at different 

times and in different countries. Second, compared to the UCI 

dataset, JoyBuy data have larger values and higher time 

dependencies. Moreover, the structure of JoyBuy data is more 

conducive for clustering compared to the UCI dataset. 

Therefore, this paper performs clustering on two datasets to 

evaluate the performance of the improved K-means algorithm. 

For the Jingdong Mall user dataset, because of the 

massive amount of consumption data, high level of data 

privacy, and company reasons for keeping information 

confidential, the 150000000 pieces of data selected contain 

basic consumption data for a given user, such as the customer 

number, the purchase amount (actual payment after discount), 

the number of purchases in the time period, the number of 

days from the last purchase date to the end of the data 

collection period, and other variables. 

It is necessary to check the quality of the data before 

modeling. First, we check whether there are any missing data. 

After checking the set, we find that there are 49,372 missing 

values. There are methods, such as average interpolation and 

linear interpolation, for dealing with missing values. Because 

the amount of data in this case is too large, we delete the 

missing values directly. Then, we check all abnormal values. 

In terms of sales, due to the large volume of data and the large 

differences in purchase amounts in actual situations, we 

ignore any discrepancies; in terms of the number of purchases, 

considering the actual situation, we delete data points where 

the number of purchases is listed as more than 400; in terms 

of time intervals, in view of the actual situation, we delete 

data larger than 400. After processing, there are no missing 

values, unreasonable data, or impossible abnormal values. 

Upon completing the data processing step, we carry out the 

subsequent analysis. 

1. Descriptive analysis 

After completing the preprocessing of the data, we 

perform data integration. We select several fields involving 

customer consumption from the database, including customer 

number, sales volume, cumulative purchase number, time 

from last purchase to the end of the period, etc. During the 

course of the analysis, we find that sales are highly correlated 

with purchase times, so we calculate the average purchase 

amount, that is, the total sales of a customer divided by the 

number of cumulative purchases; thus, the fields used in the 

model are actually number of customers, number of 

cumulative purchases, average purchase amount, and purchase 

interval. To remove the sensitivity of business data, we recode 

the customer numbers and change their purchases in equal 

quantities. After the data reduction process is completed, to 

obtain a general understanding of the data in terms of several 

of its fields, a descriptive analysis of the number of 

cumulative purchases, the average purchase amount, and the 

purchase time interval is carried out, as shown in Table 8: 

 
TABLE 8 

DESCRIPTIVE ANALYSIS 
 N Max Min Mean Std Median Skewness Kurtosis 

Cumulative 

purchases 

15000000

0 
109 1 31.08 23.21 25 0.79 -0.4 

Average 

consumption 

15000000

0 
536 1 153.35 113.48 126 0.75 -0.44 

Time interval 
15000000

0 
300 10 106.82 86.27 75 0.76 -0.75 

Valid N 
15000000

0 
       

The general data characteristics can be seen from the 

above statistics. In terms of the numbers of cumulative 

purchase by customers, the difference between the maximum 

and the minimum values is 100, indicating that customer 

loyalty is polarized. The average value is not different from 

the median, and the absolute skewness does not exceed one, 

indicating that the data are approximately left and right 

symmetric. A similar situation occurs with regard to the 

average purchase amount, for which the data differ greatly 

and form a left-right symmetric structure. The same situation 

is also present in the time interval data. The kurtosis of the 

data for each of the three fields is close to a normal 

distribution. 

 
B. Experimental settings 

In this experiment, considering that the initialized 

clustering center is different each time an algorithm is run, we 

repeat each algorithm 50 times and then take the average 

value of the 50 runs as the final clustering result. To perform 

parallel computing, the experiment is conducted on 15 PCs, 

one of which is responsible for resource scheduling and 

allocation as a master node; the remaining 14 PCs are slave 

nodes. The 15 computers used for running the tasks have the 

same configurations: 1 4-core Pentium (R) Dual-Core E6600 

CPU with a main frequency of 2.9 GHZ, 4G of memory, a 

500G hard drive, , the Ubuntu 14.04 LTS operating system, 

JDK of 1.7.0, and Hadoop 2.2.0 for cluster building. 

 
C. Evaluation indicators 

Two kinds of criteria are used to evaluate the data 

division accuracy from the perspectives of unsupervised and 

supervised learning. For data with missing class information, 

the improved DBI index is used to evaluate the clustering 

effects of the algorithms. 

(1) The DBI (Davies-Bouldin index) is the Davies-

Bouldin clustering validity measurement function (Davies & 

Bouldin, 1979). Since the DBI is independent of the setting of 

the initial class number K, it can be used to evaluate the 

validity of the data partitions. For a rough clustering algorithm, 

the samples in the upper and lower approximation classes 

have different effects in terms of cohesion; therefore, (Mitra et 

al., 2005) improved the DBI function and proposed the RDB 

evaluation index. The smaller the RDB index is, the better the 

clustering effect. 

         
( ) ( )

( )1

1
max

,

K
r k r l

l k

k b l

S C S C
RDB

K d C C


=

 + 
=  

  
     （13） 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044069, IEEE
Access

 

VOLUME XX, 2017 9 

where Sr(Ck) is the weighted mean square error of the 

approximation of the kth class and the sample/class center in 

the boundary region to characterize the degree of cohesion of 

the class. For data with class information, the classification 

accuracy can be used to evaluate the clustering accuracy in 

addition to the unsupervised clustering evaluation index. 

(2) The accuracy indicator Rand evaluates the accuracy 

of clustering results for data partitioning using class labels of 

the known samples. For datasets with N samples: 

              
1

Rand / 100%
K

k

k

R N
=

 
=  
 
     （14） 

where Rk is a sample set that is correctly partitioned with 

regard to class k. For any subset in the clustering (or coverage) 

results, if class k contains the largest number of samples, it is 

said that the set represents the distribution of class k data. 

In addition, learning from some mature clustering 

evaluation methods, in this study, we use normalized mutual 

information (NMI) (Strehl & Ghosh, 2002), accuracy (ACC) 

(Peng et al., 2016), and other indicators. 

 
D. Discussion of the results of the improved K-means 
algorithm  

In the experiments in this section, we compare the 

performance of the proposed improved K-means algorithm 

with those of six other clustering algorithms. Tab. 9 reports 

the scores of the compared algorithms on the UCI dataset, 

while Tab. 10 reports the scores of the compared algorithms 

on the JoyBuy dataset. The compared algorithms include 

traditional K-means, KCC (Liu et al., 2017), SEC (Dong et al., 

2017), LWGP (Junyuan Xie et al., 2015), DEC (Wu et al., 

2014) and IDEC (Guo et al., 2017). Among the compared 

algorithms, KCC, SEC and LWGP are integrative clustering 

algorithms, and DEC and IDEC are deep clustering 

algorithms. The parameters of each algorithm are set as 

follows. For SEC, the connectivity matrix is constructed with 

the parameter “nearest_neighbors”; the kernel function 

parameter, gamma, is set to the polynomial kernel “poly”, and 

n_neighbors is set to 10 by default. For KCC, the maximum 

number of iterations is set to 100, and the convergence 

tolerance of the objective function is set to 10-5. For LWGP, 

the distance between two samples is calculated by 

“Euclidean”, and the criterion to merge the sample points is 

set to “ward”, i.e., each cluster itself is a set. For DEC, the 

number of initial cluster centroids is set to be the same as that 

in K-means. This optimal number of clusters is selected as the 

one that minimizes the BIC. For IDEC, the clustering loss γ is 

set to 0.1. The initial learning rate is =0.001 , and the 

convergence threshold is set to =0.1% . Each algorithm is 

run 500 times, and each run is evaluated using the four 

measures mentioned above. The 500 evaluations are then 

averaged to obtain the final scores of the algorithms. The 

results are shown in Tab. 9 and Tab. 10. 

As shown in Tab. 9 and Tab. 10, the improved K-means 

algorithm proposed in this paper achieves the highest scores 

among the seven different clustering algorithms for all four 

evaluation criteria. It is worth mentioning that in this 

experiment, for each dataset, the hyperparameters of the DEC 

algorithm are adjusted manually to their optimal values, while 

the improved K-means algorithm proposed in this paper does 

not require dataset-specific tuning. Even so, the improved 

algorithm can achieve a score that is equal to or higher than 

that of DEC (with optimal hyperparameters) on the selected 

real dataset. Furthermore, comparisons using the other 

discriminative criteria also demonstrate the significant 

advantages of the improved K-means algorithm proposed in 

this paper on the real dataset. 

Additionally, we provide the average score and average 

rank of each algorithm in the last two rows of the two tables. 

The average score represents the average of the 

RDB/Rand/NMI/ACC scores of each algorithm; the average 

rank represents the average rank of each algorithm across 

multiple criteria. As shown in Tab. 9 and Tab. 10, the 

proposed improved K-means algorithm obtains the highest 

score among the seven different clustering algorithms for all 

four discriminative criteria; its average rank is 1, which is 

higher than the average rank of DEC (with optimal 

hyperparameters) and higher than the average ranks of the 

other three clustering algorithms, thereby showing the 

significant advantages of the improved K-means algorithm 

proposed in this paper on the real dataset. 
TABLE 9 

COMPARISON OF THE SCORES OF DIFFERENT CLUSTERING ALGORITHMS 

ON THE UCI DATASET 
(HIGHEST SCORE IS IN BOLD) 

 K-means SEC IDEC KCC LWGP DEC 
Improved 

K-means 

RD

B 

42.48±1.2

2 

43.82±2.1

8 

48.38±3.1

2 

52.81±2.1

5 

56.12±4.1

5 

68.16±2.1

8 

88.26±5.4

9 

Ran
d 

40.61±2.6
4 

42.52±3.1
5 

44.81±5.1
8 

49.31±2.0
5 

55.47±2.7
8 

66.35±2.5
7 

72.64±2.1

6 

NMI 
44.85±3.4

9 

48.62±1.6

4 

55.16±4.4

8 

58.35±5.1

6 

64.52±2.6

5 

74.35±5.6

4 

81.65±2.3

4 

AC

C 

50.63±4.5

2 

52.71±2.4

6 

61.35±1.5

8 

66.24±5.1

5 

71.28±5.2

3 

80.56±5.7

8 

88.65±5.8

2 

Avg. 

scor
e 

24.62 26.78 34.05 42.46 48.35 55.84 59.34 

Avg. 
rank 

7.04 5.02 4.52 4.20 2.99 1.82 1.26 

TABLE 10 
COMPARISON OF THE SCORES OF DIFFERENT CLUSTERING ALGORITHMS ON 

THE JINGDONG MALL DATASET 

(HIGHEST SCORE IN BOLD) 

 
K-

means 
SEC IDEC KCC LWGP DEC 

Improved 

K-means 

RDB 
40.56±

2.18 

48.82±

4.89 

58.67±

6.76 

57.59

±3.14 

74.68±

1.18 

79.18±

2.41 
91.47±6.17 

Rand 
39.18±

3.41 
47.22±

6.42 
57.63±

7.18 
66.86
±4.18 

70.18±
0.52 

75.61±
4.18 

82.81±2.16 

NMI 
47.61±

4.18 

52.47±

3.18 

64.17±

3.46 

74.26

±5.16 

86.17±

1.15 

84.67±

3.27 
94.38±5.15 

ACC 
56.28±

5.16 
67.16±

1.27 
75.34±

4.18 
78.67
±4.25 

84.18±
2.14 

88.67±
4.26 

92.76±4.49 

Avg. score 22.18 24.51 38.49 44.71 47.58 49.52 51.49 

Avg. rank 6.28 4.40 5.52 5.00 2.94 1.91 1.00 

 
E. Efficient MapReduce Parallel Computing Results and 
Discussion 

1. Data sampling test results 

For the same dataset, we test the efficiency of the two 

text sampling methods to test the differences in sampling 

times between progressive scan sampling and parallel 

sampling when the number of samples changes. The test 

results are shown in Fig. 5 and Tab. 11. 

 
Figure 5 Data Sampling Comparison 

TABLE 11 
DATA SAMPLING TIME COMPARISON (TIME: S) 
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Number of 

samples 

Line-by-line 

scan (JD Mall) 

Parallel sampling 

(JD Mall) 

Line-by-line 

scan (UCI) 

Parallel sampling 

(UCI) 

100 274 278 205 208 

1000 384 398 302 302 

10000 584 478 412 395 

1000000 749 522 511 422 

10000000 2049 547 1042 472 

100000000 4777 521 2049 494 

 

It can be seen from Figure 5 that when the sample size is 

small, progressive scanning sampling has the highest 

efficiency, but its efficiency decreases as the sample size 

increases, while the time required for parallel sampling tends 

to be stable. Therefore, the parallel sampling method used in 

this paper is more suitable than progressive sampling for big 

data environments. 

2. Parallel computation performance test 

This experiment is carried out on 15 PCs, one of which is 

responsible for the scheduling and allocation of resources as 

the master node; the other 14 PCs are slave nodes that 

participate in the calculations in sequence. A comparison of 

the efficiency and acceleration ratios obtained with different 

numbers of clusters for the data with a fixed number of 

samples are shown in Tab. 12. 
TABLE 12 

EXPERIMENTAL DATA OF PARALLEL COMPUTATION 

Dataset size/GB Number of data rows Data dimension 
Number of 

categories 

A(JD)-0.74 47387236 3 4 

B (JD)-1.07 86164783 3 4 

C (JD)-1.94 143843877 3 4 

A (UCI)-0.11 526842 68 52 

B (UCI)-0.25 1062845 68 52 

C (UCI)-0.58 2458285 68 52 

 

A comparison of the times required to run the algorithm on 

different large-scale datasets as number of clusters increases is 

performed, and the results are detailed in Tab. 13 and Fig. 6. 
TABLE 13 

COMPARISON OF RUNNING TIMES WITH DIFFERENT NUMBERS OF NODES 

(TIME: S) 
Number of 

nodes 
A (JD) B (JD) C (JD) A (UCI) B (UCI) C (UCI) 

1 101 112 131 68 75 81 

2 91 101 104 55 60 65 

3 84 91 97 50 51 58 

4 76 88 82 31 35 44 

5 70 72 65 26 30 38 

 

 
Figure 6 Comparison of the running times of the algorithm with 

different numbers of nodes 

 

It can be seen from Figure 6 that when processing these 

three groups of big datasets, the computational efficiency of 

the algorithm is improved as the number of nodes increases; 

furthermore, the convergence time is obviously reduced, 

indicating that the algorithm in this paper is suitable for 

clustering big data. 

The acceleration ratio is the ratio of running time of the 

single system and to that of the parallel system when 

processing the same task, and it is used to measure the 

expansibility and parallelization effects in parallel computing. 

As the number of nodes increases, the changes in the 

acceleration ratios of different large datasets are compared, 

and the comparison results for the selected Jingdong Mall 

dataset are shown in Figure 7. 

 
Figure 7 Comparison of Acceleration Ratios 

 

Figure 7 shows that the acceleration ratio for each dataset 

increases as the number of computational nodes increases. 

When the dataset is large, increasing the number of 

computational nodes yield significant improvements in the 

parallel execution process. As a result, using the Hadoop 

distributed computing platform can effectively improve the 

efficiency of the clustering algorithm. 

 

3. Parallel computing tuning 

The number of data blocks allocated in the Hadoop cluster 

(the default size is 64 M) determines the number of map 

concurrencies. Therefore, the sizes of different data blocks and 

the number of map concurrencies affect the efficiency of the 

algorithm. In this experiment, we modify the dfs.block.size 

setting of hdfs-site.xml to adjust the data block sizes. For the 

three groups of datasets, we set different sizes of data blocks 

and adjust the number of map concurrencies. The experimental 

data in Table 9 are used, the specific allocation is shown in 

Table 14, and the running times of the algorithm are shown in 

Table 15. 
TABLE 14 

DATA BLOCK ALLOCATION 
Dataset 

size/GB 
64 M 128 M 256 M 512 M 1024 M 

A (JD)-0.74 10 8 7 7 6 

B (JD)-1.07 26 22 18 15 11 

C (JD)-1.94 38 31 27 22 17 

A (UCI)-0.11 5 4 3 2 1 

B (UCI)-0.25 9 8 6 4 2 

C (UCI)-0.58 15 10 7 5 3 

 
TABLE 15 

ALGORITHM RUNNING TIMES UNDER DIFFERENT NUMBERS OF MAP 

CONCURRENCIES (TIME: S) 
Number of 

concurrencies/M 

A 

(JD) 

B 

(JD) 

C 

(JD) 

A 

(UCI) 

B 

(UCI) 

C 

(UCI) 

64 M 101 112 131 68 75 81 

128 M 91 101 104 55 60 65 

256 M 84 91 97 50 51 58 

512 M 76 88 82 31 35 44 

1024 M 70 72 65 26 30 38 

 

As seen in Tab. 15, as the number of data blocks increases, 

the number of map concurrencies decreases, but the running 

time of the algorithm does not decrease linearly as the number 

of map concurrencies decreases. Conversely, each dataset has 

its most suitable number of map concurrencies. Since the 

experimental configuration uses a 4-core CPU, the parallel 
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computation of 4 threads is carried out; an excessive number of 

map concurrencies increases the number of map tasks allocated 

by each CPU core, and when each CPU core runs the allocated 

map task, the addressing time also increases, increasing the 

overhead of the system. As the number of map concurrencies 

decreases, this overhead also decreases. However, as the 

number of map concurrencies for the three sets of data 

decreases to 2, the running time increases. This is because each 

computer performs double-threaded or single-threaded 

computing, there is an idle computing resource, and the amount 

of computations per CPU core increases, so the system cannot 

fully reflect the advantages of cluster computing. From the 

above experiment, we can draw a conclusion, namely, when the 

number of map concurrencies is close to the number of CPU 

cores, the efficiency of the algorithm can be greatly improved. 

 

Ⅴ. Conclusions 
The K-means algorithm is one of the most commonly used 

tools for data mining and other information processing 

applications concerning clustering calculations. Compared with 

other clustering methods, it has the advantages of simplicity 

and high efficiency, but there is also some room for 

improvement and enhancement. Aiming at the shortcomings of 

the K-means algorithm, according to our previous discussion on 

the K-means algorithm, this paper first proposed an improved 

algorithm for selecting the appropriate initial clustering centers, 

determining the correct number of clusters and identifying 

complex data; then, considering the global structural 

information of data, this paper proposed a new global 

measurement method —  an effective distance measure. 

Finally, this paper proposed an efficient parallel K-means 

algorithm based on MapReduce, where the efficiency of the 

algorithm can be improved by adjusting the Hadoop cluster. 

The results show that: 

(1) The improved K-means algorithm proposed in this 

paper obtained the highest score and has good convergence and 

accuracy based on an experiment involving seven different 

clustering algorithms and four different evaluation criteria for 

the real JD Mall dataset. 

(2) In the clustering performance test based on adjusting 

the number of cluster nodes and calculating the acceleration 

ratio, the algorithm proved to be suitable for the analysis and 

processing of big data. 

(3) In the cluster tuning experiment based on adjusting the 

number of map concurrencies and cluster memory, it was 

determined the performance of this algorithm for big data 

processing was further improved by using the optimal settings. 
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