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ABSTRACT G-protein-coupled receptors (GPCRs) are important protein molecules in the field of cell 
signaling and are widely found in various organisms. GPCRs play an important role in a variety of 
physiological processes and are important drug targets for a variety of diseases. Accurate prediction of 
GPCRs using machine learning is useful for drug design in a variety of related diseases. In this paper, we 
propose a method for identifying GPCRs based on mixed-feature vectors. We combine three individual 
features, such as 400D, N-gram and Parallel correlation pseudo amino acid composition (PC-PseAAC), using 
mixed-feature representation methods, which are evaluated by Random Forest, Naïve Bayes, and J48 for 
classification purposes. To measure the performance of this classifier, ten-fold cross-validation is used. Two 
dimensionality reduction methods—the max-relevance-max-distance (MRMD) and t-Distributed Stochastic 
Neighbor Embedding (t-SNE)—are applied to reduce the feature dimension. The 400D and PC-PseAAC 
feature extraction methods are combined, the random forest is used as the classifier, and the area under the 
curve (AUC) is up to 0.9413. Therefore, among these methods, the new feature vector obtained by combining 
the two features shows the best performance, and the mixed feature is better than the single feature. 

INDEX TERMS G-protein-coupled receptors (GPCRs), J48, mixed-feature methods, naïve bayes, random 
forest. 

I. INTRODUCTION 
G protein-coupled receptors (GPCRs) are seven transme-
mbrane proteins that perform reactions to transduce 
extracellular signals into cells. Because of their characteristic 
configuration of seven transmembrane alpha-helical 
counterclockwise beams [1], GPCRs are one of the largest 
membrane protein superfamilies, containing more than 800 
genes in the human genome [2]. GPCRs are mainly divided 
into the following six classes [3]: rhodopsin-like receptors, 
secretin-like receptors, metabo-tropic glutamate receptors, 
fungal mating pheromone receptors, cyclic AMP (cAMP) 
receptors, and frizzled receptors. 

GPCRs bind a variety of ligands, such as small molecule 
organic compounds, eicosanoids, peptides, and proteins [2]. 
GPCRs play an important role in many basic 
physicochemical processes, such as human vision, taste, 
smell, metabolism, neurotransmission, immune regulation, 
and cell growth [4-9]. These basic physicochemical 
processes are carried out by binding of GPCRs with ligand 
to activate a guanine-binding protein (G protein). At present, 

most drugs target GPCRs [10, 11], and thus GPCRs are 
involved in various diseases including depression, diabetes, 
cancer, and central nervous system diseases are widely 
targeted in drug development. In the future, accurate 
prediction of GPCRs is of great significance for drug design 
for various related diseases. 

As the data available on GPCRs continues to increase, 
many methods for predicting GPCRs have been proposed. 
These methods mainly predict GPCRs from two aspects: one 
is based on statistical and machine learning algorithms, and 
the other is based on the extraction of different features. 
Statistics and machine learning algorithms mainly include 
Support Vector Machine (SVM) [8, 12-17], neural network 
[18, 19], the hidden Markov models (HMM) [4, 20, 21], 
Naïve Bayes [22, 23], k-nearest neighbor (KNN) [12, 24, 25], 
random forest [23, 26-32], etc. The main features used for 
GPCRs prediction are the following: pseudo amino acid 
composition (PseAAC) [33-36], split amino acid 
composition (SAAC) [37], fast Fourier transform (FFT) [37], 
N-gram [19, 38], amino acid composition (AAC) [12, 13, 39], 
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etc. In summary, based on different classifiers and different 
feature extraction methods to predict GPCRs, there are few 
useful mixed-feature representation methods to predict 
GPCRs. 

In this paper, we propose a method of predicting GPCRs 
using machine learning combined with different feature 
extraction methods. Three single-feature extraction methods 
were used—400D, N-gram, and parallel correlation pseudo 
amino acid composition (PC-PseAAC). By combining the 
three single-feature methods by mixed-feature representation 
methods, four new hybrid feature vectors were obtained. We 
used three classifiers and ten-fold cross-validation to 
evaluate the classifier performance of each feature extraction 
strategy. The three classifiers are Random Forest (RF), Naïve 
Bayes (NB) and J48. We also used two dimensionality 
reduction methods—MDMR and t-SNE—to reduce the 
dimensions, and then used different classifiers to classify. 
The results are shown in the experimental section. The flow 
chart for predicting GPCRs is shown in Figure 1. 

FIGURE 1. The flow-chart for predicting GPCRs. PC-PseAAC: 
parallel correlation pseudo amino acid composition; MRMD: max-
relevance-max-distance; t-SNE: t-distributed stochastic neighbor 
embedding; RF: random forest. 

II. METHODS 
A.  DATASET 
The dataset that we mainly used for training and testing the 
classification approach was the same as that used in Liao et 
al. [27], and these data were obtained by CD-Hit to remove 
the sequence homology. The dataset is made up of 12881 
protein sequences that can be classified into two parts: 2495 
GPCRs (positive samples) and 10386 non-GPCRs (negative 
samples). To overcome the dataset imbalance, we randomly 
divided the negative samples into four groups, extracted 
2495 sequences from these four parts, and averaged the 
results of the four experiments using the four negative 
experiments. 

B.  FEATURE EXTRACTION METHODS 
In this manuscript, we extracted three single features—400D, 
parallel correlation pseudo amino acid composition (PC-
PseAAC), and N-gram. 

1)  400D 
The 400D feature is based on k-skip-n-grams [40], which is 
a sequence-based feature [41]. In addition to the n contiguous 
residues considered by the k-skip-n-grams model, the model 
also considers the n residues with distances from 1 to k in 
amino acid sequence. In the k-skip-n-gram model, we take n 
as 2, define S ൌ ሼA, C, D, E, … , Yሽ, and define 𝑓௜ as a binary 
permutation and combination of S elements, such as: 𝑓ଵ ൌ
𝐴𝐴, 𝑓ସ଴଴ ൌ 𝑌𝑌.The feature representation method calculates 
the feature vector set as follows: 

𝑇ௌ௞௜௣ିீ௥௔௠ ൌ  ሼ𝑈௖ୀଵ
௞ 𝑆𝑘𝑖𝑝ሺ𝐷𝑇 ൌ 𝑐ሻሽ            (1) 

where 𝑆𝑘𝑖𝑝ሺDT ൌ Cሻ ൌ ሼ𝐴௜𝐴௜ା௖ାଵ|1 ൑ 𝑖 ൑ 𝑙 െ 𝑐, 1 ൑ 𝑐 ൑
𝑘ሽ, and l represents the length of the amino acid sequence. 

𝑉௜ ൌ
஻ሺ௙೔ሻ

ே൫்ೄೖ೔೛షಸೝೌ೘൯
                            (2)    

FV ൌ ሺ𝑉ଵ, 𝑉ଶ, … , 𝑉௜, … , 𝑉ସ଴଴ሻ             (3) 
where Bሺ𝑓௜ሻ  represents number of times the 𝑓௜  sequence 
appears in 𝑇ௌ௞௜௣ିீ௥௔௠  set, and N൫𝑇ௌ௞௜௣ିீ௥௔௠൯  is the sum 
number of all elements in 𝑇ௌ௞௜௣ିீ௥௔௠ set. 

In this manuscript, we took the value of n to 2 and obtained 
the 400D feature. The protein sequence consists of 20 amino 
acids, so A1A2 is represented as the combination of two 
consecutive amino acids. 𝑓஺భ஺మ represents the frequency of 
the combination of A1A2. The 400D feature is represented by 
400 combined frequencies. 

2)  N-GRAM 
N-gram [42] is a commonly used large vocabulary 
continuous recognition language probability model. N-gram 
model is widely used in bioinformatics research, such as 
protein identification [19, 43-46], RNA structure modeling 
[47], genome sequence analysis [48, 49], etc. N-gram model 
is often used to estimate the probability of the occurrence of 
a given sentence in the corpus, that is, an N-gram is a word 
sequence of length N. When N=1, it is called a Unigram 
model, that is, a unary model, also called a context-
independent model; when N=2, it is called a bigram model; 
when N=3, it is called a trigram model or a ternary model. 
The probability of the whole sentence is the product of the 
probability of occurrence of each word.  

Since the dimension of the feature space grows 
exponentially with N, in order to reduce the feature space and 
overfitting phenomenon, high accuracy is obtained, and the 
maximum value of N is set to 3. In this manuscript, we took 
an N value of 2 and accumulated the number of features 
generated by the model. The total number of input features 
in 1, 2 is equal to 20 + 202(420), and we obtained a 420-
dimensional feature. 

3)  PARALLEL CORRELATION PSEUDO AMINO ACID 
COMPOSITION 
Parallel correlation pseudo amino acid composition (PC-
PseAAC) is a commonly used protein analysis method, and 
its use is based on the method of integrating continuous local 
sequence order information and global sequence order 
information into protein sequence feature vectors [50, 51]. 
Pseudo amino acids are widely used for protein prediction 
[52, 53]. According to the pseudo-amino acid composition 
theory [51], λ sequence correlation functions that reflect the 
physicochemical properties of amino acids are introduced, 
and a protein sequence (or peptide) is encoded into a vector 
of20 ൅ λ dimensions:  

Y ൌ ሺYଵ, Yଶ, Yଷ, … , Yଶ଴, Yଶଵ, … , Yଶ଴ା஛ሻ                (4) 

where the first 20 dimensions of Y represent the frequency of 
the amino acid. In this study, we selected three features, set 
λ to 2, and obtained 22-dimensional feature. 

C.  CLASSIFICATION 
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In this study, we selected the following three classifier 
models for classification: random forest (RF), naïve Bayes 
(NB), and J48. The three classifiers were implemented in the 
data mining tool Weka [54], which is an ensemble package 
of multiple machine learning algorithms and is based on the 
Java environment. 

1)  RANDOM FOREST 
Random forest (RF) is a powerful algorithm designed and 
proposed by Brieman et al. [55] and is a collection of tree 
predictors. RF has been widely used in many fields of 
bioinformatics [56-73]. RF is implemented by constructing a 
large number of decision trees during training and outputting 
the class pattern of individual trees [55]. The RF algorithm 
behaves similar to the ensemble algorithm [74, 75]; it 
consists of decision trees, and each is grown according to a 
subset of features selected by the stochastic feature selection 
technique. The feature number of each tree is determined by 
a number of factors, including generalization errors, 
classifier strength, and dependence. The prediction result of 
the RF algorithm is a set of results of combining all training 
trees with a majority voting strategy. 

2)  NAÏVE BAYES 
Naïve Bayes (NB) [76] is a classifier based on conditional 
probability and is usually used to calculate conditional 
probabilities. The NB algorithm is one of the most 
commonly used algorithms because it is simple to implement 
and has high classification performance [77, 78]. The Naïve 
Bayes classifier [79] is a simple probability classifier that 
assumes conditional independence between variables, i.e., 
the presence (or absence) of a particular type of variable is 
independent of the presence (or absence) of any other 
variable. Only a small amount of training data is needed to 
estimate the parameters required for classification.  

In the sample space F, the representation of the specimen 
is i, F୧ ൌ ሺf୧୨, … , f୧୬ሻ , where  f୧୨  represents j features in i 
samples, and the calculation formula of NB based on Bayes' 
theorem formula is as follows [79]: 

Pሺy|𝐹௜ሻ ൌ  
௉൫𝐹௜ห𝑦൯௉ሺ௬ሻ

௉ሺி೔ሻ
                             (5) 

If f୧୨, … , f୧୬  are independent of each other, we get the 
following formula: 

Pሺ𝐹௜|𝑦ሻ ൌ  ∏ 𝑃൫𝑓௜௝ห𝑦൯௡
௝ୀଵ                       (6) 

Pሺ𝐹௜ሻ ൌ  ∏ 𝑃൫𝑓௜௝൯௡
௝ୀଵ                             (7) 

3)  J48 
The J48 is a decision tree classifier generated by the C4.5 
algorithm developed by Quinlan [80]. The decision tree is a 
classification algorithm based on univariate logic, and it can 
sort the training examples using eigenvalues based on the 
divide and conquer strategy. The decision tree J48 [80, 81] is 
tree-like graph in which the nodes in the graph test certain 
conditions on a set of features, and the branches divide the 
decision into the leaf nodes. The leaves represent the lowest 
level in the graph and determine the category labels. 

The C4.5 algorithm [81, 82] uses the gain ratio impurity 

method to evaluate the segmentation properties. At each 
node of the tree, C4.5 selects data that most effectively splits 
its sample set into one or another subset rich in categories. 
Its standard is the normalized information gain, which is 
generated by the choice of attributes used to split the data. 
The attribute with the highest normalized information gain is 
selected for decision making. The J48 decision tree 
algorithm is used for four different M parameter values [83], 
which defines the minimum number of examples (M = 2, 4, 
6, 8) in each node of the tree. The high value of M 
corresponds to the regular model and simple model. 

D.  FEATURE SELECTION 
The max-relevance-max-distance (MRMD) is a dimension 
reduction method designed by Zou et al. [84]. This algorithm 
is automatically stopped when the maximum ACC is 
obtained, and the feature set after dimension reduction is 
obtained. In this paper, four mixed-feature vectors were 
obtained by the mixed-feature representation methods 
400D+N-gram, 400D+ PC-PseAAC, N-gram+ PC-PseAAC, 
and 400D+ N-gram+ PC-PseAAC. Because the mixed-
feature vector may contain redundant vectors, we used 
MRMD to reduce the dimension of the feature extraction 
algorithm, reduce the redundant vector, and improve the 
classification effect. 

The t-Distributed Stochastic Neighbor Embedding (t-SNE) 
[85] is a dimensionality reduction technology suitable for 
visualization of high-dimensional datasets, which uses 
heavy-tailed distribution in low-dimensional space to 
alleviate the congestion and optimization problems of SNE. 
In this manuscript, we obtained four mixed-feature vectors 
by three single features through the mixed feature 
representation methods. These feature vectors are visualized 
in a two-dimensional feature space using t-distributed 
random neighbor embedding (t-SNE). 

III.  EXPERIMENT 
A.  MEASUREMENT 
The performance of the predictive classifier is usually 
verified by three cross-validation methods—the independent 
dataset test, the jack-knife test, and the k-fold cross-
validation test [86-107]. In this study, we used ten-fold cross-
validation to evaluate the performance of the classifier. Ten-
fold cross-validation divides the dataset into ten parts, and 
takes 9 of them as training data and 1 as test data for 
experimentation. 

Parameters such as the area under the receiver operating 
characteristic (ROC) curve (AUC), sensitivity (Sn), 
specificity (Sp), accuracy (Acc) and precision are commonly 
used for performance evaluation and are computed as 
follows: 

Sn ൌ  
்௉

்௉ାிே
                                           (8) 

Sp ൌ  
்ே

்ேାி௉
                                           (9) 

Acc ൌ  
்௉ା்ே

்௉ାி௉ା்ேାிே
                             (10) 

Precision ൌ  
்௉

்௉ାி௉
                               (11) 

where TN, TP, FN, and FP represent the number of true 
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negative, true positive, false negative, and false positive 
values, respectively. 

B.  PERFORMANCE OF SINGLE-FEATURE 
EXTRACTION MENTHOD  
In this manuscript, we employed the single-feature 
extraction method to classify the GPCRs sequences. The 
classification results using different classifiers are shown in 
Table 1. 

TABLE 1. GPCRs identification results using single-feature 
representation methods. 

According to the experimental results in Table 1, 400D has 
the best accuracy at 0.8644, followed by PC-PseAAC and N-
gram (N=2). The performance of the random forest is best 
when using the 400D feature extraction method, and the 
performance parameters for AUC, Acc, precision, Sn, and Sp 
values are 0.9408, 0.8644, 0.8653, 0.8378, and 0.8910, 
respectively. The Sp value is not the highest, but the other 
values are the best. The performance of J48 is the worst, and 
the AUC value is 0.7620, Acc is 0.7935, precision is 0.7935, 
Sn is 0.7913, and Sp is 0.7958. Under the three feature 
extraction methods, the NB performance is the best under the 
PC-PseAAC feature extraction method, the AUC is 0.8460. 
The experimental results show that the RF has better 
classification effects than J48 and NB (Figure 2). 

FIGURE 2. Comparison of AUC and Precision based on different 
feature extraction methods and different classifiers. 

From the experimental results and comparison of the AUC 
and precision values among the three feature extraction 
methods and three classifiers, the random forest classifier has 
the best classification effect among different feature methods, 
followed by NB and J48. To more clearly and intuitively 
represent the comparison of the three feature extraction 
methods and the three different classifiers, we use bold to 
show the best method and classifier in Table 1. 

C.  PERFORMANCE OF MIXED-FEATURE EXTRACTION 
METHODS  
In this section, we combined the three feature extraction 
methods in various ways, and obtained four new feature 
vectors. The obtained feature vectors are 400D+N-gram, 
400D+PC-PseAAC, PC-PseAAC+N-gram, and 400D+N-
gram+PC-PseAAC. These features are classified by different 
classifiers, and the obtained classification results are shown 
in Table 2. 

TABLE 2. Classification result of the mixed-feature methods. 

The results of 400D combined with other features are 
presented in Table 2. 400D has an AUC value of up to 0.9413 
and a minimum of 0.7668, compared to the 400D individual 
feature classification results in Table 1. The highest Acc 
value is 0.8647, and the lowest value is 0.7911. The values 
are higher than when using the 400D feature method alone, 

while the precision value is reduced. The highest value of 
precision is 0.8662, and the lowest value is 0.7910. 

The results of the PC-PseAAC feature combined with 
other features are shown in Table 2. The new features of PC-
PseAAC combined with N-gram for all classifiers have 
worse AUC and precision values than using three individual 
features. The performance of the three classifiers is reduced. 
When 400D was combined with the PC-PseAAC, the J48 
classifier has the worst performance, and all parameter 
values are lower than when using the PC-PseAAC feature 
method. 

The results for the N-gram feature combined with the 
other two features are shown in Table 2. The experimental 
results show that the performance of the three classifiers is 
better than that of the N-gram feature alone, and all the 
parameters improved. The AUC value ranged from 0.9408 to 
0.7683. The Acc value is up to 0.8647 and as low as 0.7795. 
The highest value of precision is 0.8658, and the lowest value 
is 0.7798. 

Finally, we combined the three individual features, and the 
classification results are shown in Table 2. The RF 
classification has the best classification effect, and the 
obtained AUC value is up to 0.9412 compared with the three 
features alone. The performance of the NB classifier 
degraded. The classification effect of the J48 classifier is 
better than the classification effect of the PC-PseAAC 
individual feature. 

In summary, the RF classifier has the best classification 
effect, and J48 has the worst. We use bold font to show the 
best parameters for each feature classification in Table 2. 
When 400D was combined with PC-PseAAC, RF is used as 
the classifier to predict GPCRs with the best results, and the 
AUC value is 0.9413. 

D.  PERFORMANCE OF EMPLOY MRMD AND T-SNE TO 
REDUCE THE DIMENSION 
In Section 3.3, we combined the three features through 
mixed-feature representation methods to obtain four new 
feature vector sets. We used the MRMD method to reduce 
the dimension of the new feature vector. The data after 
dimension reduction was classified by various classifiers. 
The classification results are shown in Table 3 and Figure 3. 

TABLE 3. Classification result of the reduction the features. 

According to the experimental results, although the 
classification result of the RF classifier was lower than that of 
the mixed feature after the dimension reduction by MRMD, 
RF is the best classifier, and J48 is the worst classifier. From 
the experimental results, the highest AUC value is 0.9410 and 
the lowest value is 0.7665, and the highest value of Acc is 
0.8639 and the lowest value is 0.7830. The highest precision 
value is 0.8653, and the lowest value is 0.7830. We present the 
results of the best classifier for each feature in bold font in 
Table 3. 

Figure 3 shows the results intuitively. When using 
dimensionality reduction data for classification, the 
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classification effect of the NB classifier improves, and the 
AUC values of the four features increases. 

FIGURE 3. Comparison of classification results of mixed features and 
features after dimensionality reduction. Blue indicates the classification 
results after dimensionality reduction, and orange indicates the 
classification results of mixed features. 

Next, we obtained datasets of four mixed vectors by 
combining three features using t-distributed random neighbor 
embedding (t-SNE) for dimensionality reduction and 
visualizing them in 2D feature space. The results are shown in 
Figure 4. Figure 4A represents a combination of 400D features 
and N-gram features, which were obtained by dimensionality 
reduction visualization, and the classifier was logistic 
regression. Figure 4B shows the fusion of the 400D feature 
and the PC-PseAAC feature. The classifier was also a logistic 
regression. After the dimension reduction, a visualization was 
obtained. The combination of the PC-PseAAC and N-gram 
features with the NB classifier after dimensionality reduction 
is shown in Figure 4C. The last Figure 4D is a visualization of 
the three features, which was obtained by t-SNE 
dimensionality reduction with the logistic regression classifier. 
In summary, the distribution of the 2D features space in the 
three features combined with t-SNE dimensionality reduction 
is better than that of the other three combinations. 

FIGURE 4. The visualization of four mixed vectors. The red points are 
negative examples, and the blue points are positive examples. 

E.  COMPARISON WITH OTHER METHOD 
In this paper, the experimental data are derived from the 
research of Liao et al. [27]. For the purpose of demonstrating 
the accuracy of our method, the proposed method is compared 
with literature method [27]. 

According to Table 4, the method proposed can obtain high 
AUC value based on three different feature extract methods. 
When RF is used as the classifier to predict GPCRs, the AUC 
value obtained by our method range from 0.9408 to 0.9370. 
The average AUC obtained by literature method was 0.9282. 
The results indicate that our method is superior to the literature 
method. 

Table 4. Comparison of the AUC of our method and literature 
method. 

IV. CONCLUSION 
To date, studies have shown that GPCRs are found only in 
eukaryotes and are involved in many cellular signal 
transduction processes. Therefore, many drugs target GPCRs. 
In this study, we used multiple classifiers to combine different 
features to classify GPCRs. A hybrid combination of three 
feature extraction techniques was used, and then MRMD and 
t-SNE were used to reduce the dimension of the mixed-feature 
vector. From the classification results extracted from a single 
feature, it is shown that the combination of the 400D feature 
and the random forest obtained the highest AUC of 0.9408, 
and the classification effect is the best. Of the four new feature 
vectors obtained by the mixed-features methods, the 

combination of 400D and PC-PseAAC after MRMD 
dimension reduction with the random forest classifier has the 
highest AUC value of 0.9410. The visualization is obtained by 
t-SNE dimensionality reduction, and the high-dimensional 
data are mapped to the two-dimensional space. The 
experimental results show that the best classifier for predicting 
GPCRs is RF. Additionally, both dimensionality reduction 
hybrid feature and nondimension reduction hybrid feature 
exhibited better performance than single features. This finding 
indicates that the mixed combination of different feature 
extraction methods improves the overall performance of 
GPCRs prediction. In the future, we hope to propose more 
advanced classification algorithms and feature selection 
methods to improve performance and establish an online 
service website. 
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FIGURE 1. The flow-chart for predicting GPCRs. PC-PseAAC: 
parallel correlation pseudo amino acid composition; MRMD: max-
relevance-max-distance; t-SNE: t-distributed stochastic neighbor 
embedding; RF: random forest. 

 

 

FIGURE 2. Comparison of AUC and Precision based on different 
feature extraction methods and different classifiers. 

 

 

FIGURE 3. Comparison of classification results of mixed features and 
features after dimensionality reduction. Blue indicates the classification 
results after dimensionality reduction, and orange indicates the 
classification results of mixed features. 

 

 

 

 

 

FIGURE 4. The visualization of four mixed vectors. The red points are 
negative examples, and the blue points are positive examples. 
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TABLE 1. GPCRs identification results using single-feature 
representation methods. 

Metho
d 

Classifier AUC Acc Precisi
on 

Sn Sp 

400D 

RF 0.9408 0.8644 0.8653 0.8378 0.8910 
Naïve 
Bayes 

0.8430 0.7879 0.7923 0.7560 0.8200 

J48 0.7620 0.7935 0.7935 0.7913 0.7958 

N-
gram 
(N=2) 

RF 0.9315 0.8507 0.8515 0.8318 0.8698 
Naïve 
Bayes 

0.8378 0.7826 0.7865 0.7408 0.8245 

J48 0.7630 0.7737 0.7740 0.7813 0.7663 

PC-
PseAA

C 

RF 0.9370 0.8564 0.8580 0.8202 0.8916 
Naïve 
Bayes 

0.8460 0.7837 0.7895 0.7150 0.8524 

J48 0.8033 0.7969 0.7970 0.7865 0.8072 

 

TABLE 2. Classification result of the mixed-feature methods. 

Method Classifier AUC Acc Precision 

400D+N-gram 

RF 0.9408 0.8647 0.8658 
Naïve 
bayes 

0.8383 0.7922 0.7958 

J48 0.7740 0.7911 0.7910 

400D+PC-PseAAC 

RF 0.9413 0.8628 0.8662 
Naïve 
bayes 

0.8420 0.7879 0.7923 

J48 0.7668 0.7916 0.7915 

PC-PseAAC+N-
gram 

RF 0.9343 0.8555 0.8565 
Naïve 
bayes 

0.8393 0.7865 0.7903 

J48 0.7683 0.7795 0.7798 

400D+N-gram+PC-
PseAAC 

RF 0.9412 0.8637 0.8648 
Naïve 
bayes 

0.8385 0.7927 0.7963 

J48 0.773 0.7894 0.7893 

 
TABLE 3. Classification result of the reduction the features. 

Method Classifier AUC Acc Precision 

400D+N-gram 
RF 0.9398 0.8630 0.8638 

Naïve bayes 0.8475 0.7994 0.8030 
J48 0.7738 0.7906 0.7905 

400D+PC-
PseAAC 

RF 0.9410 0.8639 0.8653 
Naïve bayes 0.8478 0.7871 0.7913 

J48 0.7723 0.7921 0.7920 

PC-PseAAC+N-
gram 

RF 0.9370 0.8578 0.8585 
Naïve bayes 0.8630 0.7996 0.8050 

J48 0.7665 0.7830 0.7830 
400D+N-
gram+PC-
PseAAC 

RF 0.9405 0.8616 0.8628 
Naïve bayes 0.8488 0.7981 0.8023 

J48 0.7693 0.7863 0.7865 

 

TABLE 4. Comparison of the AUC of our method and literature 
method. 

Method feature Classifier AUC 

The paper method 
400D RF 0.9408 

N-gram RF 0.9315 
PC-PseAAC RF 0.9370 

Literature method SVM-Prot RF 0.9282 

 

 


