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ABSTRACT This paper introduces the perpendicular parking algorithm of car-like robots, such that the
generated path consists of a cusp. This path planning is based on the car’s turning radii, which can be
determined by the car’s geometry and its maximum steering angle. As far as we know, this paper is novel
in developing autonomous perpendicular parking based on circular arc and straight line segments, such that
a cusp on the generated path is allowed. Since a cusp is allowed, the proposed parking approach is suitable
for parking in a small space. The simulation results show the validity of the proposed approach.

INDEX TERMS Autonomous car; Autonomous parking; Autonomous perpendicular parking; Path
planning; Small space parking;

I. INTRODUCTION
Even for experienced drivers, parking can be a difficult task,
especially in the case where parking spots are very narrow.
The research effort in autonomous parking has result in
an extensive literature [1]–[7]. The automobile industry has
already started producing several cars with parking assistants
which can actively control acceleration, breaking and steer-
ing, the research interest in the automated parking is still
strong.

Autonomous vehicles must perform several tasks simulta-
neously, such as lane following while avoiding collision [8]–
[12] or autonomous parking [5]–[7], [13]–[17]. Since an au-
tonomous car must perform various tasks simultaneously, it
is highly desirable that a car performs a task using a minimal
computational load. This requirement for low computational
load inspired us to develop a path planning method which is
computationally efficient.

Many papers [5]–[7], [13]–[17] considered autonomous
parallel parking. Perpendicular parking was handled in sev-
eral papers, such as [2]–[4], [18], [19]. The path planning
method in [2] does not work for an arbitrary initial position.
In [3], [4], a constrained optimization is utilized to generate
a path without collision. Here, constraints include collision-
free condition and mechanical constraints. In [3], weighting
parameters must be selected carefully to achieve a safe park-
ing obeying the constraints.

When a human tries to park a car in a small parking

spot, he or she drives the car back and forth to generate a
path with a cusp. However, planning approaches in [3], [18],
[20] considered feedback steering controls for perpendicular
reverse parking in a single maneuver. [3], [18], [20] cannot
generate a path with a cusp, which may restrict the car’s
motion in a small parking space.

[21] solved the path planning problem when the car cannot
reverse and cusps are not allowed. [21] gives a sufficient set
of paths, i.e., a set which always contains an optimal path.
[21] showed that any optimal path can be described by one
of 6 words: LRL,LSR,RLR,RSR,RSL,LSL, where L
, R, and S stand for “go left”, “go right”, and “go straight”,
respectively. Here, “left” and “right” mean counter-clockwise
or clockwise around a tightest possible circle, and of course
a car always goes less than 2π around any circle. L orR is an
arc of a circle, and S is a straight line segment. A word, such
as LSL, stands for the corresponding class of paths consist
of an arc or a straight line segment. Each character in a word
is called the motion. [21] showed that any optimal path can
be described by a word with three motions.

We acknowledge that the steering wheel can be turned
to adjust the turning radius of the car. This implies that the
turning radius of the car does not have to be fixed. However,
this adjustable turning radius makes the path planning much
more complicated, since the search space for path planning
increases considerably. By fixing the turning radius, the path
of the car is composed of circular arc and straight line seg-
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ments. Thus, planning problem becomes simple and intuitive.
Similarly to ours, the authors of [13] fixed the turning

radius to enable the path planning for autonomous parallel
parking. However, [13] is tailored for parallel parking and
cannot be extended to perpendicular parking. The method
presented in this paper is a geometric path planning method
specifically tailored for perpendicular parking.

In [19], rapid-exploring random tree (RRT) algorithms
were used to generate a safe path to the parking space.
However, RRT algorithms generate random samples to build
a path and does not generate the optimal path as long as the
number of samples does not go to infinity. In [19], a start tree
is generated having the car’s initial position as its root, and a
goal tree is generated having the goal position as its root. The
start tree is related to the forward maneuver of the car, and
the goal tree is related to the backward maneuver of the car.
Then, a bidirectional RRT tree is generated as a union of the
two trees. A single cusp appears at the point where the two
trees meet, since the start tree and the goal tree are related to
forward and backward maneuvers respectively.

This paper introduces the perpendicular parking algorithm
of car-like robots, such that the generated path consists of a
cusp. Inspired by [21], our approach uses a word to generate
a path consist of arcs and straight line segments. We generate
a path with multiple motion segments. This path planning
is based on the car’s minimum turning radii, which can be
determined by the car’s geometry and its maximum steering
angle.

As far as we know, this paper is novel in developing
autonomous perpendicular parking based on circular arc and
straight line segments, such that a cusp on the generated path
is allowed. Since a cusp is allowed, the proposed parking ap-
proach is suitable for parking in a small space.1 We compare
the proposed approach with [19] to verify the effectiveness
of our approach.

The paper is organized as follows: Section II discusses
definitions and assumptions related to our paper. Section III
introduces our path planning for autonomous perpendicular
parking. Section IV is devoted to steering and speed controls
to follow the generated path. Section V introduces MATLAB
simulations to verify our path plan method. Section VI pro-
vides conclusions.

II. DEFINITIONS AND ASSUMPTIONS
This paper assumes that obstacle environments are known a
priori. However, in a real situation, it is not easy to sense
the correct position of the obstacles. [3] proposed the sensing
algorithm to generate obstacle information using multiple
sensors (GPS, lidar, or radar). The empty parking place can
be extracted using the approach in [22]. Thus, the goal of this
paper is to generate a safe path to the parking space using
the obstacle information, which is accessible using multiple

1Since our parking approach does not need a driver sitting inside the car,
the car can be parked in an extremely small space between two obstacles,
such that a human driver cannot get out of the car blocked by the obstacles.
Therefore, comfort of the driver is not important in this paper.

sensors. Once a safe path is generated, then steering and
speed are controlled to make the car follow the generated
path.

We briefly introduce the sensing algorithm in [3] to gener-
ate obstacle information using multiple sensors (GPS, lidar,
or radar). Suppose that the car is equipped laser sensors. The
complete point cloud on close obstacles is obtained from
the sensors. Then, an Euclidean Cluster Extraction algorithm
is used to have each obstacle represented as a cluster. The
orientation of each cluster is extracted by fitting a line model
to the points belonging to the contour of the cluster using
a RANSAC algorithm. The orientation of the bounding box
will be equal to the orientation of the fitter line.

Without loss of generality, this paper considers a front
wheel drive vehicle. The kinematic model of a car with
front-wheel steering (non-holonomic system) is described as
follows.

Ẋ = v ∗ F ∗ (cos(θ), sin(θ), tan(φ)/L)T . (1)

Here, X = (x, y, θ)T , x and y are the Cartesian coordinates
of the midpoint of the rear wheel axle. θ is the orientation
angle of the car. v is the speed of the car. φ is the steering
angle, andL is the wheel base (distance between the front and
rear wheel axles). The steering φ and the speed v are control
commands which drive the vehicle. F indicates whether the
car moves forwards or backwards. If the car moves forwards,
then we set F = 1. Otherwise, we set F = −1.

Inspired by [13], this paper presents how to plan the car’s
path which is followed by the midpoint of the rear axle. [23]
tackled a path planning problem when the car can reverse
and cusps are allowed. Inspired by [23], the movement of
the car-like car is composed of the following six motions
L+, L−, R+, R−, S+, S−. Here, L+ indicates turning to the
left while going forwards, and L− indicates turning to the
left while going backwards. R+ indicates turning to the
right while going forwards, and R− indicates turning to the
right while going backwards. S+ indicates going straight
forwards, and S− indicates going straight backwards. A
motion in {L+, L−, R+, R−} is an arc of a tightest possible
circle, and a motion in {S+, S−} is a line segment.

Let r denote the radius of a tightest possible circle which
is associated to a motion in {L+, L−, R+, R−}. r is set by
the geometry of the car [13]. r = L

tan(β) where L is the
wheelbase, and β is the maximum steering angle [13]. As
we increase the steering angle β, the turning radii decreases.

We handle the case where the parking space is to the right
of the car. The case where the parking space is to the left of
the car can also be handled similarly to the case presented in
this paper. Our constraint is that the car is perpendicular to
the parking space initially. This is what a driver usually does
to perform perpendicular parking.

We make the car move backwards while entering the
parking space. This backward parking is what a driver usually
does to perform perpendicular parking in a narrow parking
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space. It is worth to note that parking maneuvers with for-
ward motions are seldom considered in the literature [3]. This
backward parking maneuver is desirable considering the fact
that once the parking is done, the driver can easily pull the
car out of the parking space by just moving forwards.

Our goal is to search for a word, such that the word
makes the perpendicular parking possible. We derive a word
which starts from S+ and ends at S−. This implies that the
car moves straight forwards initially, and it moves straight
backwards lastly.
InitP denotes the initial position of the car. Also, GoalP

denotes the goal position of the car. The line segment associ-
ated to S+ intersects InitP , and the line segment associated
to S− intersectsGoalP . These two line segments intersect at
one point, say InterP . See Fig. 1. In this figure, the arrow
direction indicates the movement direction of the car. Also,
obstacles on both sides of the parking space are illustrated
with two rectangles.

InitP

GoalP

InterP InfP

FIGURE 1. Illustration. In this figure, the arrow direction indicates the
movement direction of the car. Also, obstacles on both sides of the parking
space are illustrated with two rectangles.

Consider an infinite ray which is associated to S+, such
that the ray starts from InterP . Let InfP denote a point
on the infinite ray, such that the point is infinitely far
from InterP . Let Ray(InterP, InfP ) denote the ray.
A(InitP, InterP, InfP ) is an angle ofLn(InterP, InitP )
measured counter-clockwise from Ray(InterP, InfP ).
Here, Ln(InterP, InitP ) denotes the line segment whose
two end points are InterP and InitP respectively. In Fig. 1,
A(InitP, InterP, InfP ) is 180 degrees.

III. PERPENDICULAR PARKING
A. A(INITP, INTERP, INFP ) IS 180 DEGREES
Consider the case where A(InitP, InterP, InfP ) is 180
degrees. We present a short word to perform perpendicular
parking as follows :S+R−S−. The car is perpendicular to
the parking space initially. Thus, utilizing S+, the car moves
perpendicular to the parking space. Since the parking space is
to the right of the car, R− is required for parking while going
backwards.

We present how to derive an arc path associated toR−. We
draw a circle with radius r, such that the circle is tangential to
both Ray(InterP, InfP ) and Ln(InterP,GoalP ). Here,
Ln(InterP,GoalP ) is the line segment whose two end

points are InterP andGoalP respectively. See Fig. 2. In this
figure, the dotted circle indicates the circle which is tangen-
tial to both Ray(InterP, InfP ) and Ln(InterP,GoalP ).
An arc of this circle is utilized as an arc path associated
to R−. Ray(InterP, InfP ) is tangential to an arc path
associated to R− at a point, say TangentP .

InitP

GoalP

InterP

R− InfP
TangentP

FIGURE 2. Illustration. The dotted circle indicates the circle which is
tangential to both Ray(InterP, InfP ) and Ln(InterP,GoalP ). An arc of
this circle is utilized as an arc path associated to R−.

There may be a case where R− maneuver in S+R−S−

makes the car collide with an obstacle next to the parking
space. See Fig. 3. In this figure, an arc of the dotted circle is
utilized as an arc path associated toR−. See that this arc path
leads to collision.

InitP

GoalP

InterP

R−

TangentP
InfP

FIGURE 3. Illustration. In this figure, an arc of the dotted circle is utilized as
an arc path associated to R−. See that this arc path leads to collision.

B. A(INITP, INTERP, INFP ) IS LESS THAN 180
DEGREES.
If R− maneuver in S+R−S− makes the car collide, then
we gradually decrease A(InitP, InterP, InfP ) by chang-
ing the position of InfP . Fig. 3 shows the initial posi-
tion of InfP . While fixing both Ln(InterP, InitP ) and
InterP , we gradually change the position of InfP so that
A(InitP, InterP, InfP ) gradually decreases to 90 degrees.
In our MATLAB simulations, we change the position of
InfP so that A(InitP, InterP, InfP ) decreases by 10
degrees at each iteration. Recall that an arc path associated
to R− is generated by drawing a circle with radius r, such
that the circle is tangential to both Ray(InterP, InfP ) and
Ln(InterP,GoalP ).
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We present how to determine whether the path planning
leads to collision at each iteration. We draw an arc path asso-
ciated to the car’s edge and check whether the arc meets an
obstacle boundary. In the previous paragraph, we considered
a circle with radius r, such that the circle is tangential to both
Ray(InterP, InfP ) and Ln(InterP,GoalP ). Let Center
denote the center of the circle. Also, w is the width of the car.
We draw a circle with radius r − w/2, such that the circle’s
center is Center. The arc of this circle is utilized as an arc
path associated to the car’s edge.

See Fig. 4 for an illustration. In this figure, B is utilized as
an arc associated to the car’s edge. In the case whereB meets
an obstacle boundary, the path planning at this iteration leads
to collision. Thus, we need to change the position of InfP so
thatA(InitP, InterP, InfP ) decreases at the next iteration.

InitP

GoalP

InterP

B

TangentP

InfP

Center

FIGURE 4. B is utilized as an arc path associated to the car’s edge. In the
case where B meets an obstacle boundary, the path planning at this iteration
leads to collision.

While A(InitP, InterP, InfP ) decreases, we search for
a moment when an arc path associated to R− does not result
in collision. In other words, we search for the case where B
does not meet an obstacle. See Fig. 5 for an illustration of
the case where an arc path associated to R− does not result
in collision. In this figure, A(InitP, InterP, InfP ) is 150
degrees.

Consider the case where A(InitP, InterP, InfP ) is
less than 180 degrees. In this case, the car cannot move
along the path composed of Ln(InitP, InterP ) and
Ln(InterP, TangentP ), due to the maximum turn rate of
the car. We thus need to smooth the path so that the car can
traverse the path smoothly.

We next present how to smooth the path composed of
Ln(InitP, InterP ) and Ln(InterP, TangentP ). We draw
a circle with radius r, such that the circle is tangential to
both Ln(InitP, InterP ) and Ln(InterP, TangentP ). Let
t1 denote a point on Ln(InitP, InterP ), at which point
the tangential circle intersects Ln(InitP, InterP ). Let t2
denote a point on Ln(InterP, TangentP ), at which point
the tangential circle intersects Ln(InterP, TangentP ).

In Fig. 5, the tangential circle is illustrated with a dashed
circle. In this figure, an arc of the dashed circle is utilized as
an arc path associated to L+.

The car starts from InitP and moves alongLn(InitP, t1),
which is associated to S+. Then, it moves along an

InitP

GoalP

R−

TangentPL+

t1

t2

InfP

Center

FIGURE 5. Illustration. In this figure, an arc of the dashed circle is utilized as
an arc path associated to L+.

arc path associated to L+. Thereafter, it moves along
Ln(t2, TangentP ), which is associated to S+. Next, it tra-
verses an arc path associated to R−. Finally, it moves back-
wards to reach GoalP (S−). The word for these movements
is S+L+S+R−S−.

1) A(InitP, InterP, InfP ) is 90 degrees
While fixing both Ln(InterP, InitP ) and InterP ,
we gradually change the position of InfP so that
A(InitP, InterP, InfP ) gradually decreases to 90 degrees.

Suppose that A(InitP, InterP, InfP ) decreases to 90
degrees. This case, we search for a safe path to avoid collision
utilizing the following word :S+L+S−. This word implies
that we make the car turn left so that it does not collide with
an obstacle as it moves backwards later.

See Fig. 6 for an illustration of the case where
we use S+L+S− for parking maneuver. In this case,
Ray(InterP, InfP ) and Ln(InterP,GoalP ) are parallel
to each other. See that A(InitP, InterP, InfP ) is 90 de-
grees.

We draw a circle with radius r, such that the circle is
tangential to Ln(InitP, InterP ) and Ray(InterP, InfP ).
Let t1 denote a point on Ln(InitP, InterP ), at which point
the tangential circle intersects Ln(InitP, InterP ). Let t2
denote a point on Ray(InterP, InfP ), at which point the
tangential circle intersects Ray(InterP, InfP ).

In Fig. 6, the tangential circle is illustrated with a dashed
circle. In this figure, an arc of the dashed circle is utilized as
an arc path associated to L+.

The car starts from InitP and moves alongLn(InitP, t1),
which is associated to S+. Then, it moves along an arc
path associated to L+. Thereafter, it moves backwards along
Ln(t2, GoalP ), which is associated to S−. See Fig. 6 for an
illustration.

There may be a situation where the tangential point t1
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InitP

GoalP

L+

t1

t2

InfP

InterP

FIGURE 6. Illustration. In this figure, an arc of the dashed circle is utilized as
an arc path associated to L+. The word for this parking maneuver is
S+L+S−.

appears behind the car initially. This case, the car which is at
InitP needs to move backwards to reach t1. This backward
maneuver is associated to S− not to S+. Once the car reaches
t1, then it moves along the arc of the tangential circle until
it reaches t2. This maneuver is associated to l+. Then, it
moves backwards to reach the goal point. This maneuver is
associated to S−. In summary, the car moves according to
S−l+S− maneuver. Thus, we generate the path (S+l+S− or
S−l+S−) connecting InitP, t1, t2, GoalP in this order.

IV. SPEED AND STEERING CONTROLS TO FOLLOW
THE GENERATED PATH
This section presents how to set speed and steering controls
to follow the generated path. The generated path is composed
of straight segments and circular arcs of minimal radius.

A circular arc can be followed by making the car turn with
the maximum steering angle. This implies that whenever the
car is on a circular arc, we set the steering of the car as the
maximum steering angle.

A simple approach to make a car move along a straight
segment is to set the steering of the car as zero. However,
this open loop approach cannot assure that the car tracks
the segment. In this paper, a straight segment is followed by
making the car move towards the end point of the segment.

Thus, we use the following feedback control approach to
make the car track a straight segment. Let (xs, ys) denote the
end point of a straight segment. The heading of the car must
head towards (xs, ys). Thus, the desired heading of the car is

θd = tan−1(
ys − y
xs − x

). (2)

The error of the heading is

eθ = θd − θ. (3)

We then change eθ so that it exists between −π and π. We
use

eθ2 = tan−1(
s(eθ)

c(eθ)
). (4)

Then, we use the steering command as

φ = tanh(
eθ2
C1

) ∗ C2. (5)

Here, C1 and C2 are positive constants. This control implies
that in the case where eθ2 > 0, we set the steering control as
φ > 0. Also, in the case where eθ2 < 0, we set the steering
control as φ < 0. In simulations, we set C2 as π/180. This
implies that ‖φ‖ in (5) is bounded above by π/180, which is
associated to 1 degree.

The speed of the car is controlled so that whenever the
car finishes moving along a segment (a straight segment or a
circular arc), it stops at the end of the segment.

Recall that v denotes the speed of the car. Also, am denotes
the maximum acceleration of the car. The required time
interval to decrease the car’s speed from v to 0 is

Tr = v/am. (6)

Using (6), the traversal distance of the car as it decreases
its speed from v to 0 is

D =
v2

2am
. (7)

Suppose that the car is at one end point of a segment. Also,
suppose that the length of the segment is LS . Let Lt denote
the traversal distance of the car along the segment. As the car
travels the segment, Lt gradually increases from 0 to LS .

In the case whereLS−Lt > D, we set the speed command
of the car as vmax. In the case where LS − Lt ≤ D, we set
the speed command of the car as 0. In this way, the speed of
the car is controlled so that whenever the car finishes moving
along a segment (a straight segment or a circular arc), it stops
at the end of the segment.

We consider discrete-time systems. Let Vk ∈ {0, vmax}
denote the speed command at time step k. Also, let dt denote
the sampling interval. Let vk denote the speed of the car at
time step k. We update vk using the following rule:

vk+1 = vk + sign(Vk − vk) ∗ am ∗ dt. (8)

Here, sign(Vk − vk) indicates the sign of Vk − vk. Also,
vmax is set as the upper bound for vk+1 so that vk+1 cannot
be bigger than vmax. Moreover, 0 is set as the lower bound
for vk+1 so that vk+1 cannot be smaller than 0.

V. MATLAB SIMULATIONS
In this section, we use MATLAB simulations to verify our au-
tonomous parking method. The proposed approach is to de-
crease A(InitP, InterP, InfP ) gradually until it becomes
90 degrees. At each iteration, A(InitP, InterP, InfP ) de-
creases by 10 degrees.
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The simulation settings are as follows. GoalP is (2,-1) in
meters. The car length is 3 meters. β = π/6. The wheelbase
(distance between the front and rear wheel axles) is 2.2
meters. r = 2.2/tan(π/6) meters, and the car width is
w = 2.5 meters. C1 = 0.001, and C2 = π/180.

We compare the proposed approach with [19] to verify the
effectiveness of our approach. Under the RRT planner in [19],
one cusp appears at the point where the start tree and the goal
tree meet, since the start tree and the goal tree are related to
forward and backward maneuvers respectively.

RRT planner [19] results in a fragmental path, which needs
to be smoothed to make the car follow the path. Smoothing
of a path is presented in the literature [24], [25]. In this paper,
we do not present the smoothed path, since smoothing of
the RRT path is not within the scope of the paper. We only
present the fragmental path which is generated by the RRT
planner in [19].

The RRT planner in [19] stops when the number of ran-
domly generated nodes reaches 50. If a path is not generated
until 50 nodes are deployed, then we reset the path planner.
The neighbor of a node, say n, is a node whose distance from
n is less than 3 meters.

In the RRT planner, nodes are randomly deployed in the
workspace to generate a path to the goal. For fair comparison
with our approach, we performed 20 Monte-Carlo simula-
tions and calculate the average path length and its variance.
Also, we derive average computation time for path planning
methods.

In simulation figures, obstacles are illustrated with rectan-
gles. The red curve indicates the path generated utilizing our
algorithms. Also, the trajectory of the car is depicted with
green circles. The boundary of the car is illustrated with a
blue box in simulation figures.

We first simulate the case where InitP is (-5,5), as de-
picted in Fig. 7. In this case, perpendicular parking utilizing
S+R−S− does not result in collision. See that our approach
can handle the case where a car parks in a small parking
space.

-4 -2 0 2 4 6 8

-1
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7

8

FIGURE 7. We simulate the case where InitP is (-5,5). In this case,
perpendicular parking utilizing S+R−S− does not result in collision. The
average computational time to simulate one Monte-Carlo in Fig. 7 is 0.08
seconds using MATLAB. The average path length is 18 meters and its
variance is zero.

The average computational time to simulate one Monte-
Carlo in Fig. 7 is 0.08 seconds using MATLAB. Moreover, it
is safe to assume that the use of a compiled language (such as
C++) would lead to faster computations than the interpreted
MATLAB language. The average path length is 18 meters
and its variance is zero, since there is no random generation
in our method.

Speed and steering controls associated to Fig. 7 are pre-
sented in Fig. 8. Whenever the car switches from one segment
to another, it decreases its speed to zero. While the car’s speed
is zero, it changes its steering angle.
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FIGURE 8. Speed and steering controls associated to Fig. 7.

We next test the RRT planner in [19] using the environment
in Fig. 7. Fig. 9 shows the generated path using one Monte-
Carlo simulation. The average computational time to simu-
late one Monte-Carlo is 87 seconds using MATLAB. The
average path length is 22 meters and its variance is 22, since
nodes are randomly generated in RRT methods. See that the
proposed method outperforms the RRT planner in [19]. The
proposed method runs much faster than the RRT planner in
[19].

−4 −2 0 2 4 6 8 10 12

−2

0

2

4

6

8

10

FIGURE 9. We test the RRT planner in [19] using the environment in Fig. 7.
The average path length is 22 meters and its variance is 22, since nodes are
randomly generated in RRT methods. The average computational time to
simulate one Monte-Carlo is 87 seconds using MATLAB.

We next simulate the case where InitP is (-5,3.5), as
depicted in Fig. 10. In this case, perpendicular parking
utilizing S+R−S− leads to collision. Thus, a safe path
is found by decreasing A(InitP, InterP, InfP ) gradu-
ally. A safe path is found at the first iteration, i.e., when
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A(InitP, InterP, InfP ) = 170 degrees. The average com-
putational time to simulate one Monte-Carlo in Fig. 10 is
0.1 seconds using MATLAB. The average path length is 16
meters and its variance is zero, since there is no random
generation in our method.
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FIGURE 10. We simulate the case where InitP is (-5,3.5). A safe path is
found at the first iteration, i.e., when A(InitP, InterP, InfP ) = 170
degrees. The average computational time to simulate one Monte-Carlo in Fig.
10 is 0.1 seconds using MATLAB. The average path length is 16 meters and
its variance is zero.

Speed and steering controls associated to Fig. 10 are
presented in Fig. 11. Whenever the car switches from one
segment to another, it decreases its speed to zero. While the
car’s speed is zero, it changes its steering angle.
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FIGURE 11. Speed and steering controls associated to Fig. 10.

We next test the RRT planner in [19] using the environment
in Fig. 10. Fig. 12 shows the generated path using one
Monte-Carlo simulation. The average computational time to
simulate one Monte-Carlo is 60 seconds using MATLAB.
The average path length is 19 meters and its variance is 14,
since nodes are deployed randomly in RRT methods. The
proposed method runs much faster than the RRT planner
in [19]. See that the proposed method outperforms the RRT
planner in [19].

We set up another obstacle environment. In simulation
figures (Fig. 13), two obstacles on both sides of the parking
space are illustrated with two polygons. We simulate the
case where InitP is (-5,3.5). In this scenario, perpendicular
parking utilizing S+R−S− leads to collision. Thus, we de-
crease A(InitP, InterP, InfP ) gradually until it becomes
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FIGURE 12. We test the RRT planner in [19] using the environment in Fig. 10.
The average computational time to simulate one Monte-Carlo is 60 seconds
using MATLAB. The average path length is 19 meters and its variance is 14,
since nodes are deployed randomly in RRT methods.

100 degrees. This implies that a safe path is found after 8
iterations. See that the car moves through a very narrow
passage between two obstacles. The average computational
time to simulate one Monte-Carlo in Fig. 13 is 0.2 seconds
using MATLAB. The average path length is 16 meters and
its variance is zero, since there is no random generation in
our method.
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FIGURE 13. A safe path is found after 8 iterations. See that the car moves
through a very narrow passage between two obstacles. The average
computational time to simulate one Monte-Carlo in Fig. 13 is 0.2 seconds
using MATLAB. The average path length is 16 meters and its variance is zero.

Speed and steering controls associated to Fig. 13 are
presented in Fig. 14. Whenever the car switches from one
segment to another, it decreases its speed to zero. While the
car’s speed is zero, it changes its steering angle.

We next test the RRT planner in [19] using the environment
in Fig. 13. The RRT planner fails to find a safe path to the
parking space due to irregular obstacles in the environment.

VI. CONCLUSIONS
This paper introduces the perpendicular parking algorithm
of car-like robots, such that the generated path consists of
a cusp. This path planning is based on the car’s turning
radii, which can be determined by the car’s geometry and its
maximum steering angle.

We compare the proposed approach with [19] to verify the
effectiveness of our approach. We acknowledge that RRT

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2971250, IEEE Access

0 200 400 600 800 1000 1200

time(sec)

-40

-20

0

20

40

d
e

g
re

e
s

steering

steering command

0 200 400 600 800 1000 1200

time(sec)

0

0.05

0.1

0.15

0.2

m
/s

speed

speed command

FIGURE 14. Speed and steering controls associated to Fig. 13.

methods in [19] have the advantage of providing general
solutions, while the proposed method only works in perpen-
dicular parking scenarios. As our future works, we will verify
the effectiveness of our approach using a real car-like robot.

As far as we know, this paper is novel in developing
autonomous perpendicular parking based on circular arc and
straight line segments, such that a cusp on the generated path
is allowed. Since a cusp is allowed, the proposed parking
approach is suitable for parking in a small space.

In the case where there are many obstacles close to a park-
ing space, it may be necessary to generate a path consisting
of multiple cusps. As our future works, we will develop an
algorithm to generate a path with multiple cusps.
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[11] ——, “Control laws to avoid collision with three dimensional obstacles
using sensors,” Ocean Engineering, vol. 172, pp. 342–349, 2019.

[12] G. Cabodi, P. Camurati, A. Garbo, M. Giorelli, S. Quer, and F. Savarese, “A
smart many-core implementation of a motion planning framework along a
reference path for autonomous cars,” Electronics, vol. 8(2), no. 177, pp.
1–28, 2019.

[13] S. Choi, C. Boussard, and B. d’Andrea Novel, “Easy path planning and
robust control for automatic parallel parking,” IFAC Proceedings Volumes,
vol. 44(1), pp. 656 – 661, 2011.

[14] H. Vorobieva, S. Glaser, N. Minoiu-Enache, and S. Mammar, “Automatic
parallel parking in tiny spots: Path planning and control,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 16, no. 1, pp. 396–410,
Feb 2015.

[15] H. Vorobieva, N. Minoiu-Enache, S. Glaser, and S. Mammar, “Geometric
continuous-curvature path planning for automatic parallel parking,” in
2013 10th IEEE INTERNATIONAL CONFERENCE ON NETWORK-
ING, SENSING AND CONTROL (ICNSC), April 2013, pp. 418–423.

[16] H. Vorobieva, S. Glaser, N. Minoiu-Enache, and S. Mammar, “Geometric
path planning for automatic parallel parking in tiny spots,” IFAC Proceed-
ings Volumes, vol. 45, no. 24, pp. 36–42, 2012.

[17] A. Gupta, R. Divekar, and M. Agrawal, “Autonomous parallel parking
system for ackerman steering four wheelers,” in 2010 IEEE International
Conference on Computational Intelligence and Computing Research, Dec
2010, pp. 1–6.

[18] P. Petrov, F. Nashashibi, and M. Marouf, “Path planning and steering
control for an automatic perpendicular parking assist system,” in 7th
Workshop on Planning, Perception and Navigation for Intelligent Vehicles,
Germany, Oct 2015, pp. 143 – 148.

[19] Y. Wang, D. K. Jha, and Y. Akemi, “A two-stage rrt path planner for au-
tomated parking,” in 2017 13th IEEE Conference on Automation Science
and Engineering (CASE), China, Aug. 2017.

[20] P. Petrov, F. Nashashibi, and M. Marouf, “Path planning and steering
control for an automatic perpendicular parking assist system,” in 7th
Workshop on Planning, Perception and Navigation for Intelligent Vehicles
(PPNIV), vol. 15, Germany, 2015, pp. 1–6.

[21] L. E. Dubins, “On curves of minimal length with a constraint on average
curvature and with prescribed initial and terminal positions and tangents,”
Amer. J. Math., vol. 145(2), pp. 497 – 516, 1957.

[22] D. Perez-Morales, S.Dominguez-Quijada, O.Kermorgant, and P. Martinet,
“Autonomous parking using a sensor based approach,” in 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC),
Brazil, Nov 2016, pp. 211–216.

[23] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” PACIFIC JOURNAL OF MATHEMATICS,
vol. 145(2), pp. 367 – 393, 1990.

[24] D. P. Bertsekas, Dynamic Programming and Optimal Control. USA:
Athena Scientific Belmont, 1995.

[25] L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–
580, Aug 1996.

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2971250, IEEE Access

JONGHOEK KIM is an Assistant Professor in
the Department of Electrical and Computer Engi-
neering at Hongik University, Republic of Korea.
His research is on target tracking, control theory,
robotics, multi-agent systems, and optimal estima-
tion. He worked as a senior researcher at Agency
for Defense Development in Republic of Korea
from 2011 to 2018. In 2011, he earned a Ph.D.
degree co-advised by Dr. Fumin Zhang and Dr.
Magnus Egerstedt at Georgia Institute of Technol-

ogy, USA. Jonghoek Kim received his M.S. in Electrical and Computer
Engineering from Georgia Institute of Technology in 2008 and his B.S. in
Electrical and Computer Engineering from Yonsei University, Republic of
Korea in 2006.

VOLUME 4, 2016 9


