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ABSTRACT Frequent mine disasters cause a large number of casualties and property losses. Autonomous
driving is a fundamental measure for solving this problem, and track detection is one of the key technologies
for computer vision to achieve downhole automatic driving. The track detection result based on the existing
models lacks the semantic detail of the tracks and relies too much on visual postprocessing technology.
Therefore, this paper proposes a track detection model based on the multi-dimensional conditional
generative adversarial network. First, the generator is decomposed into global and local parts using a multi-
granularity structure. Second, a multi-scale shared convolution structure is introduced into the discriminator
to further guide the generator. In addition, this paper proposes a penalty mechanism based on Monte Carlo
search to enhance the semantic constraints in the image generation process. Compared with the state-of-the-
art semantic segmentation algorithms, extensive experiments on the downhole scene dataset demonstrate
proposed model achieved the best results in terms of pixel accuracy, intersection-over-union (IOU) and the
track detection accuracy. This paper provides a new idea for track line detection. In the future, the model
can also beapplied to other segmentation problems as well. Code and data will be shared.

INDEX TERMS Track detection, Conditional generative adversarial nets, Multi-scale information, Monte
Carlo search, Automatic driving downhole

I. INTRODUCTION

IN recent years, the frequent occurrence of large-scale
mine accidents has caused a large number of casualties

and property losses. The production and transportation in
mining need to be developed in an unmanned and intelli-
gent direction. As the unmanned research of ground scenes
becomes more mature, there is a certain research basis for
implementing automatic driving under the mine. The under-
ground mine locomotive needs the track line as an aid in the
safe underground driving process. Therefore, it is necessary
to detect whether there are pedestrians or obstacles on the
track in front of the currently running locomotive. If the
above situation is encountered, it needs to be dealt with
rapidly. Therefore, underground automatic driving provides a
reliable method to ensure the safety of the lives and property
of underground workers.

Track detection refers to recognizing the track area in
a video or image by image processing technology, which
shows the specific position of the track line. Track detec-
tion is one of the key technologies in computer vision for
underground automatic driving. It can assist in the detection
of pedestrians and obstacles and further improve the driving
safety of underground locomotives. However, underground
track detection is easily affected by complex environmental
factors, such as light changes, water cover and cable inter-
ference. Thus, in recent years, track detection has become a
challenging task in studying computer vision.

Track detection algorithms based on traditional image pro-
cessing can be roughly divided into two categories: feature-
based methods and model-based methods. Feature-based
track detection technology [1], [2] mainly uses feature infor-
mation such as track edge, texture, color, geometry and gray
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value to distinguish the track area from the surrounding envi-
ronment. The track area is extracted, and the specific position
information of the track in the image is obtained. However,
this method relies too much on the underlying features of
the image and the surrounding environment easily interferes,
which creates considerable challenges for subsequent work
and affects the final detection effect of the track. The basic
principle of the model-based track detection method [3] is
to transform the track detection problem into a problem of
solving the track model parameters. According to the track
pattern in the local area, the fitting of the track line is achieved
by using a segmentation line, a parabola, a hyperbola or a
spline curve to describe the model. However, a road model
often cannot adapt to multiple road conditions at the same
time, and the shape of the track varies widely. Thus, the track
is difficult to detect with a linear model. The algorithm lacks
the robustness and flexibility for any road shape.

Recently, deep neural networks have been used to replace
hand-crafted features to achieve track line detection. The
deep convolution neural network (DCNN) has been success-
fully applied to many computer vision tasks. The problem
of track line detection is solved as an image segmentation
task [4], [5]. The result of the final output of the network
is the probability of each track pixel, i.e., the prediction of
the pixel. The network predicts the pixels at the position of
the track, then combines the pixels of the same track, and
finally displays the position of the track line in the target
image. However, the problem of downhole track detection
scenes is not a direct classification task for track line pixels.
Moreover, the prediction of the track line needs to preserve
the structure or quality of the equivalent track, that is, the
fineness and uniqueness of the track line. In addition, in
the process of training, it is necessary to manually design a
complex loss function that is suitable for improving the final
detection effect. Finally, in the process of displaying the im-
ages, to retain better detection results, more postprocessing
techniques are needed, which also increases the complexity
of the application of such methods.

Another method for solving the above problem is to use
a generative adversarial network (GAN) [6]. The GAN con-
tains two opposing models: a generative model G for fitting
the sample data distribution and a discriminative model D
for judging the true and false data. However, one of the
disadvantages of GANs is that the training is unstable; that
is, the data generated by the generated model are random and
uncontrollable.

The conditional generative adversarial network (CGAN)
[7] adds an additional conditional y to generator G and
discriminator D on the basis of a GAN. This condition is
actually the label that is generated. The generator must gener-
ate a sample that matches the condition y. The discriminator
must determine not only whether the image is true but also
whether the image and the condition match. Some scholars
have achieved good results in image generation via CGANs.
This task is a type of visual and graphical problem in which
the goal is to use paired images to train the network to

learn the mapping between the input image and the output
image [8]. For example, Isola et al. [9] proposed a network
called the pix2pix framework for paired image transforma-
tion based on a CGAN. This method has achieved good
results. However, the model is limited to generating low-
resolution images, and images still lack texture and detail.
Recently, Chen and Koltun [10] used modified perceptual
loss [11], [13] to generate images. Although models can
generate high-resolution images, generated images often lack
fine detail and realistic texture.

In view of the shortcomings of previous works, this paper
proposes a downhole track line detection model based on
CGAN. We use the method of adversarial learning to solve
the problem of artificially designing complex loss functions
and introduce Monte Carlo search [14] technology into the
generator network. Monte Carlo searches have been widely
used in text generation tasks. In [15], [16], researchers used
a Monte Carlo search to enhance the constraints on content
and emotion in the process of text generation. This paper
introduces a Monte Carlo search to solve the problem of
generating image distortion and lack of precision. In addition,
a convolution sharing layer is added to the discriminator
network to facilitate learning the discriminator. In summary,
the paper makes the following contributions:

• This paper proposes a downhole track detection model
based on the multi-scale CGAN, which can generate
high resolution (up to 2K) semantic segmentation im-
ages.

• This paper proposes a penalty mechanism based on
Monte Carlo search to enhance the semantic constraints
in the image generation process, which makes the net-
work output to be more realistic or better structure-
preserving, decreasing the dependency on potentially
complex post-processing.

• To promote the fusion and learning of global infor-
mation and local information, this paper introduces a
multitask learning strategy based on parameter sharing
in the discriminator network, which indirectly expands
the storage capacity of the discriminator model and
accelerates the model convergence.

• Experimental results demonstrate that compared with
the state-of-the-arts, proposed model visually produces
results more similar to the ground truth labels. The
proposed model can also be flexibly applied to other
segmentation problems as well.

The structure of the rest of the paper is as follows. The
second section introduces the proposed model. The third
section shows the evaluation indicators, network structure
and implementation details of the experiments. The fourth
section analyzes the experimental results, and the fifth section
gives the conclusions and future work.

II. RELATED WORK
A. IMAGE-TO-IMAGE TRANSLATION
Many researchers have leveraged adversarial learning for
image-to-image translation [9], which translates an input
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image from one domain to another domain given input-
output image pairs as training data. CGANs aim to model
the conditional distribution of real images given the input
semantic label maps via the following minimax game:

min
G

max
D
LGAN (G,D) (1)

Where G and D represent the generator and discriminator
in CGAN, respectively. s and x represent the introduced
auxiliary variables and inputs in CGAN. Where the objective
function LGAN (G,D) is given by:

Ex[logD(s, x)] + Ex,s[log(1−D(s,G(x, s))] (2)

Pix2Pix: Adversarial loss has become a popular choice for
many image translation tasks because the discriminator can
learn the trainable loss function and automatically adapt to
the differences between the generated and real images in
the target domain. The pix2pix method is a CGAN frame-
work for image-to-image translation. The general flow of the
model to solve image translation is shown in FIGURE 1.

FIGURE 1: CGAN track detection process

In FIGURE 1, x represents the original image, G(x) rep-
resents the image generated by the generator containing the
track line label, and y represents the true image containing
the label. For the purpose of this paper, the goal is to input
an image containing a downhole track line, and generator
G generates an image that marks the existing track line. In
other words, the training dataset is given as a set of pairs of
corresponding images (si, xi), where si is a semantic label
map, and xi is the corresponding natural image. However,
in the application of downhole roadway scenes, the results
generated by pix2pix are limited to low-resolution images.
The generated image still has a large gap from the real
sample, and the image still lacks texture and details.

Perceptual Loss: Several recent works [13], [17], [18]
specifically targeting image super-resolution are based on the
idea that pixel-level objective losses are often not sufficient to

ensure high-level semantics of a generated image. Therefore,
they suggest capturing higher-level representations of images
from the representations of a separate network at a given
layer. In image super-resolution, the corresponding ground
truth label for a given low-resolution image is often avail-
able. Therefore, a difference measure between the high-level
representations of the reconstructed and ground truth images
is considered as an extra loss term. Our work is inspired by
this idea. Similarly, we propose using the difference between
the labels and predictions in a high-level embedding space.

B. TRACK LINE DETECTION
Since this paper’s work focuses on track detection of down-
hole roadway scenes, the other related methods for this issue
need to be discussed . In the feature-based approach, Quach
et al. [1] proposed color and depth information recorded
using a single RGB-D camera to better handle unfavorable
factors such as lighting conditions and lane-like objects.
However, since this method relies on the underlying features
of the image, environmental factors easily interfere, making
the algorithm less robust, and thus, the application effect is
not good. Model-based methods, such as Bente et al. [3],
proposed a lane detection method using the Hough transform
and contour detection. They determine the corresponding
model parameters by analyzing the target information in
the road image. Therefore, it is robust to the presence of
occlusion and interference in the lane line. However, a road
model often cannot adapt to multiple road conditions at the
same time. The algorithm lacks robustness and flexibility for
any road shape.

Additionally, some scholars have proposed using DCNNs
to detect lane lines. In [4], Pan et al. trained a spatial con-
volutional neural network (SCNN) for specific problems and
added postprocessing techniques that rely on handcrafting.
Another recent example is the work of Neven et al. [5], which
first used a segmentation network to obtain a lane marker
prediction map. The second network was then trained to
perform a constrained perspective transformation, and finally,
the network used curve fitting to obtain the final result. How-
ever, their method relies on more postprocessing techniques,
which increases the complexity of the actual application of
the model. The paper used a downhole scene dataset to train
the models in [4] and [5] and compared them with the model
proposed in this paper. The results of the comparison are
shown in the experimental section.

III. MULTIDIMENSIONAL GENERATIVE ADVERSARIAL
MODEL
A. MULTI-GRANULARITY GENERATOR
Referring to the hierarchical reinforcement learning in [19],
we decompose the generator into two sub-generators G1 and
G2, where G1 is the global generator, G2 is the local genera-
tor, and the overall structure of the generator G = {G1, G2}
is shown in FIGURE 2. The global generator is mainly
used for the overall information construction of images. The
local generator can effectively improve the resolution of the
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generated image. For example, an image with a resolution of
1024*512 is input into the generator, and the local generator
output resolution is 2048*1024. The model proposed in [13]
increases the resolution of the image to 512*512. The global
generator of the model proposed in this paper is designed
based on the above work. It consists of 3 components: a
convolutional frontend G(F )

1 , a set of residual blocks G(R)
1 ,

and a transposed convolutional backend G
(B)
1 . A semantic

label map of resolution 1024*512 is passed through the 3
components sequentially to output an image of resolution
1024*512. The local enhancer network also consists of 3
components: a convolutional frontend G(F )

2 , a set of residual
blocks G(R)

2 , and a transposed convolutional backend G(B)
2 .

The resolution of the input image to G2 is 2048*1024.
Different from the global generator network, the input to the
residual block G(R)

2 is the elementwise sum of two feature
maps: the output feature map of G(F )

2 and the last feature
map of the backend of the global generator network G(B)

1 ,
which helps to integrate the global information from G1 to
G2.

In the experiment, we first downsample the original
2048*1024 image to obtain a low-resolution image of
1024*512. We use high-resolution images to train the lo-
cal generator and low-resolution images to train the global
generator. Finally jointly fine-tune all the networks together.
Experimental results show that this hierarchical generator can
effectively integrate global and local information to generate
high-resolution images.

B. MULTI-SCALE SHARED CONVOLUTION
DISCRIMINATOR
The structure of the discriminator is critical to generating
high-resolution images. To differentiate high-resolution real
and synthesized images, the discriminator needs to have a
large receptive field, which requires either a deeper network
or larger convolutional kernels. As both choices lead to
increased network capacity, overfitting becomes more of a
concern. Additionally, both choices require a larger memory
footprint for training, which is already a scarce resource for
high-resolution image generation.

TABLE 1: The network structure of the discriminators

Layer Layer Information

Input Layer CONV-(N64,K4x4,S2,P1), Leaky ReLU

Hidden Layer CONV-(N128,K4x4,S2,P1), Leaky ReLU

Hidden Layer CONV-(N256,K4x4,S2,P1), Leaky ReLU

Hidden Layer CONV-(N512,K4x4,S2,P1), Leaky ReLU

To address this issue, The paper propose multiscale
discriminators. For discriminator networks, we use 70*70
Patch-GAN. The network structure of the discriminator is
shown in TABLE 1. After the last layer, the model applies
a convolution to produce a 1 dimensional output. The model
uses 3 discriminators that have an identical network structure

but operate at different image scales. Because the three
discriminators learn similarly, to promote the learning of
each discriminator, the model introduces a multitask learning
strategy based on parameter sharing [20]. The discriminator
first extracts the primary features of the images through
a shared convolutional layer and obtain the corresponding
feature map. Then, the feature samples of the real sample and
the generated sample are downsampled using 2 and 4 as sam-
pling factors, respectively, so that three different scale images
are obtained. The three discriminators D1, D2, and D3, are
also used to process three different scale images. Although
the discriminators have the same network architecture, dif-
ferent discriminators can extract different information. A
discriminator with a large input scale has a more global
perception of the image and can guide the global generation
of the image. A discriminator with a smaller input scale is
better at guiding the details of the generated image to further
improve the overall image, which also makes training the
generator easier, since extending a low-resolution model to a
higher resolution requires adding an additional discriminator
at only the finest level, rather than retraining from scratch. In
addition, the introduced multitask learning strategy greatly
increases the storage capacity of the discriminator, so that
the discriminator has more memory for learning how to
discriminate the image and accelerate the convergence of the
model. The specific process is as follows:

min
G

max
D1,D2,D3

∑
k=1,2,3

LGAN (G,Dk) (3)

where Dk represents one of the three discriminators.

C. OPTIMIZATION ALGORITHM BASED ON A MONTE
CARLO SEARCH
We note that such a multiresolution pipeline is a well-
established practice in computer vision [21], [22], and a
two-scale pipeline is often enough. The experimental results
show that although the performance improved, there are still
many problems in the generated images. For example, the
image generated in the complex scene is not detailed enough;
the track lines of generated images have the disadvantages
of blurring and ghosting because the generator does not
obtain sufficient constraints when learning, resulting in a
blurred portion of the generated track line, which cannot be
accurately generated.

Thus, this paper introduces the Monte Carlo search tech-
nology to the model so that the generator can obtain guidance
information rapidly when generating images. By searching
the intermediate state of the generator multiple times and then
sending the search results to the discriminator to calculate
the penalty values, the generator constraints in the generation
process are strengthened, and the quality of the generated
image is further improved (such as resolution and detail). The
search process is shown in FIGURE 2. First, the model uses
G to perform a Monte Carlo search on the intermediate state
of the generator. The specific process is as follows:

{Y 1
t+1, ..., Y

N
t+1} =MCGβ (Yt;N) (4)
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FIGURE 2: Multigranularity generator network structure

FIGURE 3: Multiscale shared convolution discriminator structure

where N represents the number of searches. MCGβ repre-
sents the state of the simulation using the Monte Carlo search.
Gβ represents another generator virtualized by the Monte
Carlo search technology, which has the same parameters as
the actual generator. Yt represents the intermediate state to
be sampled. Y it+1 represents the final state obtained after
sampling.

After obtaining the N sampling results, the final states
are sent to the discriminator. To avoiding the mode collapse
and generate higher quality images, we replace Eq. (1) with
Wasserstein GAN objective with gradient penalty [23] de-
fined as:

LGAN =Ex[Dk(x, s)]− Ex,s[Dk(s,G(x, s)) +Dk(s, Y
i
t+1)]

− λgpEx̂,ŝ[(‖Ox̂,ŝDk(x̂, ŝ)‖2 − 1)2]
(5)

whereDk represents one of the three discriminators. x̂ and
ŝ are sampled uniformly along a straight line between a pair
of real and generated images. All experiments use λgp = 10.

To stabilize the training process and generate natural statis-
tics at multiple scales, this paper refers to the perceptual
loss in [11]–[13] and introduce a feature matching loss. The
model extracts features from different layers of the discrim-
inator and learns to match these intermediate states. Here,
D

(i)
k is defined to represent the i-th layer feature extractor
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of discriminator Dk (from input to the ith layer of Dk). The
feature matching loss LFM is then calculated as:

LFM (G,Dk) = E(s,x)

T∑
i=1

1

Ni
[
∥∥∥D(i)

k (s, x)−D(i)
k (s,G(s))

∥∥∥
1
]

(6)
where T represents the total number of network layers and

Ni represents the number of elements per layer.
Our algorithm uses Monte Carlo search to calculate

penalty values and introduce feature matching losses to im-
prove the diversity of model and avoid collapse of mode.
The Wasseratein loss is introduced to improve the stability
in the training process and accelerate the model convergence.
In summary, the final loss function combines both GAN loss
and feature matching loss as:

min
G

(( max
D1,D2,D3

∑
k=1,2,3

LGAN (G,Dk))+λ
∑

k=1,2,3

LFM (G,Dk))

(7)
where λ represents the manually set weighting factor. It is
worth noting that in feature matching loss, Dk is used as a
feature extractor and does not maximize loss.

IV. EXPERIMENTS PREPARATION
In this section, the datasets and evaluation indicators used in
the experiments are explained, followed by the structure of
the networks and implementation details.

A. DATASETS
Since there are currently no public datasets containing down-
hole track lines, we use video cameras fixed on mine loco-
motives to collect video data. The videos of various collected
downhole scenes are divided into frames, and the resolution
of the images is uniformly processed to 1280*720. The
datasets include different scenarios from multiple mines. To
better enhance the performance of the networks, it is also
necessary to collect track images under the conditions of cor-
ners, multitracks and different illuminations in the downhole
scene, which is beneficial for enhancing the generalization
performance of the networks.

In actual data processing, finding that even for multiple
downhole scenarios, the available datasets are lacking, which
is very unfavorable for network training. To solve this prob-
lem, we use data enhancement technology to expand the
datasets. The specific transformations include image rotation
transformation, mirror transformation, flip image transforma-
tion and other methods to effectively expand the datasets. Fi-
nally we obtained approximately 2,500 images. The training
set and the validation set are then divided in an 8:2 manner.
That is, the training set is 2000 images, and the test set is 500
images. In terms of dataset labeling, using AutoCAD to mark
the track line. To distinguish the track line from the surround-
ing environment, the color of the label is significantly differ-
ent from the surrounding environment. The processing of the
data set is shown in FIGURE 4. More data can be obtained at
https://github.com/LJ2lijia/Downhole-track-line-dataset.

B. METRICS
The experiments use the official indicators on the ground
[25], namely, Acc (accuracy), FP (false positive), and FN
(false negative), which are defined as follows:

Acc =
∑
im

Cim
Sim

(8)

where Cim is the number of correct prediction points gener-
ated during the test, and Sim is the number of ground truths.
When the distance between the predicted point and the real
point is less than the set threshold (here, the threshold is set
to 3), the point is considered correct.

FP =
Fpred
Npred

(9)

FN =
Mpred

Ngt
(10)

where Fpred is the erroneously predicted track line, Npred is
the track line that needs to be predicted, Mpred is the track
line that is mistaken for the ground truth, and Ngt is the
number of all track lines.

C. TRAINING DETAILS
The experiments in this paper are based on the Ubuntu 16.04,
Linux 64-bit operating system, and the GPU is a 1080Ti.
All the networks are trained from scratch using the Adam
solver and a learning rate of 0.05. We keep the same learning
rate for the first 100 epochs and linearly decay the rate to
zero over the next 100 epochs. Weights are initialized from
a Gaussian distribution with a mean of 0 and a standard
deviation of 0.02. The number of Monte Carlo searches N is
set to 5, and the specific gravity λ between the control feature
matching loss and the discriminator loss function is set to 10.
The implementation of model is based on the PyTorch1 deep
learning framework.

V. EXPERIMENTS
This section presents the experimental results and related
analysis. The algorithm evaluates and analyzes the proposed
model from both objective and subjective aspects.

A. AUTOMATIC EVALUATION
To quantify the results of the experiments, we perform se-
mantic segmentation on the generated images and compare
the degree of matching between the predicted segments and
the input images. The principle involved is that if our model
can generate a real image corresponding to the input label
mapping, then the existing semantic segmentation model
should be able to predict the real-world label of the ground.
Among the models involved in the comparative experiment
are pix2pix [9], cascaded refinement networks (CRN) [10].
The experimental results are shown in TABLE 1. The IOU in
the table represents the intersection-over-union. To avoid the
contingency of the experiment, the experiment was repeated

1https://pytorch.org/
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FIGURE 4: The process of data enhancement

several times, and the data in the table are the average of the
experimental data.

TABLE 2: Automatic evaluation with image translation mod-
els

pix2pix CRN Ours Oracle

Pixel accuracy 77.56 70.13 82.43 83.25
IOU 0.3846 0.3375 0.6218 0.6763

As shown in TABLE 2, the model proposed in this paper
obviously exceeds the previously existing models for this
type of problem, both in terms of pixel precision and the IOU.
The results of our model are closer to the original image,
which proves the superiority of the algorithm in this paper.

To compare the model proposed in this paper with the
existing state-of-the-arts lane detection algorithm, we trans-
plant the lane detection algorithm to the underground for de-
tecting the track line. The models involved in the experiment
are pix2pix [9], Spatial CNN (SCNN) [4], LaneNet [5], and
Segmentally Switchable Curves (SSC) [24].

The experimental result is shown in TABLE 3. From
the experimental result, we can see that proposed model
(Ours) outperforms all others methods, including SCNN
and LaneNet. The accuracy achieved by paper’s model is
promisingly high, indicating that the framework with multi-
granularity generator and multi-scale discriminator can de-
tect the track lines in the images comprehensively and deli-
cately.

However, our model does not achieve the best performance
in inference speed, only second to SCNN and LaneNet
models. This is mainly because multi-granularity generators
introduce more computation. In fact, 22 FPS is fast enough
for downhole track detection.

B. MANUAL EVALUATION
To further evaluate the proposed model, we adopts the
method of manual evaluation. The existing platform for man-
ual evaluation is MTurk2 (Amazon Mechanical Turk), so we

2https://www.mturk.com/

TABLE 3: Automatic evaluation with the lane detection
algorithm on the ground

Method Accuracy(%) FP FN Inference
Speed (FPS)

SCNN 93.26 0.0598 0.0269 24
LaneNet 92.87 0.0620 0.0312 26

SSC 89.64 0.0643 0.0393 18
pix2pix 90.89 0.0535 0.0297 19

Ours 95.01 0.0401 0.0186 22

FIGURE 5: Preference-time fluctuation graph

use a similar method to publish the results of the experiment
online to a website and send them to volunteers through
social platforms.

For this task, based on the same input image, using the
CRN model and the model proposed in this paper to generate
two images and participate in the comparison with the real
image. To better reflect fairness, we sent two of the three
images to volunteers almost simultaneously. The volunteers
are required to select the most accurate and texture-clear
images within a limited time. The limited time is from 125 ms
to 8000 ms. The comparison results are shown in FIGURE 5.
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FIGURE 6: Comparison of our model and SCNN network test results

It can be seen from FIGURE 5 that as the limited time
increases, the difference between the three images becomes
more apparent. The final result shows that the model in this
paper is obviously better than the CRN model, and the gap
with the real images becomes increasingly smaller.

C. ABLATION ANALYSIS
To verify the validity of the Monte Carlo search, comparing
the proposed model with the model without the Monte Carlo
search and explore the impact of the number of searches on
the Monte Carlo search on the performance of the model.
Where Without MC represents the model without the Monte
Carlo search, and N represents the number of Monte Carlo
searches.

TABLE 4: Ablation analysis for proving the effectiveness of
Monte Carlo

Method Accuracy(%) FP FN Average
Time(s)

Without MC 91.25 0.1031 0.1002 0.2567
N=1 92.87 0.0901 0.0912 0.2678
N=3 93.09 0.0765 0.0703 0.2806
N=5 95.01 0.0401 0.0186 0.2962
N=7 95.68 0.0399 0.0176 0.3465
N=9 95.96 0.0365 0.0170 0.4031

The average time in TABLE 4 is the time when an im-
age is generated during training. It can be seen from the

experimental results that the introduction of the Monte Carlo
search obviously significantly improves the accuracy, FP
and FN of the final generated results. We found that with
the increase in the number of searches, when N=5, both
time-consumption and accuracy achieve better results. As N
continues to increase, the accuracy, FP, and FN improve, but
the increase is not large, and the average generation time of
each image during training increased considerably because as
the number of searches increases, the amout of calculations
required to generate each image gradually increases, and the
increase is nonlinear, so the number of Monte Carlo searches
is set to 5 by default.

To verify the effect of multiscale discriminator and multi-
task learning, we conduct a comparative experiment on the
model proposed in this paper, the model with a multiscale
discriminator network but no shared weights and the model
using only a single-scale discriminator. The generator and
loss functions are fixed during this experiment.

The experimental results are shown in TABLE 5. To avoid
the contingency of the experiment, the experiment was re-
peated several times, and the results in the table are the av-
erage of the experimental results. Where Single D donets the
model using only a single-scale discriminator and Multiscale
Ds donets the model with a multiscale discriminator network
but no shared weights.

From TABLE 5, the results find that multiscale discrim-
inator and multitask learning strategy can significantly im-
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FIGURE 7: The test result of our model in the complex scenes

prove the pixel accuracy because the multiscale discriminator
makes the judgment of the generated pixel points stricter dur-
ing the network training. The multitasking learning strategy
allows the discriminator to learn more features, giving the
generator more accurate guidance.

TABLE 5: Ablation analysis for proving the effectiveness of
multiscale discriminator and shared weights

Single D Multiscale Ds Ours

Pixel accuracy 80.08 81.43 82.68
IOU 0.5125 0.5818 0.6351

D. CASE STUDY AND ERROR ANALYSIS

TABLE 6: IOU for different methods in specific conditions

Method
Single

track
Multi-track

Curved

track

Weak

illumination

SCNN 0.5126 0.4983 0.5047 0.4835

LaneNet 0.4657 0.4528 0.4649 0.4476

SSC 0.3841 0.3487 0.3754 0.3564

pix2pix 0.3954 0.3689 0.3876 0.3701

Ours 0.6295 0.6178 0.6267 0.6132

The paper selected images of four specific scenes from the
test set and compared them with state-of-the-art lane detec-
tion models. The experimental results are shown in TABLE 6.
Experimental results show that the performance of proposed
model is better than other models in four scenarios.It is worth
noting that the previous models can not adapt to complex
scenarios such as multi-track or curve and the performance
of the models declines. However, the model has excellent
detection accuracy in various scenarios, which also proves
that paper’s model has strong robustness.

To reflect the difference between the proposed model and
the traditional CNN detection results, FIGURE 6 shows some
of the test cases in the downhole roadway scenario. It can be
seen from the experimental results that the images generated
by our model are very detailed, and high-quality images can
be generated for all the above scenarios. The proposed model
can still accurately detect the tracks that are not marked in
the training images, which fully demonstrates that the model
has excellent robustness. The application of SCNN to the
downhole scene also obtains good recognition results, but
the robustness of the model is poor, and it cannot detect
unmarked track lines. In addition, similar to the traditional
models based on the convolutional neural network, the SCNN
algorithm requires more postprocessing techniques, which
improves the complexity of the visualization operation, and
the detected results are not real. It can be seen from the
above comparison experiments that paper’s model has great
advantages.

However, in the experiment, it is also found that if the
scene in the image is very complicated (for example, more
than four track lines and track lines are occluded), the result
of the proposed model will be affected. The experimental re-
sults are shown in FIGURE 7. Because the track line recogni-
tion in complex scenes requires more adequate and accurate
guidance information, but the repetitive search method for
intermediate states does not effectively constrain the gener-
ation of generators for some complex scenes. Therefore, the
future work is to achieve automated detection of track lines
in complex scenarios.

VI. CONCLUSION AND FUTURE WORK
This paper proposes a downhole track line detection model
based on a multi-scale conditional adversarial generation
network. The model realizes the generation of realistic down-
hole track line detection images by decomposing the gener-
ator into global and local generators. The proposed penalty
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mechanism based on Monte Carlo search helps the generator
to focus more on perfecting the semantic structure of the
images. Extensive qualitative and quantitative evaluations
testify the effectiveness of proposed model. This paper pro-
vides a new idea for track line detection. In the future, the
model can also be flexibly migrated to the image generation
field, such as image translation. Using more complex im-
ages provided significant improvements in visual quality and
added more details to synthesized images. The challenging
nature of the problem leaves room for further improvements.
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