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ABSTRACT In-network caching as a core function in ICN can greatly improve the content distribution
efficiency and reduce redundant network traffic. It is a challenge to design caching strategies in ICN to
improve the performance of in-network caching. Traditional lightweight strategies are inefficient due to
problems such as edge caching pollution and slow diffusion speed. Current caching strategy with popularity
prediction does not fully consider the content capacity of ICN network. They usually have huge computation
overhead and cannot meet line-speed requirement. This paper focuses on the research of lightweight on-path
caching. Our caching strategy is proposed according to the edge-degree of routers along the forwarding
path. This strategy can quickly form a hierarchical content placement with little overhead. A large number
of experiments are conducted to examine the performance of our strategy in different topologies and
workloads. The simulation result reveals that our caching strategy can reduce the average download latency
by 10.2% and increase the cache hit ratio by 9.6% at most compared with other lightweight strategies.

INDEX TERMS Information-Centric Networking, In-network caching, Caching strategy, Lightweight

I. INTRODUCTION

Information-Centric Networking (ICN) [1] is proposed as an
effective future Internet architecture to address the problem
of content distribution efficiency in current network architec-
ture. Pervasive in-network caching is regarded as a funda-
mental function of ICN [2]. The pervasiveness makes ICN’s
caching mechanism different from traditional Web caching.
The caching network topology in ICN is no longer hierar-
chical but arbitrary [3]. Meanwhile, as basic service, caching
in ICN router should support line-speed operation [4], which
limits the computation consumption of each router and the
caching strategies must be simple enough [5]. Caching strate-
gies determine the content placement in the network [6]. The
content placement is a process in which the user’s requested
content is cached in the caching nodes along the forwarding
path. It has a significant role to improve the overall network
performance [7] [8].

ICN caching strategies can be divided into three types: in-
dividual caching, on-path caching and collaborative caching.
Simple as it is, individual caching usually have poor perfor-

mance due to the limited information in each node. In on-
path caching, a content is cached in the routers along the
return path when it is served from the source of the content
to the user, so the information along the path can be used to
improve the performance of strategies. Collaborative caching
strategies often need to communicate with the nodes beyond
the forwarding path but they introduce too much additional
overhead to the device and bandwidth to support the line-
speed operation. For example, some collaborative off-path
caching strategies add too many mechanisms to the network,
resulting in heavy load for the link and decrease in node
performance [9] [10]. Therefore, these strategies are out of
our scope and this article will only focus on the on-path
caching strategies.

The primary goal of on-path caching strategies is to cache
the replica of popular content to the edge of the network as
quick as possible [11]. Traditional on-path caching strategies
may cause unpopular contents to occupy the cache due to the
simple mechanism, or the popular contents can not spread to
the edge of the network quickly [12]. Some recent strategies
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make caching decisions in a priori way by counting the
request times of passing content, which can significantly
improve the hit ratio of cache compared to the traditional
strategies [13] [14]. However, these strategies tend to con-
servatively estimate the huge content space constraint. It is
difficult for hardware devices to implement these idealized
strategies due to the cache capacity limitation. Therefore, we
design a lightweight caching strategy that can handle network
traffic at line-speed, using filtering mechanism to prevent
content that is only requested once from being cached to the
edge of the network. We collect route information instead
of popularity information to spread the replica of popular
content quickly to the edge of the network.

The main contributions of this paper are as follows.
1) We formulate the caching revenue maximization prob-

lem as the average latency minimization problem in
the general cache system model and propose the ideal
content placement in the model. Different caching
strategies are compared and evaluated according to this
model.

2) We propose a Node Edge-degree-based Caching strat-
egy to push popular content to the edge of the network
quickly and to help forming a hierarchical content
placement in the network. We implement our strategy
in our self-developed content router based on Protocol-
Oblivious Forwarding(POF) switches and design cor-
responding protocols and flow tables.

3) We evaluate our caching strategy in simulations based
on real-world network topologies and various work-
loads, which reveals that our strategy can reduce the
average download latency and increase the cache hit
ratio. Throughput and computational overhead of our
strategy implemented in content router are tested to
verify the scalability of our design.

The rest of this paper as follows: Section II provides
related research work on ICN on-path caching strategies.
System model is presented as Section III. Section IV presents
the Node Edge-degree-based Caching Strategy. Section V is
experimental results. Section VI concludes the paper.

II. RELATED WORK
On-path caching is performed at the routers of a network,
following either a chunk or a packet naming granularity. On-
path caching is highly influenced by the dynamic networking
enviroment of ICN, which means operations such as mon-
itoring and collection of statistical information tend to be
impractical and inefficient. Due to these limitations, on-path
caching is considered to be a short-term decision where the
lighweight and heuristic tecnhiques are usually used [15].

Many current on-path strategies filter the content based
on popularity [20]. Only the most popular content can be
cached in the edge routers while unpopular content may only
be cached in the center of the network. MPC [13] records
the popularity of content items by adding a counter for
each entry in the hash table and predicts the popularity of
content based on the number of requests for the content in

the past. However, it needs to monitor all the content requests
passingby, which consumes a large amount of CPU resources
and dram memory. The overhead is so large that line-speed
requirement can not be met and the current cache capacity
is not enough to hold all the record. Despite the trade-off
between popularity accuracy and memory consumption in a
multi Bloom filter strategy [18] and CBF-Hash tables hybrid
scheme [19], the forwarding performance of the routers are
severely affected unless consuming huge amounts of memory
[20]. Other proactive strategies try to cache content only in
the wireless edge [21] [22], they are just optimization of the
edge cache, ignoring consideration of the overall network
caching performance.

Strategies mentioned above act in a priori way. They
predict the content popularity as prior knowledge and make
caching decision according to it with huge memory consump-
tion. Some traditional lightweight strategies make caching
decisions without prior knowledge and cache content fre-
quently with simple replacement strategies used [23]. Grad-
ually, content that remains in the cache is supposed to be
popular. These strategies use meta algorithms to determine
the caching location of a content item with little overhead.
LCE as the default algorithm caches the content in all the
nodes along the path by default, which leads to much re-
dundancy. EDGE caching [24] [25] caches all the content
items at the edge of network. However, this strategy will
run out of edge cache capacity and result in fast content
replacement. Replacement errors will happen frequently due
to the existence of a very high percentage of objects that
are requested only once. These so called one-timer objects
usually amount up to 45% of the total requests and 75% of
the total distinct objects presented in the workload [26]. The
caching for these one-timer objects will result in reduced
performance. ProbCache [11] uses a probabilistic approach
to cache content in a subset of on-path nodes, which reduces
the frequency of edge replacement. But the proportion of
one-timer objects on the edge is still not changed. Both
popular and unpopular content are cached in the edge without
distinction, which we call edge caching pollution.

In LCD [12], a new copy of the requested content item
is cached only at one hop downstream on the path from the
location of the hit router to the user. LCD is more “conserva-
tive” than LCE or ProbCache as it requires multiple requests
to bring a content item to an edge router, with each request
advancing a new copy of the content item one hop closer to
the user. So one-timer content items are hardly cached in the
edge and rate of replacement errors will be greatly reduced.
But for the same reason, the spread of popular content is also
suppressed because a popular content item can not be cached
in the edge before being requested for enough times. The
slow diffusion speed brings a bad time adaptability. There
will also be much redundancy along the path, which will
affect the performance of caching.

Other on-path strategies in [27] [28] are based on global
topological information of nodes. These strategies believe
that content should be cached at a node with higher centrality.
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FIGURE 1. A generic caching mechanism in an ICN network.

Many centrality measures are proposed including Degree
Centrality, Stress Centrality, Betweenness Centrality, Close-
ness Centrality, Graph Centrality and Eccentricity Centrality.
Except the Degree Centrality, the other centrality measures
are impossible to be calculated locally. The system has to
have a holistic view of the topology and manage the dynamic
topology with very high cost. Moreover, these strategies can
improve the cache hit ratio by putting popular content copies
in the center of networks, but they cannot effectively reduce
the download latency because requests have to travel multiple
routers to hit the node with high centrality.

III. SYSTEM MODEL
A. MODEL SET UP

In this section, we model and study a general caching net-
work in ICN. As shown in Fig.1, before requesting a content
c in the caching network, user U1 needs to ask the local fast
name resolution system(NRS) where is the nearest content
replica. Then U1 will send an interest packet(request) to
the corresponding node S(which is the server of content c
and published content c in NRS previously) when receiving
the response from the NRS. Once the request hits the node,
content will be retrieved along the symmetrical path S-R3-
R2. All routers in the network are equiped with caching
abilities and R3 decides to cache the content c according to

FIGURE 2. Network topology and the genration process of forwarding path for
f . Nodes in forwarding tree Tfi will forward local request for content f to the
node si along the shortest path. All these forwarding tree Tfi make up
forwarding forest Gf .

the local caching strategy and publishes it to the NRS. When
user U2 requests the content c, the NRS will respond to U2
with the node R3. So U2 can quickly get the content c at node
R3 without travelling to S.

A possible topology of network is an arbitrary directed
graph G= 〈V,E〉 as shown in Fig.2, where node set V
represents content routers and edge set E is the set of links
between these nodes. Ci is the cache size of node i ∈ V and
(i, j) ∈ E denotes the link between node i and node j.

The request generated by users attached to each node is
i.i.d. and follows a Poisson process based on the parameter λ.
The content set isF = {f1, f2, ...}with a size of |F |. Contents
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in the network exist in chunks. Each chunk corresponds to a
content request. Thus, each chunk can be considered as an
item. We commonly set each content item following Zip-f
distribution with a unified sizeM [16]. A content server s0 is
set in the network with infinite storage to hold all the content
items in F for which all the request can be served in the
network. For the content item f requested by any user, the
total number of content copies in the network is denoted by
k(k >= 0), and the set of nodes storing the content item f is
Sf = {s0, s1, s2, ...sk}.

TABLE 1. List of main notations used in the system model

notation representation
V node Set
E edge Set

(i, j) links between node i and node j
Ci cache size of node i
F content set
fi ith content in F
Sf set of nodes which have content f
s0 server node which has long-term storage for all content in F

si(i! = 0) an arbitrary node in Sf caching content f
Dij latency of transmitting a content item along (i, j)
Tfi forwarding tree for content f which is rooted at si
Gf forwarding forest which is composed by Tfi for all si ∈ Sf

rfi request rate for content f by direct users in node i

Rf
ij request rate for content f in node j from node i

Xf
i boolean variable indicates whether content f is in node i

When a user requests a content, the content resolution
system will automatically respond the user with the closest
node among all the node caching this content item. Then
the user will send a request message to that node. Here we
assume that the request message will be sent along the path
with the minimum distance. The latency of transmitting a
content item between any two neighbour nodes i,j is the sum
of transmission latency and processing latency. We set the
latency as a constant value Dij and use the latency Dij to
measure the distance between i and j. The network devices
and link bandwidth can process and forward all the traffic in
time without denial of service or network congestion.

B. PROBLEM FORMULATION AND ANALYSIS
Average download latency is an important indicator to mea-
sure performance of network caching, which is the time
interval between when the content request is sent and the
data packet arrives. In this subsection, we will formalize
the average download latency minimization problem, then
analyse the impact of related parameters and factors.

Given the content distribution status in the network, for
any request for content item f , we first construct a path tree
to determine the node where users can request content item f .
The set of sources for content item f is Sf= {s0, s1, s2, ...sk}
as shown in Fig.2(where k = 2). The nearest source si will
be chosen for each node to forward the content request and
the shortest path can be determined. For example, node s1

will be chosen as the source of content item f for node e
because it is closest to node e among {s0, s1, s2}. At each
node there must be one and only one next hop to forward
an unsatisfied request for content f . Therefore, a tree (Tfi =
〈Vfi, Efi〉) rooted at si can be derived from these forwarding
path (Fig.2(b)), where Vfi is a subset of V andEfi is a subset
of E. As shown in Fig.2(b), requests for content item f in
node c will only be forwarded to s1, so the edge between
s0 and c is neither included in Tf1 or Tf0. Then we can get
the forwarding path map Gf composed by all the k + 1 path
trees as shown in Fig.2(b), whereGf = Tf0∪Tf1∪ ..Tfk. An
unsatisfied request for f at node i will be forwarded to the
parent node of i in Gf , from which we can derive forwarding
path of all the requests for content item f at any node.

Now that we have the request path of each node for the
content item f according to the spanning forest Gf , which
can be derived from all the connected graph Tfi, we can
start to calculate the download latency. Here we define rfi as
the average local request arrival rate for content f in node i,
which is contributed by local users. And we define Rf

ij as the
request rate from node i to node j for f . Therefore, in node i,
the request rate for content f is rfi plus the sum of the request
rate of its child nodes in Gf , the request rate will be ended at
the node if it stores the content item f , otherwise the request
will be forwarded towards the parent node as illustrated in
Fig.3. So we have Rf

ij for (i, j) ∈ Gf :

Rf
ij = (rfi +

∑
k:(k,i)∈Gf

Rf
ki)(1−X

f
i ) (1)

Xf
i is 1 if content f is in node i and 0 otherwise. Because

Dij represents the physical transmission latency between
nodes i, j. According to our assumption that all packets
travel in a shortest path, each content request forwarded
upstream traversing link (i, j) corresponds to a content chunk
traversing the reverse link (j, i) downstream. The requests of
each node obey IRM distribution [33], and the total number
of requests in the network per unit time is a steady-state value
which can be set as a constant Q. So we get the average
download latency(ADL) function:

ADL =
∑
f∈F

∑
(i,j)∈Gf

2Rf
ijDji/Q (2)

The average download latency minimization problem can
be formulated as follows:

min
∑
f∈F

∑
(i,j)∈Gf

2Rf
ijDji/Q (3)

s.t. Ci ≥
F∑

f=1

Xf
i ∀i ∈ N, ∀k ∈ F (4)

Xf
i ∈ {0, 1} ∀i ∈ N, ∀k ∈ F (5)

Xf
i = 1 ∀i ∈ S,∀k ∈ F (6)
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FIGURE 3. S is the source of content f and a, b, c, g do not have the content
item f in cache. a, b, c are leaf nodes and Rf

ag is equal to rfa . g is parent of a,
b and c, so Rf

gs is the sum of Rf
ag , Rf

bg , Rf
cg and rfg .

The construction of forwarding path map is an MDS prob-
lem [17]. The minimum average latency solution is essen-
tially a static content placement problem which is a complete
knapsack problem. Therefore, the problem can not be solved
in polynomial time in a resource-constrained ICN router.
When the network and content scale increase, the solution
time will increase exponentially and line-speed requirement
of ICN can not be meet.

Since it is a NPC problem unable to be solved in polyno-
mial time, we analyse the formulation and can figure out from
our experience that:

Proposition 1 Contents with higher popularity can reduce
more latency.

We denote request rate from node i to node j for f as
follows:

Rf
ij = (rfi +

∑
k:(k,i)∈Gf

Rf
ki)(1−X

f
i ) = P f

i (1−X
f
i ) (7)

It means the traffic generated by each node is related to the
content popularity P f

i . if we have Xf1
i = Xf2

i = 0 and P f1
i >

P f2
i , it will reduce more latency to cache f1 than f2 because

target function has more reduction according to P f1
i than P f2

i

Proposition 2 Along the path from content source to the
user, caching farther away from source reduces more latency.

We consider two nodes i, j ∈ Gf , where i and j are on the
path of the leaf node l to source node s. j is the parent node of
i in Gf , and therefore closer to node s. For content f, Xf

i =

Xf
j = 0, when storing at node j and not at node i, the total la-

tency can be cut down byDj =
∑

(m,n):(m,n)∈Pjs
Rf

mnDnm

where Pjs is the link set composed by the link from j to s
in Gf , and when f is stored in i instead of j, the average
latency will reduce Di =

∑
(m,n):(m,n)∈Pis

Rf
mnDnm. We

have Di−Dj = Rf
ijDji > 0, so caching farther away from

source will cut down more downloading latency.
With Proposition 1 and 2, we conclude that content should

be cached hierarchically in the network, the more popular
content should be closer to the edge of the network.

IV. DESIGN OF NEC
In this section, the brief design idea about our strategy
is proposed. We first describe the edge-degree estimations
process in the algorithm, which is the foundation of caching
decision in the strategy. Then we will show our Node Edge-
degree-based Caching overall as well as the details and an
example of the strategy.

A. EDGE-DEGREE ESTIMATION
According to the conculsion in Section II, the motivation of
our research is to cache content hierarchically and quickly in
the network. So the more popular content should be closer to
the edge of the network and popular content needs as few
request times as possible to diffuse to the edge . Explicit
knowledge about popularity of content is not involved in our
strategy for the lightweight consideration. We make caching
decisions based on the node location information which
implicitly reflects the popularity of content inside. Here we
define the edge-degree as a basic parameter which measures
how many hops a node is away from the nearest edge node. In
traditional strategies, node information has to be maintained
by central system, for example using SDN, because the node
information only makes sense in the whole network. It will
put heavy overhead on the controller when the network scale
becomes large. So we will get the edge-degree in a distributed
manner.

To get the edge-degree of all caching nodes in the network,
the edge nodes are marked in advance with the edge-degree is
zero by default. An edge node will periodically send broad-
cast packets to inform its one-hop neighbour of its edge-
degree. After receiving the broadcast packet, the neighbour
node will use the the edge-degree value plus one in the
broadcast packet as a candidate value. The original value of
edge-degree will be updated if it is larger than the candidate
value. For example, as shown in Fig,4, the broadcast packet
sent by node c to f tells f that the edge-degree of c is 0,
and the default edge-degree of f is 16(16 is the default edge-
degree for all caching nodes). So the edge-degree of node f
is updated to 1. When f receives the broadcast packet from g,
it will not update because the original edge-degree is 1, and
the candidate edge-degree in the broadcast packet from g is
2. If the edge-degree of a node changes, it will send broadcast
packets to inform its one-hop neighbour in the same way like
an edge node, otherwise no operation is performed. The result
of the update process of all nodes is shown in Fig.4.

B. NODE EDGE-DEGREE-BASED CACHING
In our target content placement, content in routers closer
to the edge is supposed to be more popular. So a content
hit in a router should be cached in a router with a smaller
edge-degree. In our caching strategy, each time a content is
hit or served, it is tend to be cached near the midpoint of
the forwarding path. For a k-hop path, it takes O(log(k))
requests to bring the content to the edge of the network.
It can be seen as a trade-off between Edge caching and
LCD caching. It obviously reduces redundancy and avoids
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FIGURE 4. Caculation of edge-degree for caching node.

caching pollution in edge caching. Our caching strategy also
accelerates content diffusion in LCD because LCD needs at
least O(k) requests to bring a popular content to the edge
of the network compared with O(log(k)) requests in our
strategy.

We use the edge-degree as a measure to find the midpoint
of this path. For the node where a request is hit, if the edge-
degree of the node is e, we select the node along the path with
edge-degree be/2c as the caching node. As shown in Fig.4,
the request from U1 for content c is served at k and content c
returns along k − j − h − e − b, the caching will take place
at a node with an edge-degree of 2, which is node h, just near
the midpoint of the forwarding path.

C. PROBLEM AND DISCUSSION IN NEC

Broadcast Storm. The process of calculating edge-degree
requires a lot of interactions between neighbour nodes which
may cause broadcast storm problems. Considering the worst
case scenario, each node may cause n updates where n is
in-degree of the node. The number of updates may be signif-
icantly large when recursing to the central node. Therefore,
in each caching node, broadcast packets are sent only when
the edge-degree updates, and the broadcast can not be sent
before waiting for a delay (set to 100ms) to collect all the
broadcast messages from neighours. Then the node will send
the broadcast packet with local minimum edge-degree, which
can effectively reduce the number of broadcast packets and
the load of the central links and nodes.

Cache redundancy. Nodes on one given path may have

the same edge-degree, which will cause duplicate caching of
content on the path. Referring to Fig.4, when U2 request the
content c from node h, data packets will be forwarded along
the path of h− f − g − d. Node f and node g have the same
edge-degree(1), which is exactly 1/2 of the edge-degree of
node h(2). According to our caching mechanism, both f and
g need to cache the content. To avoid redundancy, we will
set a caching flag bit 1 in the content packet. The flag bit is
set to 0 after caching. When the packet arrives at node g, no
caching is performed because the flag bit has been set to 0 at
node f .

Uneven Content distribution. The caching position of
the content item sent from a certain node can be determined
according to NEC. But the network topology is usually fixed
or has little change, so the caching position from the same
source along the same path is usually fixed. For example,
when the content sent by node k travels through the path
k − j − i − g − d, content can only be cached in i or
downstreams. This will cause load imbalance and low cache
space utilization in node j. Therefore, we need to distribute
the caching from source to the midpoint of the path. So we
adjust the value of be/2c to be/2+pc, where p is the discrete
factor generated based on an uniform random generator to
ensure a balanced caching distribution within the network.

Implementation. We implement our caching strategy in
our POF-based ICN content router. The design of our soft
router adopts a split architecture composed by a switch end
and a storage end to prevent caching from blocking forward-
ing operations as shown in Fig.5 [29].The switch end is only
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FIGURE 5. Architecture of POF-based content router.

responsible for the filtering and forwarding of packets. We
use a POF-switch to build the switch end enabling a white-
box design so that flexible protocals and forwarding mech-
anisms can be supported [30]. The storage end manages the
local storage with a DRAM-SSD-based hierarchical content
store and communicates with the switch end through a NIC
by our proprietary protocol.

When the content router receives an interest packet, the
interest packet will be forwarded to the storage end. If the
interest packet hits the content store in the storage end, the
corresponding data packets for the interest will be encapsu-
lated with caching control field in the packet header by the
storage end. The caching control field for NEC is designed
in header of transport layer and is shown in Fig.6(a). The
caching control field marking process is shown in Algorithm
1. As the ICN standard is being developed [31], it cannot
guarantee that all servers and producers support this strategy
natively. In this case, an additional default caching field needs
to be added to the caching control field, which is initially
set to 1. All caching nodes will immediately cache the data
packets marked by 1 in the default caching field and set the
field to 0 after caching. So our router which supports the
NEC strategy will set the default caching to 0 in storage
end as line 4 in Algorithm 1. In the line 6 of Algorithm
1, caching flag is set to 1 according to previous description
about cache redundancy in section IV.C. Target edge-degree
is set to be/2 + pc where e is local edge-degree informed
by the switch end and p is a discrete factor generated by
Caching-Control-Field-Marking component ranged from 0 to
e/2 in line 5. When the caching control field is marked into
the header of the data packet, the packet is forwarded to the
switch end and the switch end will forward the packet back
towards the user.

When the data packet arrives at the router on the delivery
path, the switch end of the router processes the packet first.
Switch end will make a caching decision quickly according
to the caching control field in the packet header. The decision
making is shown as the data packet filtering in the algorithm
2. The default caching field in the header is first checked

FIGURE 6. Packet header of NEC and protocol for EDP.

in line 4. If the default caching field is 1, the packet will
be duplicated and forwarded to the storage end and next
router respectively with default caching field reset to zero as
shown in line 5. Otherwise the caching flag field is checked
in line 7. If the caching flag is 0, the packet will not be
cached. Otherwise, the following target edge-degree filed in
the packet will be checked. Only when the target edge-degree
in the packet is equal to the edge-degree in local meta-data,
the caching can happen and the packet will be duplicated and
forwarded to the storage as shown from line 8 to line 10.

Algorithm 1 Caching Control Field Marking
1: Storage end gets a interest packet for content
2: if content ∈ local CS then
3: read the local edge-degree from metadata as e
4: default caching = 0
5: discrete factor p = randomint(0, e/2)
6: caching flag = 1
7: target edge dgree = p+ e
8: encapsulate the data packet with default caching,

caching flag and target edge dgree
9: forward the data packet

10: else
11: pass
12: end if

Edge-degree calculating is based on Edge-degree Dis-
covery Protocol(EDP). Edge-degree discovery protocol is
a point-to-point communication protocol used to exchange
edge-degree information. It is neither an interest packet or
a data packet. An EDP frame adopts Ethernet encapsulation
format which should be friendly to the forwarding layer and
easy to decode.
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Algorithm 2 Data Packet Filtering
1: Switch end receives a data packet
2: read the local edge-degree as e
3: Get caching flag field and target edge degree field in

the packet header
4: if default caching == 1 then
5: duplicate the data packet to storage end
6: default caching &= 1
7: else
8: if caching flag == 1 then
9: if target edge degree == e then

10: caching flag &= 1
11: duplicate the data packet to storage end
12: end if
13: end if
14: end if
15: forward the data packet

In our design, we operate the EDP frames through POF
controller. The protocal format is shown in Fig.6(b). Type and
H-Length field are used to fast decode the frame. The Flag
field includes error flag, ack flag and updating flag, which is
used to mark different EDP frame types. The Node ID field
marks the node which sends out the broadcast packet. The
Updating Node ID field marks the node which causes the
update of the node marked by Node ID. The Edge-degree
field is the edge-degree of the node marked by Node ID.
Timestamp is the time interval since last update in the node
marked by Node ID caused by the Updating Node ID. While
hop number is used for extension of multihop neighbour
discovery.

When a content router j receives an edge-degree discovery
frame from content router i, it first calculates the checksum.
Then the TimeStamp and Updating Node ID are checked
according to local update tables which records the time of
the last update from all the neighbour nodes respectively. If
Updating Node ID is local node ID and the time interval
does not exceed the threshold, the frame will be discarded
to avoid frequent updates. Otherwise, the edge-degree field
will be compared with local meta-data. If the edge-degree
field is smaller, local edge-degree and the update tables in
in the meta-data will both be updated. Then the timer will
be checked. If the time is up, new edge-degree discovery
frames from content router j will be encapsulated. In the new
encapsulated EDP frame, Node ID is Node ID of the content
router j and Updating Node ID is Node ID of the content
router i. The TimeStamp is 0 if the edge-degree of content
router j is never updated by the content router i before.
Otherwise, the TimeStamp is set to the time interval from
now since last update. After encapsulation, the EDP frame
will be broadcast from all ports of router j.

V. PERFORMANCE EVALUATION

TABLE 2. Simulation Environment

Prameter value
Simulator Icarus

Traffic Workload Stationary/Youtube Vedio traffic
Catalog Size 1× 106/581, 527

Topology Cascade, Tree, GEANT, WIDE, TISCALI, GARR
Cache Size Uniform

Replacement LRU
Request number 2×106/1.46×106

Request distribution Poisson
Request rate 10req/s

A. SIMULATION SETUP
We implement NEC in the Icarus simulator [32], which
is a Python-based discrete-event simulator for evaluat-
ing caching performance in Information-Centric Network-
ing(ICN). Icarus is not bound to any specific ICN architec-
ture. Its design allows users to implement and evalute new
caching policies or caching and routing strategies conve-
niently. We compare the performance of NEC against the
most widely used strategy LCE, two of the best on-path
caching strategies Leave Copy Down(LCD) [12] and Prob-
Cache [11], and degree centrality based strategy CL4M [27].
We use LRU as a default replacement policy for all strategies.
Caches are installed on all routers in the network and cache
indexing is performed at the content level. Table 2 shows
the basic parameters which are selected for our simulation.
Cascade and Binary tree topology are used for testing basic
characteristics of NEC. A total of four real world topologies
are further used to evaluate performance of caching strate-
gies. They are ISP-like topologies{nodes(consumer, caching
node, source), edges}: GEANT{53(8, 32, 13), 61}, TIS-
CALI{240(36, 160, 44), 810}, WIDE{30(6, 13, 11), 33} and
GARR{61(21, 27, 13), 75}. Each result is averaged over ten
distinct runs of the same scenario. Both stationary(IRM) [33]
and real world traffic workloads are tested. The stationary
workload uses a catalog of N = 1×106 content objects with
popularity defined by the Zipf distribution (α = 0.8). A total
of 2×106 requests are generated in these scenarios. The first
1×106 requests are used to allow caches to converge and
are not used for gathering statistics; the remaining 1×106
requests are logged and used to gather statistics. In the
real world temporal scenario, we use Youtube Vedio traffic
generated by campus [34]. This workload includes a total
of 581, 527 ditinct content items and 1.46×106 requests.
Temporal locality varies between different content. We use
the first 4.6×105 to warm up and the remaining to gather
statistics.

B. EFFECT OF NEC PROPERTIES
Caching location. NEC expects content can be cached in
midpoint of the delivery path. In order to observe the caching
location in NEC strategy, we use a binary tree topology with
depth of 8 for experiments. We record the length of path
from each user to the serving node as T-length and the length
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FIGURE 7. Content Hit times in nodes with different edge-degree.

FIGURE 8. ratio of caching distance to total distance.

FIGURE 9. Expected times of request to cache content into node with
different edge-degree.

of path from the user to the caching node as C-length. The
length of path is denoted by number of hops. We take an
average of C-length under the same T-length, and the ratio of
C-length to T-length is shown in Fig.8. When the T-length is
short, the ratio tends to be less than 1/2 which means caching
location is closer to the user. This is because the serving node
is close to the edge(requester) and the rounding error will
cause the length to be shorter. Moreover, when the serving
node is near the edge but not near the user, it will also cause
the actual caching location far away from the midpoint. But

FIGURE 10. latency under different numbers of requests.

in this case, because the content in the serving node can be
considered as popular content, it should be cached closer to
the edge. When T-length is large, the C-length is usually more
than half of T-length, because the rounding has little impact
on the overall, and the probability of the edge serving can be
ignored. The discrete factor mentioned in Section III.C will
make the distance from cache location to the user longer than
the serving node.

Diffusion rate. NEC usually caches content in the mid-
point of the path, so the diffusion of popular content to
the edge is usually faster than LCD and slower than Prob-
Cache.We tested the diffusion speed of the three strategies
in an eight-layer cascaded linear topology. The experimental
results are shown in the Fig.9. Each point (n, r) represents
the average number of requests r required to diffuse content
i (here we choose i as the most popular content to enhance
the experimental effect) in node n or nodes closer to the user
than node n. Obviously NEC outperforms LCD in terms of
diffusion speed. Unexpectedly, NEC has a faster diffusion
speed than ProbCache, which means NEC requires fewer
requests to diffuse content to the edge. This may be due to
the setting of caching probability in ProbCache. It is found
that the diffusion speed of ProbCache is basically stable at
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FIGURE 11. Comparison of cache-hit ratios and latencies with cache-to-population ratios{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}.

various levels. Therefore, the ratio of the expected value of
the number of requests in ProbCache to the expected value
of the number of requests in LCE is roughly the reciprocal of
the probability in ProbCache. We can find that NEC solves
the problem of slow diffusion speed in LCD. In workloads
that change over time, LCD will have worse adaptability
than NEC and ProbCache. We record the average download
latency under different numbers of requests, and the results
are shown in Fig.10. It can be found that the performance
of the LCD is the worst when the number of requests is
small, and NEC and ProbCache perform better because of the
faster diffusion rate. NEC outperforms ProbCache by virtue
of the content filtering feature. The performance of LCD will
gradually exceed ProbCache with the increase of number of
requests.

Filtering effect. We hope NEC can keep the content in
caches with different edge-degrees according to its popularity
which means each router needs to perform like a Low-pass
filter and most popoular content can be reserved without
unpopular ones. We perform experiments in a binary tree
with depth of four and measure the number of hits for content
of different popularity levels in nodes with different edge-
degrees(0/1/2/3). As shown in the Fig.7, top popular content
can get the higher hit rate at the edge nodes in NEC than
ProbCache, and so is the total hit rate. In the nodes near
the center of network(nodes with edge-degree 3), popular
content is also hit with a high probability in ProbCache. This
is because the edge nodes have frequent cache replacements
in ProbCache so the popular content with highest hit rate can
wander between different levels of cache. There are more hits
and fewer wrong replacements in NEC, so the curve of NEC
is smoother. Therefore, NEC has formed a more perfect low-

FIGURE 12. Comparison of on-path strategies under the temporal popularity
workload.

pass filtering structure than ProbCache, so as to make the
most popular content closer to the users.

C. COMPARISON WITH STATE OF ART

We will compare the caching performance of NEC to LCD,
ProbCache, CacheLessForMore(CL4M) and LCE in differ-
ent scenarios. We select the average download latency and
cache hit ratio as the evaluation metrics. Latency refers to the
time interval between when content request is sent and data
packet arrives while cache hit ratio refers to the proportion
of content requests served by cache before arriving at source
server. The former reflects the the traffic cost and user expe-
rience and the latter indicates the server load. Higher cache
hit ratio brings lower server load, and lower latency means
lower traffic cost.

Comparison in Real-world ISP Topology We first com-
pare the performance of each strategy under different topolo-
gies with stationary popularity workload. The results of sim-
ulation are shown in Fig.11. It can be found that in GEANT
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and TISCALI, NEC can significantly reduce the user’s down-
load latency and has the highest cache hit rate among all
the strategies. With the increase of cache size, advatages of
NEC grow and our strategy can reduce the average access
latency by 10.2% and increase the cache hit ratio by at most
9.6% when total cache-to-population ratio is 100%. NEC
also outperforms the degree centrality based caching strategy
CL4M for the reason that CL4M tends to keep contents in
the nodes with higher betweenness centrality, which leads to
low diffusion rate. CL4M not only has the same problem with
LCD but also causes unbalanced caching load in the network
because some nodes with small betweenness centrality along
the route will hardly have chance to cache content. Although
in WIDE and GARR, the performance of NEC is similar to
LCD, it is still better than the other strategies. This is because
the size of both WIDE and GARR network is small, and the
length of the content request path in the network is short(no
more than five hops). The advantages of NEC’s rapid dif-
fusion cannot be exerted. In a small network, the function of
NEC will degenerate to LCD, and the performance difference
between strategies will be small.

Comparison in Real-world Traffics Fig.12 presents the
comparison for all the strategies under the temporal popular-
ity workload of YouTube traces from the campus network.
It can be found that the performance of ProbCache is poor,
which is obviously weaker than other performances. This
is because the content popularity in Youtube’s traffic has
time locality, which means popular content may be accessed
multiple times in a short period, and the number of requests
will be significantly reduced in the future. Compared with
other caching strategies, ProbCache’s probabilistic caching
method cannot always guarantee to keep popular content. In
the previous stationary workload, LCE always has a poor
performance because it generates excessive redundancy, but
this also results in LCE having better adaptability to time-
varying traffics. It can be seen that the performance of LCE
is significantly better than LCD and CL4M, because these
two strategies are difficult to cache content to the edge of the
network in time-varying traffic. NEC has better performance
because it can cache popular content to the edge of the
network in the short time, while avoiding redundant replicas
occupying the cache space.

D. STRATEGY IMPLEMENT
To actually deploy a caching strategy into an ICN router, the
line speed requirement must be taken into account. Many
strategies based on content popularity predict the popularity
of content and then make caching decisions in a priori way
which causes huge memory overhead and processing delay.
We choose two of the simplest popularity-based caching
stratgies DBF and MPC for comparison(the implementation
of our strategy is based on the cache architecture proposed
in [35], and the corresponding results are also given in the
article). As the content space grows, the memory overhead
for a single content router is shown in the Fig.13. Popularity
based strategies need to allocate a counter for every passed-

FIGURE 13. Memory consumption with increase of content scale.

FIGURE 14. CPU-cycle consumption comparison.

FIGURE 15. Throughput and packet loss rate comparison of different
mechanisms in on-path routers.

by content item to record the request times. But NEC does not
explicitly record the request times of content. So the memory
consumption for content information in NEC is only related
with the caching size of content router while consumption in
popularity based strategies grows with content scale rises. In
addition, we implemented a strategy prototype in Xeon(R)
E5-2620 v2 CPU (2.10 GHz × 2 CPU cores) which functions
as an ICN software router, and we keep sending data packets
to test the processing delay and the throughput performance.
The number of CPU clock cycles required for processing a
single data packet is shown in the Fig.14. FWD is a reference
which is the CPU clock cycle consuming by forwarding
in a high-speed software NDN router [36]. The throughput
performance is shown in the Fig.15. Compared with the
popularity based strategies, our strategy has no performance
bottleneck under the capability of current devices. It can be
determined that our strategy will have better scalability and
lower cost when deployed in an ICN content router.
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VI. CONCLUSION
This paper proposes a lightweight caching strategy based on
the network location information of routers. This strategy
does not need to know the popularity of the content in ad-
vance. In essence, NEC provides a way to identify the content
popularity by the edge-degree of the node where the content
is located. Unpopular contents are filtered in the nodes far
away from the edge, and the popular content is gradually
distributed to the edge. Compared with existing location-
based filtering strategies such as LCD and CL4M, NEC
strategy can distribute popular content to the edge faster, with
lower caching redundancy and better overall performance.
Compared with the strategies based on the popularity of
content, NEC is more lightweight and can be easily deployed
in the current architecture of ICN routers. The contribution
of NEC strategy is to introduce the edge-degree as a metric
for decision-making. The number of metrics for the network
node location is far from one. We hope that this paper can
provide ideas for more researches on lightweight caching
strategies in the future.

REFERENCES
[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and

R. L. Braynard , "Networking Named Content," in Proc. the 5th interna-
tional conference on Emerging networking experiments and technologies.
Rome, Italy, 2009, pp.1–12.

[2] I. U. Din, S. Hassan, M. K. Khan, M. Guizani, O. Ghazali, and A. Habbal,
"Caching in Information-Centric Networking: Strategies, Challenges, and
Future Research Directions," IEEE Communications Surveys Tutorials,
vol. 20, no. 2, pp. 1443–1474, 2018, doi: 10.1109/COMST.2017.2787609.

[3] G. Zhang, Y. Li, T. Lin et al., "Survey of in-network caching techniques in
information-centric networks," Journal of Software, vol.25, no.1, pp.154-
175, 2014.

[4] Ding Li, Wang Jinglin, Yang Qifeng, "A Survey of architectural Design
of Single Caching Node for Information-Centric Networking", Journal of
Network New Media, vol.8, no.3, pp.1-5, 2019

[5] D. Perino and M. Varvello, "A reality check for content centric net-
working," in Proc. ACM SIGCOMM Workshop on Information-Centric
Networking, Toronto, Ontario, Canada, August 2011, pp.44-49.

[6] Y. Meng, M. A. Naeem, R. Ali and B. Kim, "EHCP: An Efficient Hybrid
Content Placement Strategy in Named Data Network Caching," in IEEE
Access, vol. 7, pp. 155601-155611, 2019.

[7] T. Do, S. Jeon and W. Shin, "How to Cache in Mobile Hybrid IoT
Networks?," in IEEE Access, vol. 7, pp. 27814-27828, 2019.

[8] F. Khandaker, S. Oteafy, H. S. Hassanein, and H. Farahat, "A functional
taxonomy of caching schemes: Towards guided designs in information-
centric networks," Computer Networks, vol. 165, p. 106937, Dec. 2019,
doi: 10.1016/j.comnet.2019.106937.

[9] S. Lorenzo, P. Ioannis and P. George, "Hash-routing schemes for informa-
tion centric networking," in Proc. the 3rd ACM SIGCOMM Workshop on
Information-Centric Networking, Hong Kong, China, 2013, pp.27-32.

[10] T. Mick, R. Tourani and S. Misra, "Muncc: Multi-hop neighborhood
collaborative caching in information centric networks," in Proc. the 3rd
ACM Conference on Information-Centric Networking, Kyoto, Japan,
2016, pp.93-101.

[11] I. Psaras, WK. Chai, G. Pavlou, "Probabilistic in-network caching for
information-centric networks," in Proc. the 2nd ICN Workshop on
Information-Centric Networking. Helsinki, 2012, pp.55-60.

[12] L. Nikolaos, C. Hao and S. Ioannis, "The LCD interconnection of LRU
caches and its analysis," Performance Evaluation, vol.63, no.7, pp.609-
634, 2006.

[13] C. Bernardini, T. Silverston, O. Festor, "Mpc: Popularity-based caching
strategy for content centric networks," in Proc. IEEE International
Conference on Communications(ICC)., Budapest, Hungary, 2013, pp.
3619–3623.

[14] K. Suksomboon, S. Tarnoi, Y. Ji, M. Koibuchi, K. Fukuda, S. Abe,
N. Motonori, et al, "Popcache: Cache more or less based on content

popularity for information-centric networking," in Proc. 38th Annual IEEE
Conference on Local Computer Networks. Sydney, NSW, Australia, 2013,
pp.236–243.

[15] A. Ioannou and S. Weber, "A Survey of Caching Policies and Forward-
ing Mechanisms in Information-Centric Networking," IEEE Communi-
cations Surveys Tutorials, vol. 18, no. 4, pp. 2847–2886, 2016, doi:
10.1109/COMST.2016.2565541.

[16] L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shenker, "Web caching
and Zipf-like distributions: Evidence and implications," in Proc. the 18th
Annual Joint Conference of the IEEE Computer and Communications
Societies, NY, USA, 1999, pp.126-134.

[17] M. Zhang, H. Luo, H. Zhang, "A Survey of Caching Mechanisms in
Information-Centric Networking," IEEE COMMUNICATION SURVEYS
& TUTORIALS, vol. 17, no. 3, page. 1473-1499, 2015.

[18] Maggs B M, Sitaraman R K. "Algorithmic nuggets in content delivery,"
Acm Sigcomm Computer Communication Review, vol. 45, no. 3, pp.
52–66, 2015.

[19] Zhang Guo, Jianhui Zhang, Binqiang Wang, ZHANG Zhen, "On-line
Popularity monitoring method Based on Bloom Filters and Hash tables
for Differentiated Traffc," China Communications, vol. 6, no. s1, pp.72-
86, 2016

[20] M. A. Naeem, M. A. U. Rehman, R. Ullah and B. Kim, "A Comparative
Performance Analysis of Popularity-Based Caching Strategies in Named
Data Networking," in IEEE Access, vol. 8, pp. 50057-50077, 2020.

[21] Abani N, Braun T, Gerla M, "Proactive Caching with Mobility Predic-
tion under Uncertainty in Information-Centric Networks," Proceedings of
the 4th ACM Conference on Information-Centric Networking. ICN ’17.
Berlin, Germany: Association for Computing Machinery, 2017: 88–97.

[22] K. Qi, S. Han and C. Yang, "Learning a Hybrid Proactive and Reactive
Caching Policy in Wireless Edge Under Dynamic Popularity," in IEEE
Access, vol. 7, pp. 120788-120801, 2019.

[23] Y. Wang, Y. Yang, C. Han, L. Ye, Y. Ke and Q. Wang, "LR-LRU: A PACS-
Oriented Intelligent Cache Replacement Policy," in IEEE Access, vol. 7,
pp. 58073-58084, 2019.

[24] Anshuman Kalla, Sudhir Sharma, "Exploring off-path caching with edge
caching in Information Centric Networking," in Proc. 2016 International
Conference on Computational Techniques in Information and Communi-
cation Technologies (ICCTICT), New Delhi, India, 2016.

[25] T. Zhang, X. Fang, Y. Liu and A. Nallanathan, "Content-Centric Mobile
Edge Caching," in IEEE Access, vol. 8, pp. 11722-11731, 2020.

[26] A. Mahanti, Carey Williamson, and Derek Eager, "Traffic analysis of a
web proxy caching hierarchy," IEEE Network Magazine, vol. 14, no. 3,
2000, pp.16–23.

[27] Wei Koong Chai, Diliang He, Ioannis Psaras and George Pavlou, "Cache
“Less for More” in Information-centric Networks," in Proc. NETWORK-
ING 2012, Prague, Czech Republic, May 2012, pp. 27–40.

[28] D. Rossi and G. Rossini, "On sizing CCN content stores by exploiting
topological information," in Proc. IEEE INFOCOM Workshops, Orlando,
FL, USA, 2012, pp.280-285.

[29] Ding L, Wang J, Sheng Y, et al. "A Split Architecture Approach to
TerabyteScale Caching in a Protocol-Oblivious Forwarding Switch,"
IEEE Transactions on Network and Service Management, 2017, 14(4):
1171–1184.

[30] Song H. "Protocol-oblivious forwarding: unleash the power of sdn through
a future-proof forwarding plane," in Proc. the 2nd ACM SIGCOMM work-
shop on Hot topics in software defined networking. 2013, pp.127–132.

[31] “Information centric networking research group (icnrg)”,
https://datatracker.ietf.org/doc/draft-irtf-icnrg-ccnxmessages/

[32] L. Saino, I. Psaras and G. Pavlou, "Icarus: A caching simulator for infor-
mation centric networking(ICN)," in Proc. ICST SIMUTOOLS, Lisbon,
Portugal, 2014, pp.66-75.

[33] Bahat O , Makowski A M, "Optimal Replacement Policies for Non-
Uniform Cache Objects with Optional Eviction," in Proc. IEEE INFO-
COM’03, San Franciso, USA, 2003, pp.427-437.

[34] Zink, Michael, Kyoungwon Suh, Yu Gu, and Jim Kurose. "Watch global,
cache local: YouTube network traffic at a campus network: measurements
and implications." In Multimedia Computing and Networking 2008, vol.
6818, p. 681805. International Society for Optics and Photonics, 2008.

[35] Qifeng Yang, Haojiang Deng and Lingfang, "An Almost-zero Latency
Lightweight Mechanism for Caching Decision in ICN Content Router,"
in Proc. IEEE 38th International Performance Computing and Communi-
cations Conference (IPCCC), London, United Kingdom, October 2019.

[36] K. Taniguchi, J. Takemasa, Y. Koizumi, T. Hasegawa, "A Method for
Designing High-speed Software NDN Routers," in Proc. the 3rd ACM

12 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993853, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Conference on Information-Centric Networking. Kyoto, Japan, 2016,
pp.203-204.

QIFENG YANG was born in Yancheng, Jiangsu,
China, in 1993. He received the B.S. degree from
Peking University, in 2015. He is currently pursu-
ing the Ph.D. degree with the School of Electronic,
Electrical and Communication Engineering, Uni-
versity of Chinese Academy of Sciences, China.
His current research interest includes future net-
working and in-network caching.

HAOJIANG DENG received the B.S. degree
from Wuhan University in 1993, the M.S. degree
from the Lanzhou Institute of Physics in 1998,
and the Ph.d degree from Institute of Semicon-
ductors of CAS in 2001. He was engaged in the
post-doctorate research in Institute of Acoustics
(IOA) of CAS till 2003, and began to work in
IOA of CAS since 2003. Then he was appointed
as a professor in 2007. The main research field
of professor Deng covers broadband multimedia

communication, digital signal processing in audio and video. He undertook
and completed a number of national, provincial and ministerial level scien-
tific research projects.

LINGFANG WANG received the B.S. degree in
Computer Science Department of Lanzhou Uni-
versity in 1992, the M.S. degree in Computer
Application in Graduate School of Beijing Uni-
versity of Posts and Telecommunications in 2001,
and the Ph.d degree from Institute of Acoustics,
Chinese Academy of Sciences in 2006. He did
post-doctoral research in pattern recognition in
the Institute of Automation, Chinese Academy of
Sciences.

He is an associate researcher in Institute of Acoustics, Chinese Academy
of Sciences. He is an IEEE member, ACM member, a senior member of
the Chinese Computer Society, a member of the Acoustic Society, and a
professional member of the Chinese Association of System Analysts. He is
selected into the National Science and Technology Expert Database and the
National Intellectual Property Expert Database.

VOLUME 4, 2016 13


