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ABSTRACT Computational inference of aesthetics has recently become a hot topic due to its usefulness
in widely applications such as evaluating image quality, retouching image and retrieving image. Owing to
the subjectivity of this problem, there is no general framework to predict image aesthetics. In this paper,
we propose a deep neural framework with visual attention module, self-generated global features and
hybrid loss to address this problem. Specifically, the framework can be any state-of-the-art convolution
classification network compatible with visual attention. Further, self-generated global feature compensates
for the loss of global context information during training stage, and the hybrid loss guides the network
to learn the similarity between the predicted aesthetic scores and the ground-truths through fusing soft-
max-entropy and Earth Mover’s Distance(EMD). With the above-mentioned improvements, the proposed
deep neural framework is capable of effectively predicting image aesthetics in an efficient way. In our
experiments, we release a real-world aesthetic dataset that contains 1,800 2K photos labeled by several
experienced photographers, and then provide a thorough ablation study of the design choices to better
understand the superiority brought by each part of our framework, and design several comparisons with
the state-of-the-art methods on a fraction of metrics. The experimental results on two datasets demonstrate
that both accuracy and efficiency achieve favorably performance.

INDEX TERMS Image Aesthetics, Hybrid Loss, Deep Neural, Visual Attention

I. INTRODUCTION

IMAGE aesthetic quality assessment (IAQA) is a long-
standing visual task, which lays foundation in many multi-

media applications such as image retouching, image ranking
and image retrieval. Practically, photographic retouchers use
photograph editing software to enhance images based on
human aesthetic quality. As the pre-processing step, they
need to quickly make objective assessments of numerous
images. However, the above procedure is time-consuming
and intractable in real-world application. Therefore, it is
essential to design an outperforming model to assess image
aesthetic quality quickly.

The goal of IAQA is to design the algorithms which
automatically predict image aesthetic quality. Definitely, it

is challenging as the aesthetic score of given images relies
on several undetermined factors, such as composition, color
distribution, technical quality and so on. To address the prob-
lem, earlier approaches aim to classify aesthetic attributes
of an image using hand-crafted features and achieve good
progress. However, hand-crafted features depend heavily on
expert knowledge, and cannot capture feature presentations
comprehensively.

To overcome this shortcoming, deep neutral models such
as Convolutional Neural Network (CNN) were proposed re-
cently [1]–[8], which related image content to semantic level
qualities, and extracted a lot of aesthetic features without
human interaction. Now that noticeable benefit has been
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made by deep neural network, they are still faced with the
following limits: 1) Most of deep neural models focus on
classifying images to low/high score or regressing to the
mean score, but our goal is to predict IAQA with higher
correlation with human ratings. 2) The CNN-based deep neu-
ral models never consider global features that could reflect
global lighting condition or even subject types. 3) Current
deep neural models ignore the attention mechanism that can
explore a focused location and suppress unnecessary ones. 4)
Loss function is not well suitable to describe the training loss
when classification labels are in order.

To address the preceding limits, this paper presents a
new deep IAQA framework for predicting image quality.
In comparison with traditional binary IAQA classification,
we devote to predicting the distribution of human ratings.
Considering that image aesthetic assessment is affected by
global features, we propose and incorporate global features
into our proposed network. If IAQA method could focus
on important features and depressing unnecessary one, it
is beneficial to achieve more objective results in the task
of IAQA. Consequently, we introduce and integrate visual
attention module with our proposed network to further boost
the performance. In order to learn score distribution and
score values of the samples simultaneously, we also proposes
a hybrid loss composed of Earth Mover’s Distance(EMD)
loss and soft-max cross-entropy. Using datasets AVA and
Alltuu, our experimental results reveal the superiority of our
framework against the state-of-the-art.

To sum up, the major contributions of our work can be
listed as follows. 1) We propose a deep IAQA framework by
embedding CNN-based classifier with self-generated global
features and attention module to improve the performance.
2) We release a new dataset of 1,800 2K HD photos, each
of which is labeled by several expert photographers. 3)
We perform the evaluation of our framework on different
datasets, and demonstrate its superiority qualitatively and
quantitatively.

II. RELATION WORK
Existing IAQA methods can be roughly divided into two
kinds. Methods of the first kind try to map hand-crafted fea-
tures into image aesthetic score with a shadow architecture.
Methods of the second kind rely on impressive progress on
deep neural networks for IAQA [9]. In the rest of this section,
a few representative works are briefly discussed.

A. TRADITIONAL MODELS
Inspired by image processing, perception and photogra-
phy, traditional models first extract features based on well-
designed or general guidelines, and then appended a classifier
to distinguish image quality. Early algorithms use specified
descriptor, such as edge distribution and rule of the third, to
create the features for classifier or regression. [10] attempts
to imitate how humans perceive photo aesthetic quality based
on the spatial distribution of edges. Later, [11], [12] compute
both global and local compositional features to discover

object regions, and present saliency-enhanced methods for
the classification of professional photos and snapshots. Even
recently, researchers still construct well-designed image aes-
thetic attributes by sharpness, depth, charity, tone and color
[13]. Michal Kucer et at [14] combine hand-crafted feature
and CNN-based features to predict image quality. Several
methods adopt general descriptors such as scale-invariant
features transform (SIFT) descriptor or local patches of col-
ors to describe image. [15] evaluates the color harmony of a
collection of local regions from a given image, and uses SVM
to determine whether the image has a high or low aesthetic
quality. In [16], Marchesotti et al. use the bag of visual
words and fisher vector to achieve impressive performance.
Bhattacharya et al. [17] present an interactive application
that enables users to improve visual aesthetics of their digital
photographs using spatial recomposition, and provides an
optimal location of each foreground object for the users.
Although the models based on traditional features are effec-
tive in some particular datasets or applications, they heavily
depend on the expert experience and are less descriptive to
represent the complex objects in different domains.

B. DEEP NEURAL MODELS FOR IAQA
Recently, deep neural models has been developed to solve
several classical problems, such as fault diagnosis and
fault tolerant control [18], [19], object detection [20], image
classification [2], [21] and so on. Success of CNN on object
classification task provides a new perspective on IAQA.
Recent works in the literature can be divided into two major
schemes: 1) Deep neural models based on rank numerical
score. 2) Deep neural models based on score distribution.
Methods of the first scheme extract deep aesthetic features,
and attach them to the rank score with a canonical classi-
fier. In earlier works, researchers direct adopt generic deep
features learned from other tasks to train a new classier.
In order to represent aesthetic feature better, various CNN-
based models are trained from scratch directly with single-
column CNNs [22]–[25]. In detail, these models add skip
connection or replace convolutional layers to explore the
potential in learning the aesthetic presentation, and then
concatenate the output features with fully connected layers.
Instead of focusing on single-column network, researchers
pay more attention to multi-column CNNs. Lu et al. [26]
attempt to tackle the aesthetic modeling problem through the
two-column network called RAPID which captures global
features and local features from these two columns, respec-
tively. Later, to address the limitations of global layout en-
coder and fixed-sized input, References [27], [28] aggregate
the two network layers and add an object-based attributed
graph. Despite the excellent performance, the above methods
only focus on the connection between the output predictions
with numerical score ranking, but ignore the real demand.
Recently, researchers turn attention to the deep neural models
considering score distribution (i.e., a score distribution vector
of the ordinal basic human ratings). Roy et al. [29] predict
image aesthetics by using inferential information depending
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on visual content found in an image. Talebi et al. [30] propose
NIMA, an approach that calculates aesthetic scores from
predicted aesthetics rating distributions. Further, as an exten-
sion of NIMA, Wang et al. [3] utilize aspect-ratio-preserving
multi-patch learning approach for predicting aesthetic scores.
However, additional computation and regions of the selected
patches stunt its promotion in practical application. More-
over, some recent works [1], [5] formulate IAQA as an
obviously visible high or low binary classification problem,
and report promising classification accuracy on benchmark.
Although it is impractical and infeasible to use binary classi-
fier in real-world application, we still consider them just for
comparison.

III. THE PROPOSED FRAMEWORK
In this section, we present our general training and testing
framework to assess image scores. Inspired by [30], the
framework could perform well based on image classifiers.

A. THE OVERALL FRAMEWORK FLOW
The pipeline of the proposed framework is shown in Fig.1,
which includes the CNN-based classifier with attention mod-
ule, self-generated global feature module (SGFM) and hybrid
loss function. In detail, the classifier could be any state-of-
the-art CNN-based network, such as VGG16 [31], Inception-
V2 [32], Inception-ResnetV2 [33], DenseNet [34] and so
on. Similar to NIMA, we also replace the last layer of the
classifier with a fully-connected layer followed by a soft-max
activations. Rather than processing a whole scene at once, we
incorporate attention module into the classifier to selectively
focus on salient parts. As for SGFM, it could reveal high-
level information which may be helpful for individual pixels
to determine their local contribution [35], so we decide to
encode implicit global features for classification task. During
training procedure, the image with its corresponding score
vector is fed into classifier network. The goal of our frame-
work is to minimize the hybrid loss between the predicted
probabilities vector and the ground-truths. During testing
procedure, the mean and variance deviation operation are
applied to predict aesthetic score distribution. To sum up, the
learning procedure are listed in Algorithm 1.

B. THE VISUAL ATTENTION MODULE
The visual attention mechanism has been proved effective
in expressing human perception. As feasible and plug-and-
play modules, SENET block [36] and CBAM block [37] are
cleverly designed to compute attention in different aspects
and verified in different datasets (MS-COCO dataset and
VOC dataset). Thus, we incorporate these attention modules
into the classifiers of our framework to improve the accuracy
performance. Here, a brief introduction of the two modules
is listed as below.

1) Squeeze-and-Excitation Network (SENET)
SENET introduces a compact model to explore channel rela-
tionship by feature recalibration technology, through which

the network can learn global average-pooled features to
selectively emphasis informative features and suppress less
useful ones. In detail, SENET contains two steps: squeeze
and excitation. The goal of squeeze is to exploit channel
dependencies through squeezing global spatial information
into a simple channel descriptor. The squeeze operation is
formulated as 1.

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (1)

where the output z ∈ RC is generated by squeezing U
through spatial dimensions H ×W , C is the channel dimen-
sion of the given feature map U = [u1,u2, · · · ,uC ]. In fact,
we can find that the transformation of U can be regarded
as a collection of expressive statistics for each channel.
Excitation operation aims to make full use of the squeeze
aggregated information. To implement it, as Fig.2 shows, a
gating mechanism with a sigmoid activation is adopted to
represent the weights of channels.

s = Fex(z,W) = µ(W2δ(W1)z) (2)

where µ denotes ReLu function, W1 ∈ RC
r ×C , W2 ∈

RC×C
r , W1, and W2 are the weights of dimensionality-

reduction layer with reduction ratio r and dimensionality-
increasing layer, respectively. The final output is computed
by multiplying the feature map U with scaler Sc.

xc = sc · uc (3)

2) Convolutional Block Attention Module(CBAM)
To overcome the limitation of SENET [37], CBAM leverages
attention ability in the following points: 1) Using average-
pooled feature and max-pooled feature simultaneously when
computing channel-wise attention. 2) Appending a spatial
attention sub-module to channel attention sub-module. Com-
pared with SENET, CBAM is superior with a little more
computational burden. The CBAM module is a computa-
tional unit which can be embedded in any feature map.
Let U ∈ RW×H×C denotes the feature map, 1D channel
attention map Mc ∈ R1×1×C and 2D spatial attention map
Ms ∈ RH×W×1 are applied to U sequentially. Formally, the
overall attention process can be defined as:

U
′
= Mc(U)⊗U

U
′′
= Ms(U)

′
⊗U

′ (4)

where ⊗ is element-wise multiplication, U
′

and U
′′

are the
outputs of channel attention and spatial attention, respec-
tively. Firstly, CBAM produces a channel attention map by
exploring the inter-channel relationship of feature happened
in SENET. Beyond the canonical idea of aggregating spatial
information, CBAM uses both average-pooled and max-
pooled features to infer fine channel-wise attention. Then,
CBAM generates a spatial attention through utilizing inter-
spatial relationship of features. To compute spatial atten-
tion, average-pooling and max-pooling operations along the
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FIGURE 3. The flow of CBAM, where ⊕ is element-wise addition.

channel axis are concatenated to generate informative feature
descriptor. Finally, as shown in Fig.3, CBAM employs a
sequential manner with channel-first and be integrated with
a given CNN-based Network.

C. SELF-GENERATED GLOBAL FEATURE MODULE
(SGFM)
Global features have been explored by other image process-
ing tasks for long history. However, their models require
extra supervised network trained with explicit scene labels.
Besides, the residual learning has been shown helpful on con-
vergence for image processing tasks. Therefore, motivated by
these two ideas, we define an implicit global feature module
based on the network itself, and named it self-generated
global feature model (SGFM). To be concrete, the module

contains two contraction layers and other components that
go with them. Each contraction layers contains 5 × 5 fil-
ters with stride 2 followed by SELU activation and batch
normalization [38], and other components consist of fully-
connected layer, SELU activation, reduction layer and a few
related operations.

Formally, the general idea of SGFM can be expressed as
follows: Firstly, denoting the feature map M ×M × N of
the classifier, we reduce it to M/2 × M/2 × N and then
M/4×M/4×N filtered by the aforementioned contraction
layer twice. Secondly, the feature map M/4 × M/4 × N
is squeezed into 1 × 1 × N by virtue of a fully-connected
layer followed by a SELU activation and then another fully-
connected layer. Then, the 1×1×N feature map is duplicated
M × M copies and then concatenated with the original
M × M × N feature map, resulting a M × M × 2N
concatenated feature map. Finally, it is reduced by reduction-
G and restored to the size M × M × N . Empirically, we
give some instructions how to incorporate SGFM into exist-
ing CNN Networks. Since SGFM tends to describe global
information of an given image, it is more appropriate to apply
it as early as possible. If it is performed before the softmax
layer, abundant critical global information are not learned
well by the CNN network. Consequently, we decide to put
SGFM after the fist reduction layer or convolution block to
preserve global information as much as possible. Specially,
we integrate SGFM with two state-of-the-art classifiers:
Inception-Resnet-V2 and densenet169. Fig.4 illustrates the
basic network architecture of modified Inception-Resnet-V2
(named Inception-Resnet-V2(attention&G)). As can be seen,
given an input image with size of 299 × 299 × 3, after
processed by Stem block, the network would output 35 ×
35 × 256 feature maps (M = 35, N = 256), and feed them
into SGFM to capture informative features. As demonstrated
in the right panel of Fig.4, attention module are embedded
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into Inception A-C at the branch of residual connection,
respectively. Definitely, the attention module could be either
CBAM block or SENET block. Different from Inception
and Resnet, DenseNet connects each layer to every layer in
a feed-forward way and makes a progressive achievement
on various datasets (CIFAR-100, ImageNet, and etc.). In
Fig.5, we empirically append SGFM to Transition Layer (1)
and incorporate attention model into each Dense Block and
Transition Layer.

D. HYBRID LOSS FUNCTION

In this work, we propose a new hybrid loss for IAQA,
which contains EMD loss and softmax cross-entropy. Soft-
max cross-entropy loss can be written as

∑N
i=1−psi log(p̂si)

where p̂si and psi are the estimated probability and ground-
truth label of i-th score bucket, respectively. Softmax cross-
entropy is good at describing the local value of each class and
prove helpful in classification tasks. However, softmax cross-
entropy loss performs not well in the case of ordered-classes.
To overcome the limit, EMD loss minimizes the cost to move
the mass of estimated probability distribution to ground-
truth probability distribution. For N-class aesthetic ratings,
the value of the i-th rating class psi is i, where 1 ≤ i ≤ N .
The r-norm distance of i-th rating class and j-th rating class
is defined as |si− sj |r. In that case, as shown in [30], r-norm
EMD loss between the above-mentioned rating distributions
is computed as follow:

EMDr =

(
N∑
k=1

|CDFp(k)− CDFp̂(k)|r
) 1

r

(5)

where CDFp(k) and CDFp̂(k) denote the cumulative distri-
bution function of the ground-truth rating distribution p and
the predicted rating distribution p̂, respectively. Herein, r is
specified as 2 as well as NIMA.

Particularly, the final mean score is computed in Algorithm
1. Softmax cross-entropy tends to make the final result closer
to some integer value ranging from 1 to 10, and EMD loss
emphasizes on the comparison of prediction distribution and
ground-truth distribution. Thus, the combination of these two
losses is able to cope with different types of datasets, such
as Alltuu and AVA. In order to describe their relationships
clear, we design a new hybrid loss to train our models to
present score distribution and score value simultaneously.
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Mathematically, hybrid loss can be expressed as:

L = αLs + βLemd (6)

where Ls and Lemd are softmax cross-entropy loss and EMD
loss, respectively, α and β are their corresponding weights,
and α+β=1.

Algorithm 1 The algorithm of our proposed framework for
IAQA
Input:

The original image I, max-epochs E, the classifier with
SGFM and attention module Classifier, The number of
aesthetic ratings N. Test images T .

Output:
The predicted image score probability S̃, mean score Ṽ .
Training Stage:
Initialize the network weights, learning rate, batch size,
and other parameters;
for t = 1; i < E; t++ do

Train network by optimizing the softmax cross-entropy
loss Ls;
Train network by optimizing the EMD loss LEMD;
Compute the hybrid loss L = αLs+βLemd and update
the model weight parameters;

end for
Testing Stage:
Feed T into Classifier, and then output the S̃;
Compute Ṽ =

∑N
i=1 i× S̃i;

return Classifier, S̃, and Ṽ .

IV. EXPERIMENTS AND MATERIALS
In this section, we detail the datasets for training and testing
in Section IV-A. All the comparative experiments are carried
out on our workstation, which is equipped with an Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10GHz, an NVIDIA TITAN
V with 12 GB memory, 64GB RAM, and 1T SSD. All the
comparative algorithms are developed using Tensorflow 1.4.

A. DATASETS
1) AVA dataset
We use the benchmark dataset for Aesthetic Visual Analysis
(AVA) [39] to evaluate the proposed framework. It com-
prises 250,000 images collected from the online photography
community website www.dpchallenge.com. Each image is
associated with 10 stages of ratings, ranging from 1 to 10.
The number of raters assigned to each image ranges from
78 to 649, and the average value is 210. Samples of the
AVA dataset, mean score (mean square variance), normalized
score histograms, and sample images are displayed in Fig.6.
The AVA dataset is split into training set (230,000 images)
and testing set (20,000 images).

2) Alltuu dataset:
Alltuu dataset was collected by ourself with the help of five
professional retouchers who have been worked in the field of
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FIGURE 7. (a) The score histogram of Alltuu dataset, (b-d) A few samples of
Alltuu dataset.

photography more than ten years. After independent label-
ing work finished, these five experts discussed and reached
consensus on the optimal score for each image. It contains
1,800 images collected from our own massive image library.
Similar to AVA dataset, each image was marked as integer
numerical score value ranging from 1 to 10, and the score
distribution was encoded in one-hot way. In Fig.7, a few
examples with scores and score histogram of the overall
dataset are illustrated. Actually, we can easily find that the
distribution of scores is closely approximated to Gaussian
distribution. Different from AVA dataset, only one integer
score is kept, and this unconventional design strategy can
be explained as below. 1) The ineluctable side effect of
inadequate retouchers. In AVA dataset, the images are rated
by the countless photographers around the world and the side
effect of outliers can be eliminated through average opera-
tion. Nevertheless, in our own dataset, there is no enough
experienced retouchers to do it. 2) The requirement of our
practical application. In our real-world application, we hope
the novices could learn experience about how to select photo
from the experts as soon as possible, and assign a relatively
objective integer quality score during photo selection. Hence,
we have reasons to believe that our own dataset is constructed
reasonably. To our best knowledge, it is the first aesthetic
real-world dataset with 2K photos, which would stimulate the
development of IAQA.

B. EXPERIMENTAL SETUPS
Before making a thorough comparison with various IAQA
models, it is essential to determine the training parameters.
First, for the comparative models, all layers apart from the
last fully-connected layer are initialized by the parameters
pre-trained on the ImageNet dataset [40]. The reason why
we resort to pre-train technique is the model could efficiently
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obtain feature extraction ability directly and greatly shorten
training time. Then, all the images from these two datasets
are resized to 324×324, random cropping with size 299×299
and random horizontal operations are applied to augment the
datasets. During training stage, max-epochs E and learning
rate is changed to 100 and 2× 10−3, respectively. Moreover,
a momentum Adam optimizer (momentum=0.9) and a decay
factor of 0.95 after every 10 epochs are used.

C. EVALUATION METRICS
We employ common-used metrics to quantitatively evaluate
the performance of the comparative methods, ie. floating-
point operations per second (Flops), the number of parame-
ters of model (Params), mean absolute error(MAE), Pearson
linear correlation coefficient (PLCC), spearman’s rankorder
correlation coefficient (SROCC) and mean squared error
(MSE). To be fair, we report an extra metric called accuracy
(ACC) for binary aesthetic quality classification. For the task
of binary aesthetic quality classification, the images with
average score higher than a threshold of 5+σ are deemed as
positive examples and the rest are labeled as negative exam-
ples. Just to make it clear, the above-mentioned metrics are
categorized into precision metrics and cost metrics depending
on their properties. Precision metrics reflect the precision of
models (MAE, PLCC, SROCC, MSE and ACC) and cost
metrics represent the complexity and cost of models (Flops
and Params). To sum up, lower Flops and Params indicate
lighter computational costs, lower MAE, MSE values and
greater PLCC, SROCC and ACC values signify higher preci-
sion.

V. RESULTS AND DISCUSSION
In this section, we conduct our experiments to evaluate
the performance of our proposed methods for IAQA task.
The experiments include two parts: One part evaluates our
methods D169(C&G&H) and IRV(C&G&H) against several
state-of-the-art methods on datasets Alltuu and AVA. It first
respectively presents the overall comparison in multi-class
aesthetic quality classification and binary aesthetic quality
classification. Then, it compares the parameters and costs of
all the methods to verify their efficiency. Finally, it depicts
visual comparison on our dataset to verify the effectiveness
of our visual attention module. The other part makes ablation
studies of our framework. It demonstrates the different per-
formance brought by different combinations of components
appeared in our methods.

A. OVERALL COMPARATIVE STUDY
1) Multi-class Aesthetic Quality classification
In this section, we mainly compare our framework with
previous state-of-the-art models. In order to verify the effi-
ciency of our framework, two classical CNN-based classifier
are chosen as baseline networks: Inception-Resnet-V2 and
Denset169. The reason we prefer these two approaches is
that they provide good baseline results either in terms of

classification accuracy or computational consumption. Eval-
uation of our proposed methods with different architectures
on datasets Alltuu and AVA are displayed in Table 1 and
Table 2, respectively. We calculate Flops, Params, MAE,
PLCC, MSE and SROCC metrics for comparative methods.
Note that the implementation details of ASPP FCN-GC and
SDLA are not released publicly, we cannot apply them di-
rectly in our comparation. In following discussion, we will
not take them into account for multi-class aesthetic quality
classification. Limited by discriminative ability of Inception
V2, NIMA(IV) falls far behind the others on dataset Alltuu.
In comparison with NIMA(IV), our IRV(C&G&H) reduces
MAE and MSE by 0.095 (36.64%) and 0.104 (31.42%), and
improve PLCC of aesthetics score by 0.032 (3.44%) and
SROCC by 0.075(8.84%). Even compared with MPEMD,
the performance of our IRV(C&G&H) gains significantly on
precision metrics. For benchmark dataset AVA, compared
with the previous best result obtained by MPEMD, PLCC
shows an slight improvement of 0.019 (2.24%) and SROCC
presents an improvement of 0.016 (2.33%). In contrast to
NIMA(IV), PLCC shows an improvement of 0.075 (11.5%)
and SROCC shows an improvement of 0.091 (14.87%). Now,
let’s take a close look at the results of models based on
DenseNet169. Our model D169 (C&G&H) greatly surpasses
NIMA(D169) on all precision metrics. When comparing
with D169(C&G&H) and IRV(C&G&H), we observe that
IRV(C&G&H) performs better on all precision metrics own-
ing to the excellent baseline network. Consequently, we
could come to an conclusion that the methods equipped with
CBAM, SGFM and hybrid loss function outperform their
comparatives on datasets Alltuu and AVA.

In addition, we further explore the consistency between the
predicted aesthetic scores and the ground-truth with scatter
plots on dataset Alltuu. As shown in Fig. 8, each point cor-
responds to an give image sample, the horizontal coordinate
denotes the ground-truth, and the vertical coordinate denotes
the predicted scores. Clearly then, most points locate around
the diagonal line, indicating that most predicted scores are
close to the corresponding ground-truth ones. From the above
discussion, we can safely come to an conclusion that the
combination of CBAM, SGFM and hybrid loss function play
an important role in the proposed image aesthetic prediction
framework.

2) Binary Aesthetic Quality Classification
To be fair, we also make a comparison for binary aesthetic
quality classification task, and place the results on the right-
most column of Table1 and Table 2. During the comparative
study, the source codes of ASPP FCN-GC and SDLA are
not released and some experimental details are not men-
tioned. In this way, we only place their results reported in
their papers. For purpose of comparing to existing binary
classification results reported on dataset AVA, we simply
set the threshold σ = 0 as the others do. Owing to the
end-to-end forward architecture based on fully connection
network, ASPP FCN-GC leverages the mutual dependencies
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TABLE 1. Comparisons of the proposed framework with other state-of-the-art
methods on dataset Alltuu. The rows above the first dashline present the results of
Inception-V2 and its variants, and the bottom rows between the first dashline and
the last dashline list the results of Denset169 and its variants. The rows below the
last dashline are other comparative methods. For each metric, the best value is
shown in bold.

Methods MAE↓ PLCC↑ MSE↓ SROCC↑ ACC↑
NIMA(IV) [30]1 0.257 0.909 0.435 0.848 90.9%
NIMA(IRV)1 0.202 0.922 0.372 0.876 93.4%
IRV(SENET) 0.190 0.927 0.351 0.889 94.6%
IRV(C)1 0.182 0.931 0.348 0.893 95.2%
IRV(G)1 0.191 0.925 0.353 0.887 94.3%
IRV(S)1 0.198 0.924 0.369 0.880 93.9%
IRV(H)1 0.190 0.928 0.351 0.890 94.9%
IRV(C&G) 0.179 0.934 0.340 0.910 96.4%
IRV(C&H) 0.175 0.937 0.337 0.912 96.1%
IRV(H&G) 0.182 0.932 0.346 0.902 95.5%
IRV(C&G&H) 0.162 0.941 0.331 0.923 97.0%
NIMA(D169)1 0.235 0.918 0.402 0.855 92.4%
D169(SENET) 0.217 0.921 0.376 0.862 93.4%
D169(C) 0.210 0.928 0.370 0.863 94.3%
D169(G) 0.222 0.920 0.387 0.860 92.7%
D169(S) 0.231 0.919 0.392 0.859 92.6%
D169(H) 0.210 0.921 0.372 0.862 94.0%
D169(C&G) 0.182 0.934 0.346 0.887 94.9%
D169(C&H) 0.179 0.937 0.344 0.882 95.5%
D169(H&G) 0.199 0.931 0.369 0.880 94.6%
D169(C&G&H) 0.175 0.939 0.340 0.907 96.1%
MPEMD [3] 0.181 0.935 0.344 0.883 89.5%
ASPP FCN-GC [5] / / / / 97.3%
SDLA [1] / / / / 96.7%

1 IV:Inception-V2, IRV:Inception-Resnet-V2, IRV(C):Inception-Resnet-
V2(CBAM), IRV(G):Inception-Resnet-V2(SGFM), IRV(H):Inception-
Resnet-V2(Hybrid_loss), IRV(S):Inception-Resnet-V2(Softmax cross-
entropy), D169:(DenseNet169)

to boost aesthetic assessment and achieves the best perfor-
mance on metric ACC. In spite of IRV(C&G&H) yields
good results for multi-class aesthetic quality classification
task measured by precision metrics, no improvement is
shown for binary aesthetic quality classification. Meanwhile,
MPEMD also performs not well in binary aesthetic qual-
ity classification as the optimization of EMD loss is more
fit for multi-class classification than binary one. SDLA, a
semi-supervised deep active learning algorithm, is good at
discovering semantical perception of images assigned with
contaminated tags. However, constricted by semi-supervised
learning scheme, it performs less worse than ASPP FCN-
GC. In Table1 and Table 2, thought ASPP FCN-GC works a
little bit better than IRV(C&G&H), it need extra considerable
computational cost. Consequently, we empirically observe
that IRV(C&G&H) is comparable to ASPP FCN-GC to some
extent. Additionally, we contribute a thorough discussion
about the comparative results of MPEMD [3], NIMA(IV)
[30], NIMA(IRV), IRV(C&G&H) and IRV(C&G&H). Using
aspect-ratio-preserving multi-patch learning, aesthetic scores
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FIGURE 8. Scatter plots of the predicted scores vs. the ground-truth ones on
Alltuu dataset

are obtained by predicting normalized aesthetics scores dis-
tribution. However, as shown in Table1 and Table 2, in con-
formity with work [3], MPEMD falls behind NIMA (IV) and
IRV(C&G&H) for aesthetics binary quality classification.
In work [3], lower ACC is contributed to the prediction
bias around classification threshold. The difference between
NIMA(IV) and NIMA(IRV) is the baseline network choice.
Thanks to the higher discriminative capability of Inception-
Resnet-V2, NIMA(IRV) performs better in binary classifica-
tion. Further, SGFM, attention and hybrid loss are integrated
with NIMA(IRV) to be our proposed IRV(C&G&H). Seen
from Table1 and Table 2, IRV(C&G&H) boosts the perfor-
mance marginally on metric ACC. Furthermore, we give a
brief discussion on the performance of methods related to
DenseNet169. As illustrated in Table 1 and Table 2, we still
find the same conclusion that the choice of baseline network,
SGFM, CBAM and hybrid loss play critical part in binary
aesthetic quality classification.

3) The Overhead of Parameters and Computation
It is necessary to analyze the overhead of parameters and
computation of IAQA models. Generally, shallower models
are much more efficient than the deeper on cost metrics.
Evidently, as show in Table 3, NIMA(IV) is significantly
lighter than other models, but this comes at the cost of a
apparent performance fall analyzed in above discussion. It
is worthy noticing that D169(C&G&H) balances the trade-
off of performance and computational cost, which can be a
good choice when computational resource is limited. Par-
ticularly, SDLA works on the basis of probabilistic model,
and no parameters and flops are reported. As for ASPP
FCN-GC, it is too expensive to execute in real-world ap-
plication even though it achieves the best performance in
aesthetic binary classification. Thus, it is observed that per-
haps D169(C&G&H) is the best choice when considering the
influences between various factors.

4) Qualitative Comparison
When it comes to qualitative analysis, we employ GRAM-
CAM [41] to visualize the compared networks on datasets
Alltuu and AVA. GRAM-CAM is a recently proposed tech-
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TABLE 2. Comparisons of the proposed framework with other state-of-the-art
methods on dataset AVA. The rows above the first dashline present the results of
Inception-V2 and its variants, and the bottom rows between the first dashline and the
last dashline list the results of Denset169 and its variants. The rows below the last
dashline are other comparative methods. For each metric, the best value is shown in
bold.

Methods MAE↓ PLCC↑ MSE↓ SROCC↑ ACC↑
NIMA(IV) [30]1 0.280 0.636 0.321 0.612 81.51%
NIMA(IRV)1 0.252 0.692 0.290 0.686 81.73%
IRV(SENET) 0.243 0.693 0.280 0.688 81.97%
IRV(C)1 0.238 0.695 0.277 0.689 82.18%
IRV(G)1 0.249 0.693 0.282 0.687 81.82%
IRV(S)1 0.255 0.689 0.293 0.683 81.71%
IRV(H)1 0.242 0.694 0.277 0.688 82.15%
IRV(C&G) 0.232 0.696 0.274 0.691 82.34%
IRV(C&H) 0.229 0.697 0.272 0.692 82.48%
IRV(H&G) 0.237 0.695 0.276 0.689 82.23%
IRV(C&G&H) 0.219 0.711 0.262 0.703 83.52%
NIMA(D169)1 0.256 0.691 0.284 0.679 81.65%
D169(SENET) 0.250 0.692 0.282 0.682 81.74%
D169(C) 0.246 0.692 0.277 0.686 81.87%
D169(G) 0.253 0.691 0.283 0.680 81.70%
D169(S) 0.258 0.689 0.286 0.674 81.62%
D169(H) 0.247 0.692 0.280 0.685 81.79%
D169(C&G) 0.239 0.694 0.274 0.688 82.07%
D169(C&H) 0.233 0.695 0.272 0.690 82.29%
D169(H&G) 0.242 0.693 0.277 0.688 81.90%
D169(C&G&H) 0.231 0.696 0.270 0.693 83.11%
MPEMD [3] 0.233 0.692 0.276 0.687 79.38%
ASPP FCN-GC [5] / / / / 83.59%
SDLA [1] / / / / 83.09%

1 IV:Inception-V2, IRV:Inception-Resnet-V2, IRV(C):Inception-Resnet-
V2(CBAM), IRV(G):Inception-Resnet-V2(SGFM), IRV(H):Inception-
Resnet-V2(Hybrid_loss), IRV(S):Inception-Resnet-V2(Softmax cross-
entropy), D169:(DenseNet169)

TABLE 3. The overhead of parameters and computation of different comparative
models. For each metric, the best value is shown in bold.

Methods Flops1Params1Methods Flops Params
NIMA(IV)2 0.393 1.016 NIMA(D169)2 1.168 1.250
NIMA(IRV)2 2.665 5.690 D169(SENET) 1.169 1.381
IRV(SENET) 2.674 7.394 D169(C) 1.170 1.381
IRV(C)2 2.680 7.394 D169(G) 1.168 1.250
IRV(G)2 2.674 5.690 D169(H) 1.168 1.250
IRV(S)2 2.674 5.690 D169(S) 1.168 1.250
IRV(H)2 2.665 5.690 D169(C&G) 1.170 1.384
IRV(C&G) 2.683 7.395 D169(C&H) 1.170 1.381
IRV(C&H) 2.683 7.394 D169(H&G) 1.168 1.250
IRV(H&G) 2.674 5.690 D169(C&G&H) 1.170 1.384
IRV(C&G&H) 2.683 7.395 MPEMD 2.235 2.409
ASPP FCN-GC 117.6 509.3 SDLA / /

1 The units of Flops and Params are 1010 and 107, respectively.
2 IV:Inception-V2, IRV:Inception-Resnet-V2, IRV(C):Inception-Resnet-

V2(CBAM), IRV(G):Inception-Resnet-V2(SGFM), IRV(H):Inception-
Resnet-V2(Hybrid_loss), IRV(S):Inception-Resnet-V2(Softmax cross-
entropy), D169:(DenseNet169)

nique for visualizing the important spatial location. Different
from the gradients calculated for unordered class, GRAM-
CAM tries to take a close look at how network utilizes fea-
tures for ordered classes task. In Fig.9, we illustrate the visu-
alization results of comparative models. From top to bottom
are input image, NIMA(IV), NIMA(D169), NIMA(IRV),
IRV(SENET) and IRV(C), it indicates that IRV(C) integrated
with CBAM covers more aesthetic factors than the other
methods. In comparison with IRV(SENET), it can be clearly
seen that IRV(C) learns well to exploit more informative
features to represent aesthetics. Note that the visual results of
NIMA(SENET) and IRV(C) are also in line with the predic-
tion results reported in Table 1 and Table 2, respectively. Let’s
take Fig.9(5) for example, the aesthetic score of this image
relies on all the distribution of cosplayers. It is clear that only
IRV(C) with CBAM could cover all the cosplayers while the
others more or less miss ignore the cosplayers who should be
considered as a whole. From the observations, we conjecture
that CBAM attention module can leverage aesthetic feature
to boost the performance.

B. ABLATION STUDY
1) Influence of Baseline Network
In this section, we discuss the influence of baseline network.
In NIMA(IRV) and NIMA(D169), we replace the original
CNN image extractor (Inception-V2) with Inception-Resnet-
V2 and Denset169, respectively, and keep the rest layers
unchanged. Clearly from Table 1 and Table 2, NIMA(IRV)
outperforms its competitors remarkably on precision metrics.
Therefore, two observations can be made:1) The discrimina-
tive ability of baseline network plays a core part in IAQA
models. 2) The performance of the above models on precision
metrics is consistent with the distinguished ability of these
three classifier(IV, IRV and D169) in most circumstances.

2) Influence of The Components
In retrospect, our framework consists of three key modules:
attention modules, SGFM, and hybrid loss function. These
modules are theoretically helpful and beneficial to improve
performance. To show their competitiveness, we construct
all possible combinations of the above three modules, and
then apply them on our two datasets. Now, we respectively
analyze the influence of these three components on Alltuu
and AVA carefully. At first, we only consider the influence
brought by single module and name them as IRV(C), IRV(G),
IRV(S), IRV(H), D169(C), D169(S), D169(G) and D169(H).
From Table 1, IRV(C) and D169(C) achieve better perfor-
mance than their competitors, that is to say, regions of interest
captured by CBAM can release stronger aesthetic representa-
tion power. Compared with NIMA(IRV) and NIMA(D169),
IRV(C) and D169(C) gain average 5.2% and 5.6% Preci-
sion performance on dataset Alltuu, respectively. In Table
2, we still observe that IRV(C) and D169(C) outperform the
others. In comparison with NIMA(IRV) and NIMA(D169),
IRV(C) and D169(C) gain average 2.8% and 2% performance
on metric Precision, respectively. Now, let’s take a closer
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FIGURE 9. The visualization results of comparative methods. Input images are randomly chosen from Alltuu dataset(left columns) and AVA dataset(right columns),
respectively.

look at the effectiveness of Hybrid loss. For dataset Alltuu,
IRV(H) performs 6.3% better than NIMA(IRV) and D169
performs 11.9% better than NIMA(D169) on metric MAE.
If the hybrid loss is replaced with traditional softmax cross-
entropy, we find that IRV(S) and D169(S) perform slightly
worse than the corresponding IRV(H) and D169(H), respec-
tively. As mentioned in Section IV-C, softmax cross-entropy
is better qualified for classification tasks, which is more
suitable for the integer requirement of our dataset Alltuu.
Whereas, different for classification, our final mean score
is computed as Ṽ =

∑N
i=1 i × S̃i according to algorithm

1. In order to achieve better results, we also resort to EMD
loss to force our prediction to be as close as the ground-
truth in the case of ordered classes. Herein, one can see
that the models equipped with EMD loss (NIMA(IRV) and
NIMA(D169)) work worse than the ones equipped with
softmax cross-entropy (IR(S) and D169(S)), respectively. For
dataset AVA, IRV(H) performs 4.1% better than NIMA(IRV)
and D169 performs 3.6% better than NIMA(D169) on metric
MAE. In Table 2, different from the phenomena appeared
in dataset Alltuu, the models equipped with EMD loss
(NIMA(IRV) and NIMA(D169)) show better results than
the ones equipped with softmax cross-entropy (IR(S) and
D169(S)), respectively. The phenomena might be explained
as follows: the scores of sample from dataset AVA are better
described in a probability distribution way, which is well
fit for the goal off EMD loss. Meanwhile, since the final
score is a number rather than a distribution, we add softmax
cross-entropy to facilitate the final score closer to some
integer label ranging from 1 to 10. Despite that models
embedded with SGFM (IRV(G) and D169(G)) and hybrid
loss (IRV(H) and D169(H)) fall a little behind the ones with

CBAM (IRV(C) and D169(C)), they still make significant
progress on precision metrics compared with NIMA(IRV)
and NIMA(D169). In particular, we conduct experiments to
compare different visual attention modules. As mentioned
in Section III-B1, SENET focuses on capturing channel
relationship which is fulfilling to locate visual attractive re-
gions. From Table 1 and Table 2, IRV(SENET) and D169(C)
are superior to IRV(C) and D169(C) due to the additional
spatial attention. Then, we combine two of the above three
modules marked as IRV(C&G), IRV(C&H), IRV(H&G),
D169(C&G), D169(C&H) and D169(H&G), and then per-
form them on testing sets. As is seen from Table 1 and
Table 2, performance gains significantly compared with the
models equipped with only single module. This indicates
that the combination of two modules are more descriptive
for IAQA. For IRV(H&G) and D169(H&G), their precision
performance drop moderately in comparison with the corre-
sponding comparatives, which further prove the validity of
CBAM module again. Finally, we test IRV(C&G&H) and
D169(C&G&H) equipped with above three modules simul-
taneously, and find they achieve promising results. This is
mainly contributed to relatively excellent CNN-based classi-
fier and the incorporation of three separated modules, which
offer strong representation ability of aesthetic evaluation.

3) The Weights in Hybrid Loss
The weights in hybrid loss L play key part in the trade-
off between Ls and Lemd. To pursue the best weights, we
vary α in the range of [0, 1] with the interval of 0.1 and
displays the results on datasets Alltuu and AVA in Fig.10.
When we only consider Ls or Lemd, the MAE increase is in
comparison with the best MAE achieved when α = 0.5. As
α increases, the MAE value increases because it will reduce
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FIGURE 10. Performance variants on metric MAE of ours methods
(IRV(C&G&H) and D169(C&G&H)) with different trade-off parameter α and β
on the testing sets of datasets Alltuu and AVA.

our models ability. Generally, the trends of the other metrics
(MAE, PLCC, SROCC, ACC) are often in consistent with
MSE trend in most cases. Thus, in our work, we set α = 0.5
to achieve better results through our all experiments.

VI. CONCLUSIONS AND FUTURE WORK.
IAQA is an import application in image modeling and mul-
timedia. In this work, we propose a general framework
integrated with attention module, SGFM, and hybrid loss.
With the help of these three components, we are able to
reflect the attention regions, extract the aesthetic global con-
text information, and optimize IAQA model accurately. The
experimental results on datasets Alltuu and AVA demonstrate
that the proposed framework are more powerful than previous
works in terms of almost all metrics.

In the future, we will investigate a more general and
comprehensively IAQA approach, and put emphasis on the
following points: 1) Few-shot learning. Thought we solve
the over-fitting problem caused by insufficient data with pre-
trained models, the burden of collecting large-scale super-
vised data for industrial needs is still challenging. Thus, we
turn our attention to few-shot learning method to achieve bet-
ter classification. 2) Contaminated labels. Different from the
benchmark that are refined and maintained by professionals,
numerical samples in real-world application is vulnerable to
be contaminated and damaged. Thus, we should learn how
to evaluate image quality with only incomplete and contam-
inated labels. 3) Adaptability ability. A deep neural network
can be considered as excellent and adaptive provided that it
can be transfered to another field without major modification.
Later, we will verify our proposed neural network in the field
of fault diagnosis, cropping detection [42] and so on.
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