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ABSTRACT   In the presence of arbitrary array errors and angle mismatch, performance on target 

detection and angle estimation will be degraded due to steering vector mismatch. Thus, a robust target 

detection and estimation algorithm for airborne STAP radar is developed. First, utilizing the spatial-

temporal coupling property of the ground clutter, array steering vectors are well estimated by fine Doppler 

localization of the mainlobe clutter. Then, the robust subspace detector spanned by these estimated array 

steering vectors is developed, which can improve the detection performance for the targets not located in 

the look direction. Finally, target angle estimation using subspace coefficients, which implements the ML 

estimator in a reduced-dimensional version, is presented to reduce the computational complexity of the ML 

estimator. Numerical examples are given to demonstrate the effectiveness of the presented algorithm. 

INDEX TERMS  Airborne radar, arbitrary array error, clutter suppression, space time adaptive processing. 

I. INTRODUCTION 

The ground clutter seen by an airborne radar is extended 

in both range and angle. It also is spread over a region in 

Doppler because of the platform motion. Thus, the 

interested moving target may be masked by the ground 

clutter. An efficient way to improve target detection 

performance in airborne radar is to utilize the space-time 

adaptive processing (STAP) technique [1]–[6]. 

Theoretically, the STAP processor under homogeneous 

clutter environments can obtain optimal target detection 

performance. However, practical considerations, such as 

limited number of independent and identically distributed 

(i.i.d.) samples, and steering vector mismatch induced by 

either array errors or target angle uncertainty, may severely 

degrades the STAP performance. Here, only steering vector 

mismatch is considered. 

To reduce performance degradation induced by steering 

vector mismatch, either array calibration or robust 

beamforming for airborne STAP radar is required. Array 

calibration is an important aspect of array processing and a 

variety of methods are developed.  The calibration methods 

can be mainly divided into two categories: calibration 

source methods[7] and self-calibration methods[8],[9]. 

Limited by the large size and the movement of the airborne 

platform, many array calibration algorithms, especially for 

calibration source methods, can not be applied to airborne 

radar. Besides, array errors are usually time-variant, array 

error calibration should be carried out once in a while. For 

airborne radar, a typical array calibration technique is based 

on the ground clutter, which is widely used for channel 

calibration and gain-phase calibration [10]-[12]. However, 

in the presence of the position error and mutual coupling, 

the array errors are direction-dependent, which means that 

the array errors in different directions are different. In this 

case, the array calibration techniques only suitable for gain-

phase calibration are not effective any more. Consequently, 

a few robust array signal processing methods[13,14] for 

unknown mutual coupling are developed, which utilize the 

properties of mutual coupling for some special arrays, such 

as uniform linear array[13] or uniform circular array[14]. If 

accurate array steering vectors are unavailable, we can 

model steering vector mismatch as a random vector with a 

typical distribution, such as multivariate complex Gaussian 

distribution. In this case, many robust algorithms[15]-[20] 

against steering vector mismatch in statistical sense can be 

employed for target detection. Additionally, the classical 

methods for target angle estimation are the ML method[21] 

and the adaptive monopulse method[22], where the ML 

method requires all accurate steering vectors in the 

mainbeam in order to evaluate all likelihood function 

values, and the adaptive monopulse method also requires all 

accurate steering vectors in order to form the adaptive 
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monopulse curve. Thus, it is necessary to estimate all real 

steering vectors in the mainbeam. Besides, due to target 

uncertainty, a target can appear in any direction of the 

mainbeam. Although multiple overlapped spatial beams can 

be employed to cover the entire mainbeam, it causes high 

computational complexity especially in the detection stage. 

In order to reduce the complexity, the STAP processor 

generally uses single spatial beam to cover the mainbeam. 

In this case, target angle mismatch often happened. 

Although the SNR loss induced by angle mismatch is 

usually less than 3dB, this SNR loss becomes large when 

the mainlobe clutter is presented in the STAP filter. Hence, 

target angle mismatch should be taken into account 

especially in the mainlobe clutter region (which is 

associated with the slow moving target case).  

In this paper, a robust target detection and estimation 

algorithm for airborne STAP radar is developed against 

steering vector mismatch. Utilizing the spatial-temporal 

coupling property of the ground clutter, array steering vectors 

in the mainbeam are first estimated by fine Doppler 

localization. To overcome the problem of target angle 

mismatch with the look direction, the subspace detector 

spanned by the mainlobe low-rank subspace derived from 

the estimated steering vectors is developed. Finally, target 

angle estimation using subspace coefficients which 

implements the ML estimator in a reduced-dimensional 

version is given. Numerical examples are given to 

demonstrate the effectiveness of the presented technique. 

The main contributions of the paper are summarized as 

follows. 

(1) Steering vector estimation for arbitrary array error is 

developed, which is based on the spatial-temporal coupling 

property of airborne radar clutter. Relative to the most 

existed array calibrated methods, which are developed 

based on a part of error models, the developed method can 

handle the arbitrary array errors and is free of the array 

error model, and thus performance degradation induced by 

model mismatch is avoided.  

(2) A robust subspace detector without the assumption on 

the statistical model of steering vector mismatch is 

developed. Unlike the robust subspace detectors in [15-20], 

which assumed that the actual steering vector is randomly 

located in the conic area of the presumed steering vector, 

the presented subspace detector assumed that the actual 

steering vector is an unknown constant vector, rather than a 

random vector. Thus, the presented subspace detector can 

obtain better performance than those subspace detectors 

based on the statistical assumption on steering vector 

mismatch. 

(3) Fast realization of angle estimation compatible with 

the subspace detector is developed. Angle estimation can be 

realized only by a low-dimensional subspace coefficients 

search. Compared to the full-dimensional search, the 

complexity can be greatly reduced. 

The remainder of this paper is organized as follows: 

Section II introduces the signal model and the conventional 

STAP-AMF detector. A robust target detection and 

parameter estimation algorithm is developed in Section III. 

Section IV presents numerical examples to evaluate the 

performance of the presented algorithm. The final 

conclusion is then discussed in Section V. 
II. SIGNAL MODEL 

Consider an airborne sidelooking radar with N subarrays 

and suppose a coherent burst of M pulses are transmitted. 

Let nmlx  denote the received data at the nth subarray, mth 

pulse, and lth range gate, and 

 11 21 1 12 22 2 1 2, ,..., , , ,..., ,..., , ,...l l l N l l l N l Ml Ml NMlx x x x x x x x x


=x

 denote the 1NM  received data snapshot. In the absence 

of the target signal, the data snapshot consists of the clutter 

and noise components, which can be modeled as[2] 

  ( ) ( )( )
1

cN

l li i i l

i=

=     +x b a n              (1)                                                     

where cN  is the number of clutter patches, li  , 

2
cosi i

r

v

f
 = 


, and cosi i

d
 = 


are the complex 

amplitude, the normalized Doppler frequency and the 

normalized spatial frequency of the ith clutter patch at the 

lth range bin, respectively. v  is the velocity of the platform, 

  is the wavelength, rf  is the pulse repetition frequency 

(PRF), d   is the element spacing, i  is the antenna cone 

angle of the ith clutter patch. ln  is the noise vector obeying 

the complex Gaussian distribution with zero mean and the 

covariance matrix nR . Additionally,  

( ) ( ) ( )( ) 11 exp 2 exp 2 1 M
i i ij j M C

   =   −   b  

is a temporal steering vector,
 
( ) ( ) ( ) 1N

i i i C  =   a a e  

 is a spatial steering vector with arbitrary array error, 

( ) ( ) ( )( )1 exp 2 exp 2 1i i ij j N


  =   −  a  is 

an assumed spatial steering vector, and ( )ie  denotes the 

angle-dependent array error. 

Due to the need for lower computational complexity and 

fewer secondary data, the temporal reduced dimensional 

transform, such as the FA(Factored Algorithm)method and 

the EFA(Extended Factored Algorithm) method[1], is first 

used before adaptive processing. Here the EFA method is 

considered. The data vector associated with the mth 

Doppler filter can be represented by Tml m l
=x T x , where 

m m N= T F I  is the reduced dimensional matrix of the 

EFA processor, NI   is the identity matrix, 

 1 1m m m m− +=F f f f  is the temporal reduced-

dimensional matrix, and 

 ( ) ( )( )1 exp 2 exp 2 1m j m M j m M M


 =   − f   

is the mth Doppler filter coefficient vector. 
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Two hypotheses are postulated as 
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0

0 T T 0

1 T t t T 0
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=


=    +

x x

x v x
                (2) 

where 0l  denotes the range cell under test (CUT), 
3 1

T 0
N

m C x  is a clutter-plus-noise vector obeying the 

complex Gaussian distribution with zero mean and the 

covariance matrix R ,   is the fixed but unknown target 

amplitude, 

( ) ( ) ( )( ) ( ) 3 1
t t t t t t, N

m m C    =    =    v T b a s a
 

 is a reduced-dimensional target steering vector with the 

spatial frequency of t  and the Doppler frequency of t ,  

and ( )t tm m
= s F b . 

The detection problem is formulated as a dual hypothesis 

testing problem given in (2). This problem can be solved 

by the adaptive matched filter (AMF) detector[23], whose 

test statistic is of the form 

( )

( ) ( )
0

2
1

0 0 T

AMF 1
0 0 0 0

ˆ,

ˆ, ,

m ml

m m

 −

 −

 
 =

   

v R x

v R v
         (3)                                                                

where ( ) ( ) ( )( )0 0 0 0,m m m
  =   v T b a  is the assumed 

steering vector, 
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L
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

= 

= R x x  is the sample 

covariance matrix, 0  is the normalized spatial frequency 

of the look direction and 0m  is the normalized Doppler 

frequency associated with the center of  the mth Doppler 

filter. In practice, the AMF detector can be considered as 

the cell averaging constant false alarm rate (CA-CFAR) 

detector of the STAP filter output, which is given by 
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where ( ) ( )1
0 0 0 0

ˆ, ,m m
−  =  w R v  is the weight vector 

of the STAP filter. It means that target detection can be 

realized only in the STAP sum channel by performing CA-

CFAR detection. However, if the target angle deviates from 

the look direction, the STAP output will decrease with the 

angle offset increasing. In this case, the target detection 

performance is degraded. To improve the robustness on 

detecting all possible mainlobe targets, more STAP filter 

outputs should be employed. Similar cases will happen 

when the target Doppler frequency deviates from the center 

of the Doppler filter.  

Once target detection is finished, target parameter 

estimation is another task for an airborne STAP radar, 

which can be implemented by the adaptive monopulse 

technique or the maximum likelihood technique. However, 

in the presence of array errors, the assumed monpulse 

curve will be deviated from the true monopulse curve, and 

thus performance degradation on angle estimation occurs. 

Similarly, in the presence of array errors, there exists a 

mismatch between the assumed steering vectors and the 

true steering vectors, and thus the performance of ML 

estimation will be degraded. To improve the robustness 

against arbitrary array errors, the true steering vectors 

should be estimated in advanced. 

III. ROBUST TARGET DETECTION AND TARGET 
PARAMETER ESTIMATION    

To overcome steering vector mismatch resulted from 

array errors and arbitrariness of the target direction, robust 

target detection and estimation using estimated steering 

vectors and the subspace detector is developed.  

A.STEERING VECTORS ESTIMATION 

From (1), we know that the clutter-plus-noise component 

can be written as 

  ( ) ( )
1

cN

l li i i l

i=

=     +x b a n              (5)                                                     

According to the definitions of i  and i  given in (1), 

the relationship of the two frequencies can be represented 

by 

 
2

1,2,...,i i c

r

v
i N

df
 =  =                  (6)                                                                                      

It means that clutter patches can be localized either by a 

spatial filter or by a Doppler filter.  Since the error level in 

time domain is much lower than that in spatial domain, the 

ultra-low sidelobe of a Doppler filter is more feasible than 

that of a spatial filter. Thus, it is preferred to use Doppler 

localization to realize clutter localization. Doppler 

localization can be realized by Doppler filtering, where the 

mth Doppler filter output is given by 

( )

( ) ( ) ( )( ) ( )

( ) ( )

1

1

c

c

ml m N l

N

li m N i i m N l

i

N

li m i i l

i

psf



 

=

=

= 

=      + 

=   −  +





y f I x

f I b a f I n

a n

(7)                                                    

where ( ) ( )m i m ipsf  − = f b  is the low-pass filter 

response with the passband of 

1

2
i m

M
 −                           (8)                                                                                          

and ( )l m N l


= n f I n  is the additive Gaussian noise. 

According to the Doppler frequency passband of the mth 

Doppler filter, we can obtain the associated spatial 

frequency passband of the clutter component by 

substituting (6) into (8) 
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m i m

df df df df

v Mv v Mv
 −     +           (9)                                                                             

The width of the spatial frequency passband is  

2

rdf

Mv
 =                             (10)                                                                                                 

Since the gain of the stopband of a Doppler filter is much 

less than that of the passband, it is reasonable to only take 

the components in the passband into account and (7) can be 

simplified to 

( )
m

m

N

ml li i l

i N=

=   +y a n                   (11)                                                                                 

where mN  and mN  are the bounded clutter indexes of the 

mth Doppler filter, and ( )li li m ipsf =   − . Similar to 

the Doppler beam sharpening (DBS) radar, we define the 

sharpening ratio as  

w 2

r

Mv
g

Ndf


= =


                            (12)                                                                                

where w  is the mainlobe beamwidth.  

 

FIGURE 1.  Correlation coefficient of ( )ia  and ( )i + a  versus 

the sharpening ratio. 

Fig.1 demonstrates the correlation coefficient of ( )ia  and 

( )i + a  versus the sharpening ratio, where the marker of 

diamond denotes the threshold value of the correlation 

coefficient. It is shown that as long as the sharpening ratio 

is larger than 8, the correlation coefficient of ( )ia  and 

( )i + a  can be guaranteed to be greater than 0.99. Under 

this condition, ( )i + a  can be well approximated by 

( )ia  , that is, ( ) ( )i i +   a a . To get high sharpening 

ratio, long coherent processing interval (CPI) or fast 

platform velocity are desired.   

Under the high sharpening ratio case, (11) can be 

simplified as 

( )ml lm m l=   +y a n                         (13)                                                                          

where 
m

m

N

lm li

i N=

 =  .  Finally, to reduce the adverse effects 

of ln , multiple i.i.d. range bins are averaged for estimating 

( )ma . According to the model given in (13), the 

covariance matrix of mly  is given by 

( ) ( )2 2
ml ml ml clm m m n NE   = =    +

 
R y y a a I       (14)                                                            

where 
22

clm lm
E =  
 

 ,  
2

l n NlE


=  
 n n I  and 2

n  is the 

noise power. As we know, the clairvoyant covariance 

matrix of mlR  is unknown and must be estimated by 

multiple i.i.d. range bins in a real environment 

0

1

1ˆ
L

ml ml ml

lL



=

= R y y                         (15)                                                                           

where mly  is the lth i.i.d. range bin of my .  

For the mainlobe clutter, the clutter-to-noise (CNR) ratio, 

which is defined as
2

2
CNR= cm

n




, is much larger than 1. Thus, 

it is valid to suppose the number of large eigenvalues of 
ˆ

mR  is 1 and ( )ma  can be obtained by the eigenvector 

associated with the largest eigenvalue.  

In a real environment, adjacent range bins perhaps 

include some strong moving targets or other unwanted 

components. Thus, secondary data selection is usually 

necessary. Classical data selection methods include the 

generalized inner product (GIP) statistic, a combination of 

the six methods including fast maximum likelihood 

algorithm (FML), reiterative censoring, adaptive power 

residue (APR) metric, concurrent block processing, two 

weight method, and adaptive coherence estimate 

(FRACTRA)[24], which are widely used in STAP, can be 

used here. However, these methods require high 

computational burden due to the matrix inversion operation. 

To reduce the computational complexity, we use both the 

inner product (IP) statistic and the correlation coefficient to 

select secondary data, where the IP statistic is defined as 

( )
2

l m ml
 = a y                            (16) 

and the correlation coefficient (CC) is defined as 

( )

( ) ( )

2

m ml

l

m m ml ml



 


 =

  

a y

a a y y
                    (17) 

From the definition of the IP statistic given in (16), we 

know that the IP statistic is dependent on both the 

amplitude and the direction of mly . Consequently, the IP 

statistic may be still large as long as the amplitude of mly  

is large, no matter whether  mly
 
comes from the direction 

of m or not. Strong outliers, such as strong targets and 

strong jammers, whose directions are different from m , 

also have large IP values. Thus, it is not effective to select 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2989341, IEEE Access

 

 

secondary data only using the IP statistic and a combined 

statistic is desired. From the definition of the CC given in 

(17), we know that if mly comes from the direction of m , 

then the CC is large. Thus, the CC can be considered as a 

performance metric for direction matching. 

 The basic idea of the combined statistic of IP and CC can 

be summarized as follows. First, the IP is used to pick out 

the strongest range bins which may be the strong clutter or 

the strong outliers. Second, the CC is employed to kick out 

the possible outliers. Thereafter, the strong clutter can be 

well preserved and the outliers are removed by the 

combined statistic. 

The procedures of the presented method are summarized 

as follows： 

Step 1: Compute the clutter spatial steering vector ( )ma  

associated with the mth Doppler filter according to (5). 

Step 2: Compute the IP and the CC of ( )ma  and mly  for 

all range bins according to (16) and (17). 

Step 3: Find I  maximal values of l  among all L range 

bins, i.e.,    1 2, ,..., arg max , 1,2,...,
IL l

l

l l l l L=  =
 

Step 4: Find K  maximal values of l  among the I range 

bins given in step 3, i.e., 

    1 2 1 2, ,..., arg max , , ,...,
K IL l L

l

l l l l l l l=  =  

Step 5: Construct the covariance matrix ˆ
mR  given in (15) 

using K  range bins given in step 4. 

Step 6: Perform singular value decomposition (SVD) on 

ˆ
mR   to find the eigenvector associated with the largest 

eigenvalue, which is considered as the estimate of ( )ma . 

Step 7: Go to step 1 until all Doppler filters in the mainlobe 

clutter region are processed. 

B. ROBUST DETECTION AGAINST ARBITRARY ARRAY 
ERRORS AND TARGET UNCERTAINTY 

Due to target uncertainty, a target will emerge in any 

direction of the mainbeam. If a target emerges at the edge 

of the mainbeam, then the gain loss of this target occurs, 

and the detection performance is degraded. To improve the 

detection performance at the edge of the mainbeam, a 

robust target detection method which is based on the 

subspace detector[24-26] is developed.  

Consider all possible targets in the mainbeam, (2) can be 

rewritten as 

( )
0

0

0 T T 0

0 t 0
1 T t t T 0

:

: , 2 2

ml m

ml m

H

H

=  
 −     +

=    +

x x

x v x
 (18) 

where 3 1
T 0

N
m C x  is a clutter-plus-noise vector obeying 

the complex Gaussian distribution with zero mean and the 

covariance matrix R ,   is a fixed but unknown target 

amplitude, t  is the target Doppler frequency,  0  is the 

spatial frequency of the look direction, and   is the 

beamwidth. Since the steering vectors in the beamwidth is 

highly correlated, the steering matrix 

( ) ( ) ( )t 1 t 2 t, , ,
N

 =       V v v v , which is 

composed of all steering vectors in the mainbeam, is low-

rank. It means that V  can be written in the form of low-

rank SVD 

s s s
=V U Λ Φ                          (19)                                                                                    

where Q P
s C U , P P

s C   , N P
s C Φ , and P  is the 

dimension of the low-rank subspace. Then, the nth column 

vector of  V , ( )t , n v ,  can be represented as 

( ) ( )t , n s n   v U ρ                  (20)                                                                            

where ( ) ( ) ( )
1

t ,n s s s n

−
  =  ρ U U U v . 

In this case, (18) can be rewritten as 

0

0

0 T T 0

1 T T 0

:

:

ml m

ml s n m

H

H

=


= +

x x

x U ρ x
              (21) 

where ( )n n=  ρ ρ . The generalized likelihood ratio test 

(GLRT)[26] of (21) can be written as  

( )

1

0

H

H

>
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<n

n =  
ρ

ρ                    (22)                                                             

( )
( )
( )

T 1 0

T 0 0

| T 1

| T 0

; |
=

|

m

m

H ml n

n

H ml

f H

f H


x

x

x ρ
ρ

x
              (23) 

where   is the threshold determined by the false alarm rate. 

According to the statistical model assumption made in (18), 

the complex multivariate Gaussian density functions under 

1H  and 0H  are given by 

( )
( )

( ) ( )1

T T0 0

T 1 0| T 1 13

22

1
; | =

2

ml s n ml s n

m H ml n N
f H e


−− − −



x U ρ R x U ρ

x x ρ

R

                     (24) 

( )
( )

1

T T0 0

T 0 0| T 0 13

22

1
|

2

ml ml

m H ml N
f H e

 −−
=



x R x

x x

R

       (25) 

Substituting the complex multivariate Gaussian density 

functions into (23) and canceling common terms yields 

( ) ( ) ( )1 1

T T T T0 0 0 0ml s n ml s n ml ml

n e


−  −− − − +

 =
x U ρ R x U ρ x R x

ρ              (26)                                                                  

The logarithm version of (26) is simplified to 

( ) ( )
0

1 1
Tlog 2Ren n s ml n s s n

  −   − = −ρ ρ U R x ρ U R U ρ     (27)                                                         

and the logarithm version of the GLRT in (22) is  

( )

1

0

H

H

>
log max log

<n

n =  
ρ

ρ

       

           (28) 

where = log  . 
Maximizing (27) with respect to the unknown quantity nρ  

yields 
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( )
0

1
1 1

Tn s s s ml

−
 −  −=ρ U R U U R x                (29)                                                                    

Substituting (29) into (28) yields 

 ( )
1

0 0

0

H
1

1 1 1

T T

H

>log <ml s s s s ml 
−

 −  −  − = x R U U R U U R x   

(30)                                                 

Since the true covariance matrix is unknown, it is usually 

replaced by the sample covariance matrix, i.e., 

0

T T

1,

1ˆ
L

ml ml

l l lL



= 

= R x x                        (31)                                                                                

where Tmlx  is the data snapshot of the lth i.i.d. range bin. 

Define 
1ˆ

p sp

−=w R u  as the pth weight vector of STAP 

filters and 
0 0pl p mlz x= Tw  as the filter output using the 

pth weight vector, (30) can be rewritten as 

0 0

1log l z l

 − = z R z                          (32)                                                                              

where 
0 0 0 0 0

1

1 2 Tl l l Pl s mlz z z


 − = = z U R x , 

and 1

0z s sE H  − = = R zz U R U . It means that the 

subspace detector realizes target energy accumulation using 

P filter outputs, rather than single filter output.  

In practice, the conventional AMF detector given in (3) 

can also be expressed in a similar form 

( )

( ) ( )
0

0 0

2
1

0 0 T

AMF 1
0 0 0 0

1

ˆ,

ˆ, ,

m n ml

m n m n

l z lz R z

 −

 −

 −

 
 =

   

=

v R x

v R v        (33) 

where ( )
0 0 0

1
0 T 0 0 T

ˆ,l ml m n mlz   −= =  w x v R x , and 

( ) ( )
0 0

1
0 0 0 0 0

ˆ, ,z l l m n m nR E z z H  − = =    
 

v R v . 

Comparing (32) with (33), one can observe that the 

subspace detector utilizes more dimensions than the 

conventional AMF detector to improve target accumulation 

ability when target mismatch occurs. 

C.ROBUST TARGET ANGLE ESTIMATION AGAINST 
ARBITRARY ARRAY ERROR 

The ML estimate of target angle is given by[21] 

( )

( ) ( )
0

2
1

0 T

1
0 0

ˆ,
ˆ arg max

ˆ, ,
t

m t ml

t

m t m t

 −

 −


 
 =

   

v R x

v R v
            (34)                                                                       

For brevity, it is assumed that the target Doppler 

frequency is known since the accuracy on velocity 

estimation using Doppler filter banks is generally 

satisfactory in many situations. To guarantee the global 

optimal solution, fine grid search is usually employed. The 

computational complexity of the fine grid search method is 
29 6N Q NQ+  complex multiplications[21], where Q  is 

the number of grids in the mainbeam. Fortunately, the 

steering matrix in the mainbeam is low-rank and 

( ),m t v
 
can be well approximated by a linear 

combination of the low-rank subspace, which is similar to 

(20), that is, 

( ) ( )0 ,m t s t  = v U ρ                       (35)                                                                                    

Substituting (35) into (34) yields 

( ) ( )

( ) ( )

( )

( ) ( )

0 0

0

1 1
T T

1

2

ˆ ˆ
ˆ arg max

ˆ

arg max

t

t

t s ml ml s t

t

t s s t

t l

t z t

  −  −

  −







 
 =

 


=

 

ρ U R x x R U ρ

ρ U R U ρ

ρ z

ρ R ρ

   (36)                                                                 

By searching the maximum of the cost function over the 

entire beamwidth, the global optimal solution can be 

obtained.  

The procedures of the reduced dimensional ML estimator 

are summarized as follows: 

Step 1: Compute the pth adaptive weight vector pw , which 

requires ( )
2

3N  complex multiplications; 

Step 2: Filter the target data 
0mlxT and P basis  1,...,s sPu u  

with pw , which requires 3 3N PN+  complex 

multiplications; 

Step 3: Repeat step1 and step 2 until all P adaptive weight 

vectors are processed. 

Step 4: Given a value of t  in the mainbeam, compute the 

concentrated log-likehood function using (36), which 

requires 
2 2P P+  complex multiplications; 

Step 5: Repeat step 4 until the concentrated log-likehood 

functions for all values of  t  are evaluated. 

Step 6: Find the maximum by a sort method. 

Thus, the total computational complexity of the 

presented algorithm is ( ) ( )2 2 29 9 2N P N P P P P Q+ + + +  

complex multiplications. Since the presented method 

searches the maximum of the log-likelihood function in the 

entire beamwidth with fine grids, the estimated result can 

be guaranteed to be global optimal. 

Additionally, the adaptive monopulse method is a 

classical angle estimation method for an adaptive radar. Its 

computational complexity is 
218N  complex multiplications 

[21]. Although the adaptive monopulse method owns lower 

computational complexity, it cannot be guaranteed to be 

global optimal, since it is developed based on the second-

order Taylor approximation of the log-likelihood function. 

To demonstrate the computational advantage of the 

presented method over the conventional grid search method, 

the computational complexity ratio (CCR) relative to the 

adaptive monopulse method is employed, which is defined 

as a ratio between the computational complexity of the 

given method and that of the adaptive monopulse method. 

Fig.2 shows a comparison on CCR for the three methods. It 

is observed that the presented method (RD-ML) have lower 

computational complexity compared to the conventional 
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grid search method(C-ML). Certainly, the adaptive 

monopulse method owns the lowest computational 

complexity among the three methods.  

 FIGURE 2.  Comparison on CCR, where P=3, and Q=100. 

IV. NUMERICAL EXAMPLES 

In this section, numerical examples are given to 

demonstrate the performance of the developed method. 

System parameters are listed as follows. The wavelength is 

0.5m, the velocity of the platform is 100m/s, the pulse 

repetition frequency is 1000Hz, the number of coherent 

pulses is 128, the number of linear array elements is 8, the 

element spacing is half-wavelength, the beamwidth is 12.5°, 

and the look direction is steered to the boresight angle of 0°. 

The first example shows the accuracy on steering vector 

estimation under arbitrary array errors. The second 

example demonstrates detection performance as a function 

of SNR and target angle. The third example gives angle 

estimation performance as a function of target angle.  

A. STEERING VECTOR ESTIMATION PERFORMANCE 

According to the system parameters, the Doppler 

bandwidth of the mainlobe clutter is 100Hz, and the 

Doppler resolution is 7.8Hz. Thus, the number of Doppler 

filters occupied by the mainlobe clutter, i.e., the sharpening 

ratio, is 13, and the associated Doppler channel indexes are 

from 59 to 71. Steering vector estimation uses the method 

given in section 3.A.  In Fig.3, PD processing results and 

the interferometry phase of adjacent elements are given. It 

is shown that the interferometry phase linearly varies with 

the Doppler index in the clutter region, which is accord 

with the relationship between the clutter spatial frequency 

and the clutter Doppler frequency. Moreover, the 

interferometry phase of the clutter with high CNR has 

better performance than that of the clutter with low CNR. 

Thus, secondary data selection is required for improved 

performance on steering vector estimation. In Fig.4, 

estimated steering vectors and true steering vectors of all 

Doppler channels in the mainbeam are given. It is shown 

that the estimated steering vectors are very close to the true 

steering vectors for all Doppler channels. For clarity, Fig.5 

demonstrates the amplitudes and phases of the actual 

steering vector, the estimated steering vector and the 

assumed steering vector of the 65th Doppler channel. It is 

shown that the estimated steering vector is much closer to 

the actual steering vector than the assumed steering vector. 

 

(a) 

 

(b) 

FIGURE 3.  Results of adjacent elements. (a) PD processing, (b) 
Interferometry phase. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

FIGURE 4.  Steering vector estimation results of the mainbeam.  (a) 
Amplitude of the estimated steering vector, (b) Phase of the estimated 
steering vector, (c) Amplitude of the true steering vector, (d) Phase of 
the true steering vector. 

 

(a) 
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(b) 

FIGURE 5.  Performance comparison on steering vector estimation. (a) 
Amplitude, (b) Phase. E-SV denotes the estimated steering vector, T-SV 
denotes the true steering vector, and A-SV denotes the assumed 
steering vector. 

B. DETECTION PERFORMANCE  
In this example, the detection performance of the 

presented method (RSUBSPACE-STAP), the STAP-AMF 

detector[1] and the optimal detector given in [1], and the 

ISS-STAP method given in [4] are compared. The optimal 

detector is unavailable in real situations since it is assumed 

that the clairvoyant covariance matrix and the actual target 

steering vector are known. Thus, the optimal detector is 

employed here only for providing a benchmark. The 

detection performance curves are yielded by averaging 

10000 independent trials, where the false alarm rate is 10e-

2. In Fig.6, the detection curves versus SNR are given, 

where the array error is 10%, and the target angle is 0° and 

5° relative to the look direction, respectively. It is shown 

that the presented method can obtain better detection 

performance than the STAP-AMF detector and the ISS-

STAP method for almost SNR cases when the target 

direction deviates from the look direction. Although the 

STAP-AMF detector and the ISS-STAP method can obtain 

the optimal performance when the target is located at the 

look direction, the presence of array errors degrades their 

performance and the performance of the two methods are 

slightly better than that of the presented method in this case. 

 

(a) 

 

(b) 

FIGURE 6.  Detection curves versus SNR. (a) Target at the look direction, 
(b) target at 5° deviated from the look direction. 

In Fig.7, the detection curves versus the target angle are 

given, where the array error is 10%, and the target SNR is 

10.1dB. Relative to the STAP-AMF detector and the ISS-

STAP detector, the presented method can obtain more 

robust detection performance in the mainbeam. It is shown 

that the presented method can obtain better performance at 

the edge of the beam, and has a slight performance loss in 

the center of the beam relative to the conventional AMF 
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detector due to the inherent property of the subspace 

detector.  

 

FIGURE 7.  Detection curves versus target angle. 

C. ANGLE ESTIMATION PERFORMANCE 

In this example, performance comparisons on angle 

estimation using three methods, including the presented 

method and the adaptive monopulse method and the ML 

method using assumed steering vectors, are made. The root 

mean squared error (RMSE) is employed to evaluate angle 

estimation performance, which is defined as 

( )
2

t t

1

1 ˆRMSE=
L

l

lL =

−   , where t
ˆ

l  is the target angle 

estimate of the lth trial, t  is the true target angle and L  is 

the number of independent trials. In Fig.8, the RMSEs of 

three methods as a function of target angle are given. It can 

be seen that the RMSE of the presented estimator can 

obtain better performance than the other methods. It lies in 

the fact that mismatched steering vectors result into 

incorrect cost function values and performance degradation. 

 

FIGURE 8.  RMSE versus target angle. 

V. CONCLUSIONS 

The objective of this paper is to propose and evaluate the 

robust target detection and estimation method based on 

steering vector estimation and the subspace detector against 

steering vector mismatch resulted from array errors and 

target uncertainty. Utilizing the spatial-temporal coupling 

relationship of the ground clutter for an airborne radar, 

spatial steering vectors with arbitrary array errors can be 

well estimated by fined Doppler localization. Hereafter, the 

subspace detector based on estimated steering vectors are 

employed to reduce performance degradation induced by 

angle uncertainty and array errors. Finally, the reduced-

dimensional ML angle estimator based on subspace 

coefficients derived from estimated steering vectors is 

developed. 
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