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ABSTRACT Functional connections are commonly used when exploring the human brain, especially in 

brain data analysis. However, most of the studies concentrate on traditional statistical analysis. In this paper, 

we innovatively combined the functional connection with the deep learning algorithms and analysed the 

matrices after the weight distribution of each layer of the convolutional neural network (CNN) to obtain the 

connections that play a vital role in the classification. The electroencephalogram (EEG) data used in this 

paper was acquired through a visual mismatch negativity (MMN) experiment. When dealing with this data, 

each electrode was regarded as a node in the network, and the phase lag index (PLI) was calculated to 

construct the functional connection matrices, which were used as inputs for the CNN classification and 

feature extraction. The matrices after the weight distribution were further analysed by means of graph 

theory. In this paper, the classification accuracy for deviation and standard stimuli are over 95%, and the 

theta band achieved the highest accuracy. Through the distributed matrices, we found that there are two 

regions that obtained larger weights from the convolutional layers, i.e., the temporal lobe and the occipital 

region. The occipital region is related to our visual experiment, and the temporal lobe region is connected 

with MMN mechanism. We also considered the strategy of the three-layer CNN according to weight 

distribution processing. 

INDEX TERMS Neural networks, Electroencephalography, Graph theory, Complex networks, Weight 

distribution, Functional connection.

I. INTRODUCTION 

The convolutional neural network (CNN) was proposed by 

Geoffrey E. Hinton et al. in 2012[1]and has been rapidly 

developed in computer vision, speech recognition and other 

fields, and has become a mature algorithm. In medical 

image data, CNN has been widely used in lesion area 

identification and disease diagnosis, such as thoraco-

abdominal lymph node detection and interstitial lung 

disease classification of computed tomography (CT) 

images[2], brain lesion segmentation based on magnetic 

resonance imaging (MRI) [3], and cognitive and motor 

developmental outcome score prediction from structural 

brain networks of infants born preterm based on diffusion 

tensor imaging (DTI) [2]. As a convenient method for 

exploring the brain, EEG also has received increasing 

attention along with deep learning algorithms and has made 

great progress. These studies include brain-computer 

interface (BCI) [4-6], brain disease diagnosis [7] and 

prediction [8-11] and brain state monitoring [12-15]. There 

are also papers that attempt to establish functional 

connectivity for electroencephalography (EEG) [16-18], but 

relatively fewer compared to the former, and using deep 

learning methods to analyse EEG for brain mechanism 

exploration is even rarer. One reason is that EEG is a one-

dimensional signal which makes it less intuitive than other 

medical image data such as MRI or DTI; another reason is 

that the processing of deep learning is often presented in the 

form of ‘black boxes’ that make it harder for people to 

understand. However, compared with other brain image data, 

the acquisition of EEGs is much more convenient, has lower 
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cost and is more acceptable to ordinary people, so it is more 

likely to include larger databases, which is very significant to 

deep learning. 

With the development of CNN, there have been 

increasing studies on the decoding of convolutional 

networks, attempting to explain the convolutional neural 

network and to answer why and how convolutional layers 

can extract features [19-22] In terms of EEG, similar studies 

have attempted to explain the role of convolutional layers in 

EEG feature extraction. Schirrmeister RT et al. used CNN to 

classify brain motor imagery by an end-to-end approach and 

making some visual attempts [23]. Their research proved that 

when extracting features, convolutional layers focus on 

spectral power in the alpha, beta, and high gamma 

frequencies. However, they artificially limited the extracted 

features to the power spectral density, treating each electrode 

as independent, and ignoring the communication between 

different regions of the brain, and thus, the representation of 

the EEG was not consummate. 

In this article, we focus on two issues, whether functional 

connectivity can be used as in EEG classification and what 

the convolutional layers do during the classification. 

Traditional EEG features include time, frequency and time-

frequency domain features [24-27], frequently appearing in 

the prediction and classification of EEG signals. However, 

for brain mechanism research, these features neglect the 

communication of different electrodes or brain regions, 

which is vital and should be noticed. Information exchange 

between regions can be assessed by time coupling or time 

dependence between signals collected in different regions, 

which is also referred to as "functional connectivity" [28, 29]. 

The phase lag index (PLI) has been commonly used to 

evaluate functional connections in recent years. Compared to 

the component of coherency (IC) and phase coherence (PC), 

PLI minimizes the effects of common source signals, which 

is of great significance for EEG signals [18]. Wang Luyao et 

al. used functional connectivity built by PLI to investigate 

whether it would affect audio-visual integration during 

normal ageing [30]. Tóth, Brigitta et al. used PLI to measure 

large-scale phase synchronization in six frequency bands, 

and found that early cortical networks in infants were 

significantly more hierarchical and more cost-effective [31]. 

Yang Yuan et al. used PLI of different frequency bands to 

study the dynamic functional connections in facial perception, 

and found that significant differences between facial and 

non-facial perception are mainly present in θ-band 

connectivity [32]. There are also some articles combining 

functional connectivity with machine learning methods. 

Wajid Mumtaz used EEG-derived synchronization likelihood 

(SL) features as inputs for support vector machines (SVM), 

naive Bayes (NB), and logistic regression (LR) classifiers, to 

automatically diagnose depression [33]. They also used these 

classifiers based on functional connectivity to detect alcohol 

use barriers [34]. Both achieved high accuracy. However, 

they did not further analyse the functional connections. For 

deep learning, there is still much left to do. 

 

 

FIGURE 1. The overview of data processing in this paper. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2968717, IEEE Access

 

VOLUME XX, 2017 9 

After building a functional connection network, we 

analysed the connectivity of the edges by means of graph 

theory to further understand the characteristics of the 

constructed network. Graph theory describes mathematical 

methods applied to representations of networks reduced to 

their essence: vertices (nodes) and edges (connections) [35]. 

Studies have shown that information exchange between 

brains may be limited by optimal processing capabilities 

when maintaining cost efficiency and self-recovery [36, 37]. 

In the exploration of the brain mechanism, graph theory was 

first applied to MRI data [38-40], and then researchers 

introduced it into EEG analysis; these studies included the 

exchange of information through the frontal to the occipital 

lobe during sleep [41], the development of neonatal brain 

network connections [31], and the differences between the 

functional connections of people with and without 

schizophrenia. 

In summary, in terms of brain analysis based on EEG, the 

functional connection is a widely used method because of the 

representation of information exchange between different 

regions in the brain. However, most of these studies are 

statistical analysis, and only a small part of them attempt 

traditional machine learning methods. The application of 

deep learning to EEGs has been widely used in EEG 

classification and prediction in brain analysis, and a few 

studies have attempted to explain convolutional layers, but 

information exchange between electrodes has been ignored. 

In this paper, we calculate the PLI as an indicator to build a 

functional connection, and analyse the output of the 

convolutional layers to explore the role of convolutional 

layers in feature extraction. The output matrices are further 

analysed through graph theory. From all these analyses, we 

found two important regions. The processing flow is shown 

in Fig. 1.  

II. MATERIALS AND METHODS 

A. DATA ACQUISITION 

1) SUBJECTS AND STIMULATION 

Fifteen students from the Beijing Institute of Technology, 

including six women and nine men, aged between 20 and 23, 

participated in the experiment. All subjects were in good 

physical and mental health and right-handed, with normal or 

corrected-to-normal vision. Prior written notification of the 

study was given before the experiment began. 

As shown in Fig. 2(a), pictures were placed 70 cm from 

the subject, with the viewing angle of 3.68°×3.42°, and 

display time of 100 milliseconds. The arrows in the picture 

appear on both sides of the cross at the centre of the screen, 

with a 500-millisecond interval between each stimulus. 

Standard stimuli (Std) and deviation stimuli (Dev) were 

placed symmetrically from the target area to reduce the 

impact on the subject. The standard stimuli in the experiment 

were vertical upward arrows, accounting for 80% of the 

stimulation sequence, and the deviation stimuli were 

horizontal left and horizontal right arrows, each accounting 

for 10% of the stimulation sequence. In the course of the 

experiment, under the premise of ensuring at least two 

standard stimuli between every two deviation stimuli, the 

order of stimuli was pseudo-random. To minimize the 

influence of other environmental factors on the experiment, 

the cross in the middle of the screen randomly became larger 

or smaller during the stimulation process, and the subject was 

required to press the left or right button as soon as the cross 

changed. 

2) EEG RECORDING 

EEG signals were continuously recorded using the 

NeuroLab's digital amplifier and electrode cap with 64 

Ag/AgCl electrodes placed according to the extended 

International 10-20 system (Fig. 2(b)), and the tip of the nose 

was used as a reference. The signal was filtered between 1-

100 HZ with a sampling rate of 1,000 Hz. The electrodes 

 

 

 

 
FIGURE 2. Experimental paradigm and electrode positions. (a) The intervals were 500 milliseconds, and each picture was shown for 100 milliseconds. 

The stimuli were random, and there were at least two standard stimuli between deviation stimuli. (b) Electrodes were placed according to the 10-20 

system. 
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recording vertical electro-oculography (VEOG) and 

horizontal electro-oculography (HEOG) were placed on the 

upper and lower sides of the right eye and 10 mm from the 

lateral canthus.  

However, we found that the EEG of two subjects were 

abnormal and unable to use due to artificial problems during 

the experiment. Therefore, we used the other 13 subject’s 

data in our analysis. 

3) EEG PREPROCESSING 

In the existing research, the analysis of visual MMN is 

mainly in low-frequency (under 30HZ) EEG, and we adopted 

such filtering frequency in our previous and current 

processing [46]. Therefore, we used a traditional 30 Hz low-

pass filter. The independent component analysis (ICA) in 

Matlab R2013a with the open-source toolbox EEGLAB was 

effectively used for artifacts removal in the EEG. In addition, 

we manually deleted the artifact components such as 

electrooculogram (EOG), electromyogram (EMG), and 

electrocardiogram (ECG) after ICA.  

We also divided the data into different frequency bands 

according to the EEG rhythm (theta: 4-7 HZ; alpha: 8-13 HZ; 

beta: 14-30 HZ). 

B.  FUNCTIONAL CONNECTION CONSTRUCTION 

The PLI was first proposed by Stam, Cornelis J et al. [18]; 

they believed that the PLI is more suitable for measuring the 

strength of the connection between EEG electrodes due to the 

volume conduction effect in the EEG electrodes and the 

presence of the active reference electrodes compared with IC 

and PC, which means the PLI can obtain a stable phase 

estimate even in the presence of common source signals. In 

our previous practice, it has also proved that PLI is stable and 

effective in building functional connection. Therefore, in this 

article, we also used the PLI as an indicator to build a 

functional connection. 

1) PHASE LAG INDEX 

We used the Hilbert Huang transform (HHT) to obtain the 

instantaneous phase of the signal and to divide the signal into 

theta, alpha and beta bands according to the EEG rhythm. 

The central idea in calculating the PLI is to discard the 

phase difference centred around 0 and  , i.e., when the 

distribution is centred around the zero phase difference, the 

asymmetry index of the phase difference distribution can be 

defined. The phase difference   has different probabilities 

in the interval [ , 0]−  and the interval[0, ] . If there is no 

coupling between two signals, the distribution is called ‘flat’. 

When the distribution is flat, or the median phase difference 

is equal to or centred around 0 or , the asymmetry of the 

phase difference distribution can be obtained by (1). 

| [ ( )] |kPLI sign t=      (1) 

The range of the PLI is between[0,1] . When the PLI is 0 , 

there is no coupling between the signals, and the phase 

difference is centred around 0 or . The stronger the phase 

lock between signals, the closer the value of the PLI is to1 . 

When the value of the PLI is1 , it means the two signals are 

perfectly phase-locked. 

2) INTERREGIONAL PHASE SYNCHRONIZATION 

There are usually two methods for calculating the PLI of the 

EEG, as shown in Fig. 3. One method is connectivity over 

time, which is usually more sensitive in resting EEG or 

longer-lasting EEG data; however, its temporal precision is 

poor. The other method is connectivity across trials, which 

has higher temporal precision and can better represent the 

transients in the connection [47].  

We calculated both the PLI of connectivity over time and 

connectivity across trials and then used the t-distributed 

stochastic neighbour embedding (t-SNE) algorithm to reduce 

the data to two dimensions [48]. The results of one subject 

are shown in Fig. 4. We find that data obtained by the 

method of connectivity over trials is separable, whereas data 

calculated by connectivity over time is not due to the 

instability of EEG in different trials. In addition, because of 

the nature of MMN experiments, there is always sample 

imbalance in the data (standard stimulus and bias stimulus 

ratio is 5:1 in ours), and connectivity over trials can solve this 

imbalance and make each category of stimuli have the same 

number of samples. In this paper, because there are two kinds 

of standard stimulus (left arrows and right arrows) and only 

one kind of deviation stimulus (upward arrow), the ratio of 

the final samples of the standard stimulus to the deviation 

stimulus is 2 to 1. In addition, connectivity over trials can 

reduce the differences between individuals because of the 

accumulation of multiple trials, which is more conducive to 

our further analysis of the EEG mechanism related to MMN. 

The resulting connection matrices are shown in Fig. 5. We 

considered the graphs of theta, beta and alpha bands as the 

three channels of the RGB maps and used them as inputs for 

the convolutional network. 

C. CONVOLUTIONAL NEURAL NETWORK FOR EEG 

According to the method mentioned in the previous section, 

for each subject, we obtain two types of deviation stimuli and 

 

 
FIGURE 3. Two different methods for calculating PLI. Connectivity over-

trials simultaneously calculates phase difference between two adjacent 

trials to obtain the average value after accumulating. Connectivity over 

time calculates the difference between every two nodes in each trial. 
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one type of standard stimuli, with 800 samples for each type, 

so there are 31,200 samples in the total of 13 people. Since 

the calculation method of PLI reduced the difference 

between the subjects, we did not need to separately construct 

a model for each subject but built a model for all the subjects. 

In our cross-validation, data from one subject was completely 

separated to ensure test sample independently during training. 

We thought that it is defective to randomly select test 

samples crossing all subjects due to high similarity of the 

EEG sequence from same subject. In addition, considering 

small number of subjects, we only used one subject's data as 

testing sample to complete cross-validation each test. In 

addition, the other data were left for training in random order 

to complete the cross-validation. 

A simple structure of a neural network includes an input 

layer, an implicit layer and an output layer. Each layer of the 

network has multiple neurons, which are mapped to the next 

layer through an activation function between each neuron. 

There is a corresponding weight between each neuron, and 

the output is the classification category. In this paper, we 

built a convolutional network using a basic structure, as 

shown in Fig. 6. Each block consisted of a convolutional 

layer with 3*3 filters, a linear rectification function, and a 

pooling layer. We used three convolutional blocks and two 

fully connected layers to complete the classification of EEG 

signals. To maintain the correspondence between the output 

pattern and the electrode position, we set the step size to 1 

with padding in each of the convolutional layers and the first 

two pooling layers with padding. In addition, we chose max 

pooling in every pooling layer. Considering the data, number 

of parameters and the computation time, we did not build 

deeper networks. 

In the training process, we set the batch size to 50, i.e., 50 

samples per training step. In addition, these samples and the 

average weight distribution map of the convolutional layer 

outputs were randomly stored at the beginning, the middle 

and the end of the model training. Since the output matrix 

does not have a figurative meaning and only represents the 

weight distribution in this paper, we also averaged the 

different convolutional kernels of each layer and obtained the 

matrix of the weight distribution for each output layer. 

Although keeping the image in the same shape increases the 

number of calculations, it ensures sufficient position 

information, so we can carry out further analysis and 

comparison. All calculations were performed on NVIDIA 

chips using TensorFlow1.4 as the framework. 

D. GRAPH THEOTRTICAL ANALYSIS 

In this article, a connection matrix was built by regarding 

each electrode as a node, so the PLI value can be seen as the 

connection strength between two nodes. Therefore, all the 

nodes constituted a graph. Therefore, we applied graph 

theory for further analysis. We took the network connection 

matrix as a no direction and no weight graph and limited the 

threshold of the connection strength to obtain binarized 

matrices. A value of 1 means that there is a connected edge 

between the two nodes, and vice versa. We set a total of ten 

thresholds from the 5% to the top 50% connection. However, 

to eliminate the influence of threshold selection, we chose the 

area under the curve (AUC) as the result of the final 

statistical analysis. In this article, the graph parameters in the 

global and node perspectives were calculated. All 

calculations were performed in the MATLAB toolbox 

GRETNA. 

1) SMALL-WORLD METRICS 

The clustering coefficient (Cp) measures the degree of 

grouping for a network. It is a basic parameter in graph 

theory that indicates the possibility that adjacent nodes of a 

node are connected to each other. The clustering coefficient 

of one node is the ratio of the number of edges connected to 

the neighbour of the node to the number of possible 

maximum connected edges. As shown in (2), 
ie represents 

actually existing edges, ( 1)i ik k −  represents the maximum 

number of edges that may exist in adjacent nodes. The 

average of the clustering coefficients of all nodes in the 

network is the clustering coefficient of the network. 

Characteristic path length (Lp) is the length of the path with 

the least number of edges between two nodes. Information 

could be transmitted faster through the shortest path. As 

shown in (3), ,p iL represents the characteristic path length of 

each node and it is average value of the shortest path length 

between this node and the others in the network. In addition, 

the average value of all nodes is Lp for the whole network.  
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In general, regular networks have long path lengths and 

high clustering coefficients, random networks have short 

path lengths and low clustering coefficients, and small-world 

networks have higher clustering coefficients than random 

networks and shorter path lengths than the regular network 

[49]. Therefore, small-world networks can achieve efficient 

information delivery at a relatively low cost. Visually, due to 

the characteristics of high-network clustering of short paths 

in small-world networks, clusters (a small group of nodes 

connected to each other) and nodes will be connected by only 

a few groups. Usually, we use the small-world indicator 

sigma to measure whether a network is a small-world 

network. Generally, if sigma is greater than 1, the network is 

a small-world network, as shown in (4). 
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FIGURE 4. The results of dimensionality reduction using the t-SNE algorithm for one subject. (a) Result obtained by connectivity over time. (b) Result 
obtained by connectivity over-trials. 

 

 

FIGURE 5. Sample of inputs. Three channels of input data are composed of connectivity matrices of theta, alpha and beta bands. The data was divided 
into standard stimuli and deviation stimuli. 

 

FIGURE 6. Convolutional network structure. The network consists of three convolutional layers and two fully connected layers. Convolutional layers 
include convolutional (including ReLU activation function) and pooling layers. Numbers indicates the size of each layer. 
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TABLE I 

RESULTS OF DIFFERENT KERNEL SIZES 

Subjects 
Ksize 

1*1 

Ksize 

3*3 

Ksize 

5*5 

Ksize 

7*7 

Ksize 

9*9 

Sub1 0.979 0.979 0.979 0.979 0.979 

Sub2 0.979 0.979 0.979 0.979 0.914 
Sub3 0.969 0.970 0.971 0.971 0.969 

Sub4 0.978 0.974 0.968 0.976 0.927 

Sub5 0.979 0.979 0.979 0.979 0.979 
Sub6 0.975 0979 0.979 0.979 0.967 

Sub7 0.753 0.767 0.735 0.711 0.737 

Sub8 0.979 0.979 0.979 0.979 0.976 
Sub9 0.979 0.979 0.975 0.978 0.977 

Sub10 0.979 0.979 0.979 0.979 0.979 

Sub11 0.977 0.975 0.979 0.968 0.963 

Sub12 0.978 0.979 0.977 0.979 0.976 

Sub13 0.979 0.979 0.979 0.979 0.979 

Average 0.960 0.961 0.958 0.957 0.948 

Ksize means kernel size 

 

TABLE Ⅱ 
RESULTS OF DIFFERENT FREQUENCY BANDS 

Subjects beta alpha theta 

Sub1 0.979 0.979 0.979 

Sub2 0.976 0.960 0.968 

Sub3 0.979 0.973 0.978 
Sub4 0.979 0.979 0.978 

Sub5 0.979 0.979 0.979 

Sub6 0.979 0.979 0.979 
Sub7 0.684 0.780 0.769 

Sub8 0.966 0.979 0.979 

Sub9 0.921 0.975 0.976 
Sub10 0.979 0.979 0.979 

Sub11 0.970 0.949 0.958 

Sub12 0.963 0.966 0.973 
Sub13 0.979 0.979 0.979 

Average 0.949 0.958 0.960 

 

2) EFFICIENCY METRICS 

Efficiency is another fundamental attribute of the network, 

including global efficiency and local efficiency. As shown in 

(5), Global efficiency (Eg) is a concept that corresponds to 

characteristic path length and is numerically approximated by 

its reciprocal. It is proposed because when there is no 

connection between two nodes, L is infinity. Both metrics 

measure the global transmission capability of the network. 

The shorter the path length, the higher the global efficiency is, 

and the faster the rate of information transfer in the network. 

Local efficiency (Eloc) is a concept corresponding to 

clustering coefficients. The clustering coefficient considers 

only the direct connection of adjacent nodes, and the local 

efficiency considers the neighbouring nodes of a node as 

subgraphs. As shown in (6), when ija is one means there is an 

edge between two nodes and zero means no connection. 

( 1)i ik k −  indicates the maximum number of connected 

edges that may exist in node i . And ( )jh id N  is the shortest 

path length from node j to node h , if only node i is 

included. Local efficiency of the whole network is the mean 

value of all nodes. Both the clustering coefficient and local 

efficiency measure the local information transmission 

capability of the network.   

Global efficiency reflects the transport efficiency in a 

network working in parallel, and local efficiency describes 

the subgraph composed of the neighbour nodes of a node, 

which reflects the fault tolerance of the network, i.e., the 

information transmission rate of the nodes adjacent to the 

node when it is removed. 
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III. RESULT 

A. CLASSIFICATION RESULT 

We used different sizes of convolutional kernels for 

classification. Considering later comparison, we set the size 

of the convolutional kernels in each layer to be the same, but 

the number of filters per layer was different, as shown in 

Fig.6. The accuracy is shown in Table 1. In our experiments, 

the classification of 3*3 convolutions worked best, and as the 

size increased, the classification accuracy decreased. The 

impact of the size of the convolutional kernels on the 

convolutional process is not yet conclusive. In this article, we 

used 3*3 convolutional kernels for analysis. 

We also studied the effect of different frequency bands on 

the classification results. We used single-channel data as 

input and found that the accuracy in the theta band was the 

highest, followed by the alpha band, and the beta band was 

relatively low. The results are shown in Table 2. These 

results are consistent with the findings in previous studies [44, 

46, 50, 51] and indicate that theta band plays a vital role in 

MMN research. For further exploration, we divided the 

whole brain into six regions of interest (ROIs). We 

rearranged the electrodes according to the division of ROIs 

and averaged the electrodes in each region. The location of 

each ROI and the result after division is shown in Fig. 7. We 

find that the theta and alpha bands have a more pronounced 

connection in the bilateral temporal lobe and the central 

region, and the theta band is stronger than the alpha band. 

The beta band does not show this, so we assume that the 

exchange of information between the temporal lobes and the 

central area had a significant effect in the MMN experiment. 

In addition, we further studied this through convolutional 

output. 

B. CONVOLUTIONAL LAYERS OUTPUT 

To better represent the weight distribution, we de-averaged 

the output matrix of each convolutional layer. The results are 

shown in Fig. 8.   
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FIGURE 7. ROI division and functional connection matrices after rearrangement. F represents the frontal lobe, LT and RT represent the left temporal 
lobe and the right temporal lobe, respectively, P represents the parietal lobe, FO and PO represent the front occipital lobe and the post occipital lobe, 
respectively. Redder colour represents stronger connection. 

 

From the output of the first layer, we find that the 

connections inside the left and right temporal lobes gradually 

strengthened. Additionally, the connection between the 

temporal lobe and the central region was preserved. For 

deviation stimuli, the connections inside the front occipital 

lobe and the post occipital lobe strengthened, and the 

connection between them was retained. In addition, the 

connection weight of the deviation stimuli was more intense 

than the standard. The output of the second layer shows that 

for the deviation stimuli, the weight of the internal 

connection of the temporal and occipital lobes was further 

enhanced. Two distinct areas with greater weight formed. 

For standard stimuli, the weight of the temporal lobes and the 

occipital lobes were obvious in the beginning, but in the 

training process, the model attempts to weight the connection 

between the occipital region and the frontal lobe. This 

phenomenon is worth studying and is related to the analysis 

of the second convolutional layer output matrices. The third 

layer shows that the weight of the deviation stimuli and 

standard stimuli in the temporal and occipital lobes were 

enhanced more obviously. For deviation stimuli, the 

connection inside the temporal and occipital lobes was 

stronger, and for standard stimuli, it was stronger between 

the temporal and parietal lobes. However, in general, the 

regions were obvious. 

C. GRAPH THEORETICAL ANALYSIS RESULT 

In our paper, we focus on the small-world and efficiency of 

connection matrices, analysing the network from global and 

nodal aspects. Fig. 9 and Fig. 10 show the changes in the 

output matrices of each layer during the training process 

(more details are included in the supplementary materials). 

 

 

1) SMALL-WORLD METRICS 

The clustering coefficient and characteristic path length are 

two factors that restrict each other in small-world attributes. 

Fig. 9 shows the changes in small-world metrics during the 

training process. For deviation stimuli, as the convolutional 

layers deepen and the number of iterations increase, the 

clustering coefficient increases gradually. The deviation 

stimuli are significant between layers and the beginning and 

ending iterations. This represents that the concentration of 

the network is strengthened and the capability of information 

exchange is increasing. However, from the characteristic path 

length, we also find that there is an increase in the 

characteristic path length, which may be caused by the 

deepening convolutional layers that increase the weight 

distribution within the regions. This represents the overall 

information processing capability of the network is reduced. 

For standard stimuli, the deepening of the convolutional layer 

increases the clustering coefficient significantly, but at the 

second and third layers, there is a decrease with the increase 

in the number of iterations. In addition, this trend is 

significant at the second convolutional layer. Therefore, we 

speculate that this reduction is related to the weight 

distribution strategy change at the second convolutional layer, 

which weakens the weight within regions. At the same time, 

the path length decreases significantly in the second and third 

layers. We therefore, further infer that this strategy change 

strengthens longer connections. 

Small-world networks synthetically measure these two 

attributes, and sigma is a commonly used standard for small-

world networks. For the deviation stimuli, the trend is 

basically consistent with the clustering coefficient. For the 

standard stimuli, in the second layer, as the number of 

iterations increases, there is a decrease in sigma, but in the 

third layer, this situation no longer exists. Small-world 
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FIGURE 8.  The output matrices of three convolutional layers. The horizontal and vertical coordinates mark the six ROIs. The upper is deviation stimuli, 
and the lower is standard stimuli. Matrices from left to right are the beginning to the end of iterations, and each iteration represents a training batch of 
50 samples. 
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FIGURE 9.  Small-world analysis. Different colours represent different layers. Samples are obtained from 65 trainings (5 rounds, 13 folds each round). 
The vertical axis represents different metrics, and the horizontal axis represents the number of iterations, and 50 samples per iteration. 

 

 

 

 

FIGURE 10. Efficiency analysis. Different colours represent different layers. Samples are obtained from 65 trainings (5 rounds, 13 folds each round). 
The vertical axis represents different metrics, and the horizontal axis represents the number of iterations, and 50 samples per iteration. 
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(a) 

 

 

(b) 
FIGURE 11. Maps of degree centrality. (a) was obtained from classification of deviation stimuli, and (b) was obtained from classification of standard 
stimuli. Maps from top to bottom are different convolutional layers and from left to right are the beginning to the end of iterations, and each iteration 
contains 50 samples. 
 

attribute enhancements indicate an increase in the efficiency 

of information exchange, so we speculate that when 

classifying standard stimuli, the second convolutional layer 

attempts to change the strategy, but the benefit is no better 

than the previous strategy; i.e., the reduction in path length 

does not compensate for the reduction in clustering 

coefficients, and therefore, in the third convolutional layer, 

the network modified this strategy. 

2) EFFICIENCY METRICS 

Local efficiency is similar to the clustering coefficient and 

used to measure the local information exchange ability of a 

network. However, the clustering coefficient considers the 

direct connection between adjacent nodes, whereas the local 

efficiency considers the subgraph composed of the adjacent  
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FIGURE 12. Degree centrality analysis of ROI in different layers. Samples are obtained from 65 trainings (5 rounds, 13 folds each round). The vertical 
axis represents the value of degree centrality, and the horizontal axis represents number of iterations, and 50 samples per iteration. 

 

nodes of the node. Fig. 10 shows the local efficiency and 

global efficiency change in the connection matrices.  

For the deviation stimuli, there is a significant increase 

between the second convolutional layer and the first 

convolutional layer. In the second and third convolutional 

layers, the increase is not as obvious. There is also a 

significant increase in the starting and the ending of the 

iterations. For the standard stimuli, there is a significant 

increase as the convolutional layers deepen, but in the second 

layer, as the number of iterations increases, there is a 

significant decrease in local efficiency, and in the third layer, 

there is no such situation, which is consistent with our 

previous inferences. 

Global efficiency is numerically close to the reciprocal of 

the path length. Both are widely used to measure the 

efficiency of the whole network. Networks with high global 

efficiency are highly integrated, and the path between nodes 

is always short. Fig. 9 shows the global efficiency of the 

connection matrices. For the deviation stimuli, the reduction 

trend can be seen at various thresholds, and this reduction is 

significant between convolutional layers, except at the first 

layer, there is an increase at the beginning of the iteration. 

For the standard stimuli, although there is still a significant 

reduction between convolutional layers, in the second and 

third layers, as the number of iterations increases, there is an 

increase, which is different from the deviation stimuli. This is 

consistent with the conclusion of the characteristic path 

length. 

 

3) DEGREE FOR EACH NODE 

According to the results obtained by the global metrics of the 

network, we calculate the nodal metric degree centrality (Dc) 

for each node and obtain the topology map through the 

degree value together with the electrode positions. Fig. 11 

shows the degree change with the deepening of the 

convolutional layers and the increase in iterations on each 

electrode. Degree centrality is the number of edges directly 

connected to the node. The greater the degree, the greater the 

number of connected edges, and the more important the node 

is in the network. From Fig. 11(a) we find that for the 

deviation stimuli, after the weight distribution in the first 

convolutional layer, nodes with a large degree value are 

mainly in the occipital region. After the weight distribution 

of the second and third convolutional layers, nodes with a 

large degree value gradually gather in the bilateral temporal 

lobe. This is consistent with the connection matrices of the 

convolutional layer output we obtained before. From Fig. 

11(b) we find that for the standard stimuli, in the first 

convolutional layer, the nodes with a larger degree are in the 

temporal lobe and the central region, and in the second layer, 

the nodes begin to concentrate on the frontal lobe, and the 

occipital region also has a slight increase. This is consistent 

with the connection matrices of the convolutional layer and 

conforms to our previous inference of the second layer 

attempting to change the weight distribution strategy. The 

third layer abandons the strategy in the second layer and 
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strengthens the weight between the nodes in the temporal 

lobe, which results in a degree increase in the temporal lobe. 

To verify this change, we performed a statistical analysis 

of the samples of 65 repeated experiments (13 trainings per 

round, 5 rounds of training). The results are shown in Fig. 12. 

We find that for the deviation stimuli, the temporal lobes and 

occipital regions were significantly higher than the other two 

regions; for standard stimuli, the degree centrality was 

concentrated in the temporal and parietal regions. This shows 

that both the deviation stimuli and the standard stimuli are 

inextricably linked to the temporal lobe. In the visual 

stimulation experiment, the visual activation of MMN is 

reflected as the deviation stimuli have relatively concentrated 

information processing in the occipital region (more details 

are included in the supplementary materials). 

IV. CONCLUSION AND DISCUSSION 

The purpose of this paper is to combine the functional 

connection matrix with deep learning and to explore the work 

performed by the convolutional layer in the classification 

process. Based on the EEG from the visual MMN 

experiment, this paper constructs functional connection 

networks through the PLI by regarding the electrodes as 

nodes and using the matrices as inputs for the convolutional 

neural network. In addition to the classification result, we 

also analyse the weight distribution in the outputs of the 

convolutional layers to explore the rule of feature extraction 

of convolutional layers. Our classification results are above 

95%, which can guarantee the validity of features extracted 

by the convolutional layers. To further analyse the weight 

distribution matrices, we use the graph theory method. All 

our graph analysis results are statistically significant. Finally, 

we combine the results of graph theory with the position 

information of the electrodes and present them as topological 

maps. 

From our classification results, we can easily find that the 

theta band has a greater contribution to the classification of 

MMN than the alpha and beta bands, which means that the 

theta band is more valuable in MMN. This result is also 

consistent with the analysis of spectral power in our previous 

study [46]. From the input connection matrices (see Fig. 10), 

we find that there is stronger connection in the theta and 

alpha bands in the temporal region both for the deviation 

stimuli and the standard stimuli. We assume the classification 

accuracy of the beta band being lower than the others may be 

associated with no significant connection in the temporal 

lobe. The weight distribution matrices of each layer in the 

iterative process shows that the weight of the temporal region 

gradually strengthens with the deepening of convolutional 

layers and iterations, accompanied by the reinforcement of 

weight in the occipital region, which eventually forms 

regions with significantly greater weight in the temporal and 

occipital regions, except for a special case when classifying 

standard stimuli, in which the second layer changes the 

weighting strategy, and the connection weight of the frontal 

and occipital regions are strengthened. The connection 

between the occipital region and the frontal lobe is longer 

than the interior of the temporal lobe and the interior of the 

occipital region.  

We conducted further research through graph theory to 

study the effect of greater weight given to the connections in 

the regions and greater weight given to the longer 

connections, which shows that for the deviation stimuli, the 

matrices obtained after the weight distribution are greatly 

enhanced in local information communication, which is 

manifested by increases in the clustering coefficient and local 

efficiency, and necessarily leads to the decline in the global 

information exchange capability by an increase in path length 

and a decrease in the global efficiency. However, in general, 

the connection matrices after weight distribution have a 

stronger information exchange capability and show an 

increase in small-world attributes. For standard stimuli, in the 

first convolutional layer, the output matrix is the same as the 

deviation stimuli; but the second layer tends to change this 

strategy of strengthening local edges and gives weight to 

long connections. The global information exchange is 

enhanced, which is manifested by a decrease in path length, 

and an increase in the global efficiency, but the local 

information exchange is also reduced, represented by the 

reduction in clustering coefficients and local efficiency. The 

small-world network of the connection matrices is reduced. 

Because of this, in the third layer, the network no longer 

strengthens the long connection. Therefore, we believe that in 

a three-layer convolutional network, the first convolutional 

layer will find and initially strengthen the connection of 

important areas, and the second layer may continue the 

strategy of the first layer or find a new weight-allocation 

strategy. The third layer network will make the final decision 

based on the first two layers. However, in general, the 

convolutional network is still inclined to strengthen the 

weight of connections in local areas [52-54]. 

In this paper, from the final output of the connection 

matrix by convolutional layers, we can easily find that the 

temporal lobe and the occipital region have a large weight, 

and when we focus on the nodal degree, the results show that 

the important nodes are mainly concentrated in the temporal 

lobe and the occipital area. The temporal lobe region is 

related to the origin of the MMN mechanism [55, 56], so 

auditory MMN is the easiest to induce, and it is also the most 

classic MMN experiment. From this paper, we infer that even 

visual MMN experiments require the temporal lobe region. 

Additionally, the difference between the deviation stimuli 

and the standard stimuli are mainly reflected in the visual 

area in which the deviation stimuli has more strengthened 

weight and important nodes in the visual area. 

In summary, in this article, we innovatively combined the 

functional connection matrices with deep learning, explored 

the convolutional layers in weight distribution, and 

determined that the occipital region and temporal lobe are 

pivotal in the MMN experiment.  
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However, the current research also has some limitations. 

Due to the lack of relevant research in the combination of 

functional connectivity and deep learning, there are some 

places we deal with relatively simply. For example, to 

maintain the size of the matrices of the convolutional layer, 

we simply set the step size to 1, and to simplify the analysis, 

the obtained multiple convolutional kernels were averaged. 

However, we believe that applying the deep learning 

algorithm to the functional connection matrices and 

analysing the weight distribution of the convolutional layer 

by means of graph theory may be a new method for 

exploring EEG and deep learning. 

APPENDIX 

Appendix A and B are statistical analyses of results in Fig.9 

to Fig.10, respectively. The results in tables are p-value 

between two layers from different iterations. Appendix C is 

statistical analysis of results of Fig.11. The result in table is 

p-value in comparison between two regions in different 

iterations.. 
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APPENDIX 
A. STATISTICAL ANALYSIS OF SMALL-WORLD 

TABLE Ⅰ 
CLUSTERING COEFFICIENT IN DIFFERENT LAYERS 

 

 

 

 

 

 

 

 

 

 

 

 
I-Layer J-Layer   Dev Std 

MD (I-J) MSE P value MD (I-J) MSE P value 

Step1 

layer1 
layer2 -.05809* .00349 .000 -.06612* .00311 .000 

layer3 -.07760* .00447 .000 -.07883* .00354 .000 

layer2 
layer1 .05809* .00349 .000 .06612* .00311 .000 

layer3 -.01951* .00507 .001 -.01271* .00387 .004 

layer3 
layer1 .07760* .00447 .000 .07883* .00354 .000 

layer2 .01951* .00507 .001 .01271* .00387 .004 

Step2 

layer1 
layer2 -.08106* .00318 .000 -.03275* .00498 .000 

layer3 -.09348* .00353 .000 -.07123* .00428 .000 

layer2 
layer1 .08106* .00318 .000 .03275* .00498 .000 

layer3 -.01242* .00412 .009 -.03849* .00571 .000 

layer3 
layer1 .09348* .00353 .000 .07123* .00428 .000 

layer2 .01242* .00412 .009 .03849* .00571 .000 

Step3 

layer1 
layer2 -.08365* .00364 .000 -.01957* .00554 .002 

layer3 -.09658* .00364 .000 -.06653* .00451 .000 

layer2 
layer1 .08365* .00364 .000 .01957* .00554 .002 

layer3 -.01293* .00364 .001 -.04696* .00627 .000 

layer3 
layer1 .09658* .00364 .000 .06653* .00451 .000 

layer2 .01293* .00364 .001 .04696* .00627 .000 

Step4 

layer1 
layer2 -.08222* .00319 .000 -.00534 .00597 .754 

layer3 -.09225* .00319 .000 -.05009* .00559 .000 

layer2 
layer1 .08222* .00319 .000 .00534 .00597 .754 

layer3 -.01003* .00319 .006 -.04475* .00756 .000 

layer3 
layer1 .09225* .00319 .000 .05009* .00559 .000 

layer2 .01003* .00319 .006 .04475* .00756 .000 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2968717, IEEE Access

 

VOLUME XX, 2017 9 

 
TABLE Ⅱ 

CHARACTERISTIC PATH LENGTH IN DIFFERENT LAYERS 

 

 

 

 

 

 

 

 

 

 

 
I-Layer J-Layer   Dev Std 

MD (I-J) MSE P value MD (I-J) MSE P value 

Step1 

layer1 
layer2 -.18708* .01693 .000 -.18346* .01506 .000 

layer3 -.35453* .01984 .000 -.38387* .01630 .000 

layer2 
layer1 .18708* .01693 .000 .18346* .01506 .000 

layer3 -.16745* .02408 .000 -.20041* .01991 .000 

layer3 
layer1 .35453* .01984 .000 .38387* .01630 .000 

layer2 .16745* .02408 .000 .20041* .01991 .000 

Step2 

layer1 
layer2 -.23459* .01475 .000 -.10968* .01601 .000 

layer3 -.39879* .01745 .000 -.34843* .01677 .000 

layer2 
layer1 .23459* .01475 .000 .10968* .01601 .000 

layer3 -.16420* .02125 .000 -.23876* .02100 .000 

layer3 
layer1 .39879* .01745 .000 .34843* .01677 .000 

layer2 .16420* .02125 .000 .23876* .02100 .000 

Step3 

layer1 
layer2 -.22330* .02048 .000 -.07070* .01490 .000 

layer3 -.40524* .02346 .000 -.30269* .01751 .000 

layer2 
layer1 .22330* .02048 .000 .07070* .01490 .000 

layer3 -.18194* .02854 .000 -.23199* .02065 .000 

layer3 
layer1 .40524* .02346 .000 .30269* .01751 .000 

layer2 .18194* .02854 .000 .23199* .02065 .000 

Step4 

layer1 
layer2 -.21871* .01319 .000 -.05993* .01657 .001 

layer3 -.39811* .01534 .000 -.29307* .02191 .000 

layer2 
layer1 .21871* .01319 .000 .05993* .01657 .001 

layer3 -.17941* .01786 .000 -.23314* .02507 .000 

layer3 
layer1 .39811* .01534 .000 .29307* .02191 .000 

layer2 .17941* .01786 .000 .23314* .02507 .000 
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TABLE Ⅲ 

SIGMA IN DIFFERENT LAYERS 

 

 

 

 

 

 

 

 

 

 
I-Layer J-Layer   Dev Std 

MD (I-J) MSE P value MD (I-J) MSE P value 

Step1 

layer1 
layer2 -.09805* .01135 .000 -.09455* .00973 .000 

layer3 -.10542* .01429 .000 -.08605* .01125 .000 

layer2 
layer1 .09805* .01135 .000 .09455* .00973 .000 

layer3 -.00737 .01656 .960 .00850 .01235 .869 

layer3 
layer1 .10542* .01429 .000 .08605* .01125 .000 

layer2 .00737 .01656 .960 -.00850 .01235 .869 

Step2 

layer1 
layer2 -.16403* .01359 .000 -.06999* .01256 .000 

layer3 -.15272* .01525 .000 -.09791* .01317 .000 

layer2 
layer1 .16403* .01359 .000 .06999* .01256 .000 

layer3 .01131 .01895 .910 -.02792 .01591 .226 

layer3 
layer1 .15272* .01525 .000 .09791* .01317 .000 

layer2 -.01131 .01895 .910 .02792 .01591 .226 

Step3 

layer1 
layer2 -.17142* .01151 .000 -.03339 .01551 .098 

layer3 -.16614* .01278 .000 -.09893* .01523 .000 

layer2 
layer1 .17142* .01151 .000 .03339 .01551 .098 

layer3 .00527 .01533 .981 -.06554* .01875 .002 

layer3 
layer1 .16614* .01278 .000 .09893* .01523 .000 

layer2 -.00527 .01533 .981 .06554* .01875 .002 

Step4 

layer1 
layer2 -.18200* .01292 .000 .03443 .01589 .095 

layer3 -.17536* .01459 .000 -.07898* .01785 .000 

layer2 
layer1 .18200* .01292 .000 -.03443 .01589 .095 

layer3 .00664 .01734 .974 -.11341* .02155 .000 

layer3 
layer1 .17536* .01459 .000 .07898* .01785 .000 

layer2 -.00664 .01734 .974 .11341* .02155 .000 
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B. STATISTICAL ANALYSIS OF EFFICIENCY 
TABLE Ⅰ 

LOCAL EFFICIENCY IN DIFFERENT LAYERS 

 

 

 

 

 

 

 

 

 

 
I-Layer J-Layer   Dev Std 

MD (I-J) MSE P value MD (I-J) MSE P value 

Step1 

layer1 
layer2 -.03624* .00305 .000 -.04007* .00285 .000 

layer3 -.04171* .00412 .000 -.03949* .00339 .000 

layer2 
layer1 .03624* .00305 .000 .04007* .00285 .000 

layer3 -.00547 .00462 .559 .00058 .00362 .998 

layer3 
layer1 .04171* .00412 .000 .03949* .00339 .000 

layer2 .00547 .00462 .559 -.00058 .00362 .998 

Step2 

layer1 
layer2 -.05309* .00295 .000 -.02143* .00401 .000 

layer3 -.05450* .00342 .000 -.03828* .00381 .000 

layer2 
layer1 .05309* .00295 .000 .02143* .00401 .000 

layer3 -.00141 .00393 .978 -.01685* .00455 .001 

layer3 
layer1 .05450* .00342 .000 .03828* .00381 .000 

layer2 .00141 .00393 .978 .01685* .00455 .001 

Step3 

layer1 
layer2 -.05737* .00304 .000 -.01241* .00506 .047 

layer3 -.05967* .00320 .000 -.03780* .00406 .000 

layer2 
layer1 .05737* .00304 .000 .01241* .00506 .047 

layer3 -.00230 .00346 .881 -.02539* .00544 .000 

layer3 
layer1 .05967* .00320 .000 .03780* .00406 .000 

layer2 .00230 .00346 .881 .02539* .00544 .000 

Step4 

layer1 
layer2 -.05599* .00290 .000 -.00197 .00574 .981 

layer3 -.05575* .00334 .000 -.02566* .00491 .000 

layer2 
layer1 .05599* .00290 .000 .00197 .00574 .981 

layer3 .00025 .00353 1.000 -.02369* .00676 .002 

layer3 
layer1 .05575* .00334 .000 .02566* .00491 .000 

layer2 -.00025 .00353 1.000 .02369* .00676 .002 
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TABLE Ⅱ 

GLOBAL EFFICIENCY IN DIFFERENT LAYERS 

 

 

 

 

 

 

 

 

 

 
I-Layer J-Layer   Dev Std 

MD (I-J) MSE P value MD (I-J) MSE P value 

Step1 

layer1 
layer2 .02334* .00182 .000 .02318* .00193 .000 

layer3 .04097* .00200 .000 .04326* .00190 .000 

layer2 
layer1 -.02334* .00182 .000 -.02318* .00193 .000 

layer3 .01763* .00238 .000 .02008* .00232 .000 

layer3 
layer1 -.04097* .00200 .000 -.04326* .00190 .000 

layer2 -.01763* .00238 .000 -.02008* .00232 .000 

Step2 

layer1 
layer2 .02679* .00157 .000 .01186* .00201 .000 

layer3 .04210* .00157 .000 .03826* .00209 .000 

layer2 
layer1 -.02679* .00157 .000 -.01186* .00201 .000 

layer3 .01531* .00157 .000 .02640* .00250 .000 

layer3 
layer1 -.04210* .00157 .000 -.03826* .00209 .000 

layer2 -.01531* .00157 .000 -.02640* .00250 .000 

Step3 

layer1 
layer2 .02481* .00173 .000 .00641* .00196 .004 

layer3 .04100* .00199 .000 .03299* .00211 .000 

layer2 
layer1 -.02481* .00173 .000 -.00641* .00196 .004 

layer3 .01619* .00210 .000 .02659* .00237 .000 

layer3 
layer1 -.04100* .00199 .000 -.03299* .00211 .000 

layer2 -.01619* .00210 .000 -.02659* .00237 .000 

Step4 

layer1 
layer2 .02609* .00154 .000 .00289 .00220 .471 

layer3 .04324* .00154 .000 .03204* .00272 .000 

layer2 
layer1 -.02609* .00154 .000 -.00289 .00220 .471 

layer3 .01714* .00154 .000 .02915* .00306 .000 

layer3 
layer1 -.04324* .00154 .000 -.03204* .00272 .000 

layer2 -.01714* .00154 .000 -.02915* .00306 .000 
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C. STATISTICAL ANALYSIS OF DEGREE CENTRALITY 

DEGREE CENTRALITY IN DIFFERENT AREAS 

   Dev Std 

I-Layer J-Layer MD (I-J) MSE P value MD (I-J) MSE P value 

Layer1 

F 

T -3.99053* .19993 .000 -3.91495* .20787 .000 

P -3.46153* .23976 .000 -3.75886* .25612 .000 

O -4.94409* .23663 .000 -.68473* .21022 .009 

T 

F 

P 

O 

3.99053* .19993 .000 3.91495* .20787 .000 

.52900 .20464 .065 .15609 .24587 .989 

-.95356* .20097 .000 3.23021* .19760 .000 

P 

F 3.46153* .23976 .000 3.75886* .25612 .000 

T -.52900 .20464 .065 -.15609 .24587 .989 

O -1.48256* .24062 .000 3.07412* .24785 .000 

O 

F 4.94409* .23663 .000 .68473* .21022 .009 

T .95356* .20097 .000 -3.23021* .19760 .000 

P 1.48256* .24062 .000 -3.07412* .24785 .000 

Layer2 

F 

T -5.70987* .19009 .000 4.41909* .41924 .000 

P -2.09895* .22637 .000 3.72368* .41311 .000 

O -5.63443* .22407 .000 3.01396* .41420 .000 

T 

F 

P 

O 

5.70987* .19009 .000 -4.41909* .41924 .000 

3.61092* .17076 .000 -.69540 .35522 .276 

.07544 .16770 .998 -1.40513* .35649 .001 

P 

F 2.09895* .22637 .000 -3.72368* .41311 .000 

T -3.61092* .17076 .000 .69540 .35522 .276 

O -3.53548* .20792 .000 -.70972 .34926 .238 

O 

F 5.63443* .22407 .000 -3.01396* .41420 .000 

T -.07544 .16770 .998 1.40513* .35649 .001 

P 3.53548* .20792 .000 .70972 .34926 .238 

Layer3 

F 

T -6.70912* .21752 .000 -2.39921* .41817 .000 

P -4.07508* .23651 .000 -1.92510* .41817 .000 

O -6.76925* .25743 .000 .40453 .41817 1.000 

T 

F 

P 

O 

6.70912* .21752 .000 2.39921* .41817 .000 

2.63404* .15872 .000 .47411 .41817 1.000 

-.06013 .18848 1.000 2.80374* .41817 .000 

P 

F 4.07508* .23651 .000 1.92510* .41817 .000 

T -2.63404* .15872 .000 -.47411 .41817 1.000 

O -2.69417* .21011 .000 2.32963* .41817 .000 

O 
F 6.76925* .25743 .000 -.40453 .41817 1.000 

T .06013 .18848 1.000 -2.80374* .41817 .000 
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P 2.69417* .21011 .000 -2.32963* .41817 .000 


