
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2989323, IEEE Access

 

VOLUME XX, 2017 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number  

Multi-Harmonic Currents Control Strategy 
for Five-Phase Permanent Magnet Machine 
with non-sinusoidal back-EMF 

JIANYA ZHANG1, S. J. He2, KAI WANG1, (Senior Member, IEEE) 
1College of Automation, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Road, Nanjing, 211106, China 
2Ningbo Haibo Group Co., Ltd, 1299 Songshan Road, Ningbo, 315800, China 

Corresponding author: Kai Wang (e-mail: k_wang@ieee.org). 

This work was supported by Jiangsu Province Funds for Distinguished Young Scholar BK20180016. 

ABSTRACT This paper describes an optimal torque per peak current control method for a five-phase 

permanent magnet (PM) machine considering both 3rd and 5th harmonic currents. These optimal ratios to the 

fundamental component are analytically derived to maximize the output torque. It is found that except for 

the 3rd harmonic current contributing to the output torque, the 5th harmonic current can also produce the 

additional positive torque. However, the 5th harmonic is zero sequence component for the five-phase 

machines, which does not exist in the phase windings. Hence, the neutral point is required to connect the 

middle point of the DC link capacitors for constructing flowing path. The conventional vector space 

decomposition (VSD) control is extended to zero sequence sub-plane, which can quantitatively control 5th 

harmonic current. For a prototype five-phase PM machine, the average torque can be increased by 21.4% 

with 3rd harmonic current injection. Meanwhile, 10.7% additional positive torque is achieved together with 

3rd and 5th harmonic injection. The torque ripple remains similar to that without harmonics injection. Finally, 

the experiments are given to demonstrate the theoretical analysis. 

INDEX TERMS Multi-phase, harmonics injection, output torque, zero sequence current 

 

I. INTRODUCTION 

Multiphase electric machines such as five-phase machines 

have numerous advantages over traditional three-phase 

machines, such as multi-degrees of freedom, low torque 

ripple, low power per phase and high reliability [1]-[4]. 

These outstanding merits make some unique characteristics 

for multiphase machines. One of them is to inject low-order 

harmonic components into phase currents to obtain high 

torque density [5], [6]. 

The combined sinusoidal plus 3rd harmonic currents was 

initially proposed to increase the output torque [7]. The effect 

of high order harmonics on the torque improvement was 

investigated. It was found that when the harmonic order over 

7th, the torque improvement can be neglected [8]. Hence, 

most literature focuses on the 3rd harmonic injection to 

increase the torque capability [9]-[12]. In order to realize 

fundamental and harmonic currents decoupling control, the 

vector space decomposition (VSD) strategy is widely used, 

which introduces two orthogonal vector fundamental and 3rd 

harmonic sub-planes [13]-[15]. Hence, the fundamental and 

3rd harmonic currents are concerted to DC component, 

achieving static error free tracking control [16]-[18]. Actually, 

the torque improvement can be divided into the enhancement 

of the fundamental current caused by 3rd harmonic injection 

and the torque generated by the 3rd harmonic components in 

back EMF and phase current [19]. Hence, maximum 

fundamental amplitude does not represent the output torque 

is optimal [20]. The key of harmonic current injection is to 

maximize the fundamental current for torque production with 

the same peak current [21]. Genetic algorithm is employed to 

calculate the optimal injection ratios of harmonic currents 

[22]. The relationship between the output torque and the 3rd 

harmonic current is established, which achieves the optimal 

value for maximizing the output torque [23]. 

As pointed out in [24], the 5th harmonic together with the 

3rd harmonic has the possibility to increase the average torque 

of the five-phase PM machine. Although the 5th harmonic has 

little contribution to positive torque, it can increase the peaks 

of fundamental and 3rd harmonic currents to improve the total 

average torque. However, for five-phase PM machines, the 

5th harmonic current belongs to zero sequence component. It 

would be eliminated in five-phase winding set. Hence 
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injecting 5th harmonic to phase current is rather complicated. 

Beyond that, the current regulations of zero sequence sub-

plane is not involved in the conventional VSD control 

strategy [25], [26]. 

Therefore, this paper is intended to control the 5th 

harmonic current effectively achieving the maximum output 

torque. The harmonic current ratios for optimal torque per 

peak current is analyzed in detail. The conventional dual-

plane vector control is extended to zero sequence sub-plane, 

where a resonant controller is employed to regulate the 5th 

harmonic current. Compared to 3rd harmonic current injection, 

the proposed method can further improve the average torque 

and the torque ripple remains similar to that of the one 

without harmonic currents injection. 

II. MATHEMATICAL MODEL OF FIVE-PHASE PM 
MACHINES WITH HARMONIC BACK EMFS 

The voltage and flux linkage equations in fundamental and 

third sub-planes can be expressed as: 

 

1 1 1 1

1 1 1 1

3 3 3 3

3 3 3 3

3

3

d s d d e q

q s q q e d

d s d d e q

q s q q d

u R i

u R i

u R i

u R i

 

 

 

 

  


  


  
   

  (1) 

 

 

 

 

 

1 1 1 1 1

1 1 1 1

3 1 3 3 3

3 1 3 3

5 / 2

5 / 2

5 / 2

5 / 2

d m d m

q m q

d m d m

q m q

L L i

L L i

L L i

L L i

 



 



   


 


  


 

  (2) 

where u  is the voltage; i  is the current; sR  is the phase 

resistance;   is the flux; 1L  is the stator leakage 

inductance; 1mL  is the fundamental inductance; 3mL  is the 

third harmonic inductance; e  is the fundamental electrical 

angular frequency. 

The average electromagnetic torque is obtained as: 

  1 1 1 1 3 3 3 3

5
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where 
np  is the pole pairs. 

It is obvious that the third harmonic current generates 

extra constant torque improving the average torque, which 

is written as: 

  3 3 3 3 3

15

2
e n d q q dT p i i     (5) 

Besides, the 3rd harmonic current changes the profile of 

phase current. The fundamental peak current can be raised 

for a certain peak phase current, which means the torque 

generated by the fundamental back EMF and fundamental 

current is increased. Obviously, the conventional maximum 

torque per peak current (MTPPC) strategy is aimed at 

injecting 3rd harmonic to obtain as high as possible 

fundamental peak current. The optimal third harmonic 

ration is 1/6, the average torque can be increased by 15.4%, 

as shown in Fig. 1 [9]. 
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Fig. 1. Conventional optimal current with harmonic current injection. 

For five-phase machines, the 7th harmonic current 

interacting with the 3rd harmonic back EMF induces the 12th 

torque ripple and the higher order harmonics have little 

effect. Besides the fundamental and 3rd harmonic 

components, the fifth harmonic should be also considered. 

Injecting 5th harmonic current can increase the both 

amplitude of fundamental and 3rd harmonic currents with a 

constant phase peak current, thereby further improving the 

average torque. Assuming the combined phase current with 

3rd and 5th harmonics injection is expressed as: 
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where I  is the phase peak current; 1I  means the 

fundamental peak current; 3I  is the 3rd harmonic peak 

current; 5I  symbolizes the 5th harmonic peak current;   is 

the rotor position; 3k  and 5k  are the harmonic injection 

coefficients. 

The gain of fundamental peak current can be expressed 

as: 
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Thus, we have 

 1I aI   (8) 

The voltage and flux linkage equations for 5th harmonic 

can be written as: 

  0

0 0 0 5 sin 5s e m

di
u R i L

dt
      (9) 

 0 1 55 / 2mL L L    (10) 

where 5mL  is the 5th harmonic inductance;  0 5 sin 5i I  . 

The electromagnetic torque generated by 5th harmonic 

component is derived as: 
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where          5 5 sin 5 sin 5 sin 5 sin 5 sin 5sI I         , 

         5 5 cos 5 cos 5 cos 5 cos 5 cos 5m m              . 

Hence, the electromagnetic torque generated by 5th 

harmonic component can be rewritten as: 

  5 5 5

25
1 cos 10

2
e n mT p I       (12) 

It is can be seen that the 5th harmonic current interacting 

with the 5th harmonic back EMF would induce 10th torque 

ripple. 

The total average torque can be rewritten as: 

   1 1 3 3 5 5
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Substituting (6) and (8) into (13), we have 
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For the prototype given in TABLE II. , the measured 

phase back EMF with respect to time is shown in Fig. 2 (a). 

The corresponding harmonic analysis is shown in Fig. 2 (b). 

It is obvious that the 3rd harmonic is 35.7% of the 

fundamental one, the 5th harmonic accounts for 4.6%. 

Therefore, the relation between harmonic flux linkages can 

be obtained as: 

 1 3 5: 3 :5 1: 0.357 : 0.046m m m      (15) 
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Fig. 2. Experimental result showing phase back EMF of machine 

operating at 600r/min. (a) Measured phase back EMF: Ae  (0.5V/div), 

Horizontal: Time (4 ms/div), (b) Harmonics analysis of phase back 
EMF. 

From (14) and (15) 
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According to (6) and (16), with the aid of Mathcad and 

Matlab Optimization Toolbox in Appendix A, the optimal 

injection coefficients for the maximum torque per peak 

current are derived 
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The optimal profile of the phase current is obtained as 

shown in Fig. 3. The fundamental peak current is increased 

by 20.2% 
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Fig. 3. Optimal phase current with 3rd and 5th harmonics injection. 

From (17), the electrical torque (16) can be rewritten as: 
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It is concluded that the electrical torque generated by 5th 

harmonic component is only 0.4% with respect to the 

fundamental one, which can be ignored. Thus, the torque 

ripple is almost the same to that without 5th harmonic 

current injection. The action of the 5th harmonic current 

improves the amplitude of fundamental and 3rd harmonic 

currents. 

From (18), the average torque can be simplified as: 

 1

5
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2
e n mT p I   (19) 

Compared with sinusoidal drive, injecting the 3rd and 5th 

harmonics into phase current increases the output torque by 

31%. 

The root mean square (RMS) of phase current can be 

calculated as: 
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Substituting (6) and (17) into (20), the RMS current can 

be given 

 0.879RMSI I   (21) 

The RMS current is increased about 24%, compared with 

0.707I , which results in extra copper losses. The contrast 

performance indexes are given in TABLE I. For the other 

prototypes, the optimal 3rd and 5th harmonic injection 

coefficients can be obtained as Fig. 4. 

Start
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Optimize the maximum torque 

according to formula (13) by 

Matlab Optimization Toolbox

Obtain the optimal 

harmonic injection 
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Fig. 4. Procedure of evaluating harmonic injection coefficients for 
optimal toque per peak current. 

As a conclusion, injecting 3rd and 5th harmonic currents is 

an effective approach to improve the average torque within 

power devices for a short time. However, the harmonics 

increase copper loss leading to efficiency decline, which is 

the inherent shortcoming of the maximum torque per peak 

current control. 

TABLE I.  PERFORMANCE CONTRAST INDEXES IN DIFFERENT CONTROL 

OBJECTIVES 

Performance Indexes 

(pu) 
Sine Sin+3rd Sin+3rd+5th 

Phase peak current I  I  I  
Fundamental I  1.154I  1.202I  

3rd harmonic 0 0.192I  0.429I  

5th harmonic 0 0 0.099I  

Average torque eT  1.22 eT  1.31 eT  

RMS 0.707I  0.827I  0.879I  

Copper loss 
22.5 sI R  

23.42 sI R  
23.86 sI R  

Increased torque 0 22% 31% 

III. CONTROL STRATEGY OF HARMONIC CURRENTS 
IN FIVE-PHASE PM MACHINE 

 

Based on VSD control, the fundamental current is mapped to 

11 sub-plane; 3rd harmonic current is mapped to 33 sub-

plane. The associated transformation matrices are briefly 

described in Appendix B. Many studies have verified the 

effectiveness of the fundamental and 3rd harmonic currents 

regulation [25], [26]. 

However, for five-phase machines, the 5th harmonic 

belongs to zero sequence. Generally, it would be eliminated 

in its winding set. For providing the flowing path for 5th 

harmonic current, the neutral point need to be connected to 

the middle point of the DC link capacitors, as shown in Fig. 5. 

From Fig. 5, the neutral current can be expressed as: 

  55 sin 5N A B C D Ei i i i i i I         (22) 

According to transformation matrix T , the zero 

sequence 
0i  can be derived as: 
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From (6), (22) and (23) 
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Fig. 5. Drive system for five-phase PM machine with 3rd and 5th 
harmonics injection. 

Therefore, an extra current sensor is need to measure the 

feedback of the 5th harmonic current 
0i . It is obvious that the 

conventional PI controller cannot regulate the 5th harmonic 

current without static error. To track the 5th harmonic current 

effectively, a resonant controller is adopted. 

The proposed harmonic currents control block diagram is 

shown in Fig. 6. The *

3qi  is converted by *

1qi  directly 

according to (17), which is regulated by conventional 

proportional and integral (PI) controllers in dq3-frame. The 
*

0i  is calculated by (25). Different from the conventional 

VSD control, the component in zero sequence sub-plane is 

included, which is regulated by a proportional-resonant 

controller. It is noted that the stability of the proportional-

resonant controller is determined by the cut-off frequency of 

the low-pass filter and the integral gain [27]. Considering the 

control performance, the cut-off frequency is set as 1/150 

times of the resonant frequency, which is about 7 rad/s and 

its integral gain is consistent with the integral gain in the PI 

controller in 3 3   sub-plane. 
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Fig. 6. VSD control with 3rd and 5th harmonic currents injection. 

 

IV. EXPERIMENT 

A. EXPERIMENTAL SETUP 

The experimental platform is built around dSPACE-1007. A 

five-phase PM machine is coupled with an induction 

generator, which is as the load. A torque sensor is installed to 

measure the real-time output torque. The driver consists of 

two three-phase voltage source inverters with a common DC 

link, the switching frequency is of 10 kHz. The hardware 

setup is shown in Fig. 7. The parameters of the prototype 

machine is listed in TABLE II.  

B. EXPERIMENTAL VALIDATION 

In order to validate the proposed control method, the 

prototype runs in constant phase peak current mode with the 

speed at 500 r/min, the reference current is 2.5A. Three 

conditions, I) without harmonic current injection; II) with 3rd 

harmonic current injection; III) with 3rd and 5th harmonic 

currents collaborative injection, are tested to evaluate the 

optimal torque per peak current control and their results are 

compared. The currents are recorded by current transducer, 

which outputting voltage signal. 

In test I, the phase current without any harmonics injection 

are shown in Fig. 8 (a), where the amplitude is set to be 5A. 

Their corresponding harmonic analysis is shown in Fig. 8 (b). 

It is evident that there are little current harmonics in the 

spectrum without current harmonics injection. The peak 

value of fundamental current is as the same as the phase 

current, shown in Fig. 8 (c). The currents in 33 are shown 

in Fig. 8 (d), which indicates the 3rd harmonic currents are 

restrained. In this case, the output torque is shown in Fig. 8 

(e), where the average torque is 2.8 N.m. 

In test II, the phase currents and the corresponding harmonics 

analyses with 3rd harmonic injection are shown in Fig. 9 (a) 

and Fig. 9 (b) respectively, where the coefficient of 3rd 

harmonic with respect to the fundamental is 1/6. It is consist 

with the theory above. The peak value of fundamental 

current is increased to 5.77A, as shown in Fig. 9 (c). 

However, the amplitude of phase current remains 5A. 

Compared with Fig. 8 (c), the fundamental peak current is 

increased by 15.4%, which results in the output torque 

generated by fundamental component has be increased by 

about 0.43N.m. The 3rd harmonic currents are shown in Fig. 

9 (d). With optimal 3rd current injection, the output torque is 

shown in Fig. 9 (e), where the average torque is 3.4N.m. 

Compared with Fig. 8 (e), the average torque is improved by 

0.6N.m, about 21.4%. Therefore, it is can be concluded that 

the torque contributed by 3rd harmonic component is 

approximately 0.17 N.m. 

 

Load DC motor

Torque sensor

Five-phase 

PMSM

dSPACE-1007

Five-phase driver

Oscilloscope

 
Fig. 7. Experimental setup. 

TABLE II.  PARAMETERS OF DUAL THREE-PHASE PM MACHINE 

Parameter Value 

Resistance () 0.46 
Stator inductance (mH) 3.75 

Rated current (A) 5 
Rated speed (r/min) 500 

PM flux linkage (Wb) 0.0646 
Pole pairs 4 

DC-link voltage (V) 50 
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Fig. 8. Experimental results during test I, when prototype runs at 
500rpm without harmonic injection, for (a) Phase currents, (b) 
Harmonics analysis of phase A current, (c) Fundamental currents, (d) 
3rd harmonic currents, (e) Output torque. 
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Fig. 9. Experimental results during test II, when prototype runs at 
500rpm with 3rd harmonic current injection, for (a) Phase currents, (b) 
Harmonics analysis of phase A current, (c) Fundamental currents, (d) 
3rd harmonic currents, (e) Output torque. 
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In test III, the phase current with 3rd and 5th harmonics 

collaborative injection are shown in Fig. 10 (a), where the 

coefficients of 3rd and 5th harmonics with respect to the 

fundamental are consistent with (17). Their corresponding 

harmonic analysis is shown in Fig. 10 (b). It is can be seen 

that the 3rd harmonic component is 0.52, and the 5th one is 

0.06. According to Fig. 10 (c), the amplitude of 

fundamental current is increased to 6A. In other words, the 

average torque generated by fundamental component is 

improved by 20%. Meanwhile, the phase peak current 

keeps unchanged. The harmonic currents are shown in Fig. 

10 (d). The 3rd harmonic current is increased to 1.5A. There 

are obvious 5th harmonic current, which is in accordance 

with the optimal injection coefficients in (17). It is evident 

that the zero sequence is controllable. Meanwhile, the 

average torque is around 3.7 N.m, as shown in Fig. 10 (e), 

which is 1.32 times of that one in test I. Furthermore, the 

torque ripple remains similar to that of the one without 

harmonic injection. 
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Fig. 10. Experimental results during test III, when prototype runs at 
500rpm with 3rd & 5th harmonic currents injection, for (a) Phase 
currents, (b) Harmonics analysis of phase A current, (c) Fundamental 
currents, (d) 3rd and 5th harmonic currents, (e) Output torque. 

V. CONCLUSION 

A multi-harmonic currents injection control strategy is 

proposed in this paper to improve the torque capability of a 

five-phase PM machine. The optimal torque per peak 

current profile of phase current is derived and the hardware 

modification is needed for providing the 5th harmonic 

current with the flowing path. A current sensor is added to 

measure the neutral current, which ensures effective closed-

loop control of the zero sequence current. This method is 

validated through the tests on a prototype machine. It is 

found that although the 5th harmonic component makes 

little contribution to the output torque, the average torque 

can be increased by 32.1%. This is a result of the 5th 

harmonic current increasing peak currents of the 

fundamental and 3rd harmonic. It can be concluded that the 

torque capability of the five-phase PM machine can be 

improved effectively within the same phase peak current 

limit by 3rd and 5th harmonics injection. 
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Appendix A 
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Appendix B 

According to VSD coordinate transformation, the five-

phase currents in real frame can be decompose into three 

orthogonal sub-planes, 1 1  , 3 3   and 0 . The fundamental 

and  
th

10k 1 ,  k 1,2,3,  harmonic currents are mapped 

to 1 1   sub-plane; the  
th

5k 2 ,  k 1,3,5,  harmonic 

currents belong to 3 3   sub-plane; the 
th5k ,  k 1,3,5,  

harmonic currents are involved in zero sequence sub-plane. 

The transformation matrix is obtained as 
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where 
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
  . 
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