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Abstract—In this paper, armed with the integral control
method, a new noise-suppressing Newton (NSN) algorithm is
proposed for the redundancy resolution of redundant robot
manipulators efficiently. For practical hardware implementa-
tion, the discrete-time noise-suppressing Newton (abbreviated
as DTNSN) algorithm is discretized from the continues NSN
algorithm. Specifically, the distinguishing feature of the proposed
DTNSN algorithm is that it can rigorously converge with in-
herent tolerance to noises induced by communication jamming
and computational systematical errors. In contrast, considerable
traditional algorithms often dispose of noises with the high-
degree filter from the viewpoint of signal processing, which
requires a complex system structure and further results in a
heavy computational burden. Note that theoretical analyses are
provided to elaborate the convergent property of the DTNSN
algorithm polluted with constant bias, time-dependent linear
noises and bounded random noises. Besides, by the proposed
DTNSN algorithm, the end effector of both serial and parallel
redundant robot manipulators complete the allocated motion
planning and are impervious to the noisy simulated environment.

Index Terms—Noise-suppressing Newton algorithm, the redun-
dancy resolution, serial redundant robot manipulators, parallel
redundant robot manipulators.

I. INTRODUCTION

THERE exists a superior branch of robot arms referred
to as redundant robot manipulators whose degrees of

freedom (DOF) are more than that an end effector needs to
conduct the allocated primary task [1]. Owing to the advanced
performance, redundant robot manipulators are widely applied
in various fields such as industry, medical engineering, etc [2]–
[4].
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Generally, it is difficult to construct redundancy resolution
schemes on the joint angle since the kinematics equation is
strongly nonlinear [1], [5]. Thereby, finding the solution to the
redundancy resolution problem with the joint velocity being
the independent variable is a classic and functional method
[2], [3], [6]. The research [7] provides a method on account
of the recurrent neural network for solving the velocity-level
redundancy resolution problem, which also deals with joint
acceleration limits effectively. In the previous research of re-
dundancy resolution, the pseudoinverse-type method has been
applied to redundant manipulators, which online calculates the
pseudoinverse of the Jacobian matrix related to the kinematics
formulation [8], [9]. In addition, a broad variety of algorithms,
for example, adaptive learning control and its extensions are
adept to realize the motion planning of redundant manipulators
[10]–[19].

However, previous studies of the redundancy resolution have
not treated the affect of noises caused by hardware facilities
and/or human improper operations in detail [20]. For most
conventional schemes, it is inevitable to design the filter which
further requires other modules to monitor and measure the
frequency, amplitude or other parameters of noises, so as to
confront the interference. Nevertheless, the interplay among
the filters, monitoring modules and the scheme for redundancy
resolution, would prevent the overall redundant manipulator
from maintaining stable in all likelihood [21]. Generally
speaking, all the previously mentioned limitations and the
resultant complex structure impede extensive applications of
existing conventional algorithms in redundant manipulators.

Newton-Raphson iterative is effective for root-finding,
which generates successively better approximations to the
roots of a real-valued function, but could not produces accurate
solutions in noisy workspace because of the inability to cope
with external and internal unknown noises [22]. In conse-
quence, inspired by the integral control, the noise-suppressing
Newton (NSN) algorithm is proposed and investigated in this
paper. With inherent denoisy capacity, the NSN algorithm
rapidly converges to the analytical solution to the redundancy
resolution of redundant manipulators in the presence of noises.

The remaining part of the paper is arranged into five
sections. The discrete-time NSN algorithm is proposed to
solve the redundant resolution in Section II. Besides, extended
solutions to the discrete-time NSN algorithm in serial and
parallel redundant manipulators are provided in Section III
with the comparable existing methods. Section IV presents the
theoretical analyses on how discrete-time NSN algorithm con-
verges with various kinds of noises. In Section V, illustrative
simulation examples related to manipulator motion planning
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are provided for verifying the correctness and superiority
of the proposed discrete-time NSN algorithm for redundant
manipulators. In the end, section VI concludes the paper.

The main contributions made by this paper are pointed out
as below.

1) By the powerful and succinct structure, the NSN algo-
rithm is not only well-designed to find the ideal solution
to redundant resolution problems but robust to noises and
disturbances.

2) The NSN algorithm provides insight for extending the
Newton-Raphson iteration from the classic computation
viewpoint to the integral control viewpoint.

3) Theoretical analyses on how the NSN algorithm con-
verges with constant bias, time-dependent linear noises
and bounded random noises guarantee its stability and
efficiency.

4) Synthesized by the newly proposed NSN algorithm, the
experimental simulation of anti-noise manipulator motion
planning is smoothly and precisely carried out in serial
and parallel redundant manipulators.

II. PROBLEM FORMULATION AND ALGORITHM DESIGN

The section below briefly presents the problem formulation
and methodically proposes the NSN algorithm.

A. Redundant Manipulator Kinematics

For background knowledge, the forward kinematics of re-
dundant robot manipulators is necessary to clarify here. Given
that time tk is sampled by gap l as t = (k + 1)l, k ∈ N, that
θ(tk) ∈ Rm represents joint angle vector sampled at kth time
instant, and that the running time of the end effector ranges
from the start ts to the end to with [tk, tk+1) ⊆ [ts, to], the
forward kinematics is given here [23]:

γa(tk) = g(θk), (1)

where the actual Cartesian coordinate of the end effector at
tk is represented by γa(tk) ∈ Rn; considering the Denavit-
Hartenberg (D-H) convention [24], g(·) : Rm → Rn, is a
continuous nonlinear function mapping from joint-angle space
to the corresponding workspace. In addition, the dimension of
γa(t) is less than that of joint angle θ(t) (n < m) for the
manipulator is redundant.

In terms of redundancy resolution, the kinematic error-
evolving equation is described as follow:

ε(tk) = γa(tk)− γd(tk), (2)

where superscript d on γ denotes the desired Cartesian coor-
dinate of the end effector.

B. NSN Algorithm Design

To decrease the deviation between γa(tk) and γd(tk) with
the presence of noises and further realize the redundancy res-
olution, a general equation as below is defined for discussion,

min
y(tk)∈Rm

ϕ
(
y(tk)

)
∈ Rn. (3)

Use εn(tk) to represent the nth element and subsequently
ε(tk) = [ε1(tk), ε2(tk), · · · , εn(tk)]T = ϕ(y(tk)).

The design of the proposed NSN algorithm is composed
of two steps. Firstly, the proposed superior integral control is
formulated as

ε(t) = −κ
ς

∫ t

0

ε(β)dβ, (4)

where step size κ > 0 and ς > 0 determine the rate of
convergence. Secondly, supposing that sampling gap l → 0,
the continuous-time Newton Raphson iteration (NRI)

ẏ(t) = −1

l
J†(y(t))ϕ(y(t)) (5)

can be approximated from the NRI method [25], where
J(y(t)) = ∂ϕ(y(t))/∂y(t)T ∈ Rn×m is the Jacobian matrix
[26], [27] with symbol † standing for the pseudo-inverse
operation. As a result, combining (4) and (5), the proposed
NSN algorithm with unknown noises disturbing is given in a
continuous manner

J(y(t))ẏ(t) = −ςϕ(y(t))− κ
∫ t

0

ϕ(y(β))dβ + Ξ(t), (6)

where Ξ(t) denotes the unknown noise induced by observa-
tion error, methodical error, rounding error, communication
noises and their reciprocity. Ulteriorly, provided that J(y(t))
exists the form of pseudo inverse, the continuous-time NSN
algorithm (6) is converted into

ẏ(t) = −J†(y(t))
(
ςϕ(y(t))+κ

∫ t

0

ϕ(x(β))dβ+Ξ(t)
)
. (7)

To readily implement the above continuous-time NSN algo-
rithm (7) by hardware, the discrete-time NSN, namely DTNSN
algorithm, is derived through Taylor expansion [28]

y(tk+1) =y(tk)− J†(y(tk))
(
a1ϕ(y(tk))+

a2

k∑
j=0

ϕ(y(tj))
)
, (8)

where step size a1 = lς and a2 = lκ. Note that noise Ξ(t) is
removed for stressing the structure of DTNSN algorithm (8).
It is of importance to select step-size a1 and a2 appropriately,
which largely affects the noise-suppressing performance of
integral controller. In this sense, to obtain the desired NSN
algorithm (8), we need to adjust the step-size parameters, often
iteratively by “tuning”.

III. NSN ALGORITHM FOR REDUNDANCY RESOLUTION

The section that follows further applies the DTNSN algo-
rithm (8) to serial and parallel redundant manipulators. In
addition, other comparable algorithms including NRI and a
serial of zeroing dynamics with Euler and Taylor discretiza-
tion which are referred to as the ZDE algorithm and ZDT
algorithm, respectively are also presented.

After combining forward kinematics (1), error-evolving
equation (2) and DTNSN algorithm (8), we get the analytical
solution to redundancy resolution problem of serial manipula-
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TABLE I: Kinematic solutions of comparable algorithms for serial and parallel redundant manipulators

Solution Serial Formulation

NRIS θk+1 = −J†(θk)
(
g(θk)− γd

k

)
+ θk

ZDES θk+1 = J†(θk)
(
lγ̇d
k − a2

(
g(θk)− γd

k

))
+ θk

ZDTS θk+1 = J†(θk)
(
lγ̇d
k − a2

(
g(θk)− γd

k

))
+ 3/2θk − θk−1 + 1/2θk−2

—- —————————————————————

Solution Parallel Formulation

NRIP bk+1 = −L(b(tk), E(tk))
(
γa
k − γd

k

)
+ bk

ZDEP bk+1 = L(b(tk), E(tk))
(
lγ̇d
k − a2

(
γa
k − γd

k

))
+ bk

ZDTP bk+1 = L(b(tk), E(tk))
(
lγ̇d
k − a2

(
γa
k − γd

k

))
+ 3/2bk − bk−1 + 1/2bk−2

tor

θk+1 =− J†(θk)
(
a1(g(θk)− γd

k)+

a2

k∑
j=0

(g(θj)− γd
j )
)

+ θk. (9)

Note that the above equation (9) is called DTNSNS solution
for short.

One of the most typical parallel robot is Gough-Stewart
platform [30], which contains six prismatic actuators. Firstly,
as a paramount step, several variables are defined to build the
kinematics equation of the parallel manipulator. Column vector
bk contains the length information of six legs at time instant
k with b1k, b2k ,b3k, b4k, b5k and b6k being elements. Further, we
apply DTNSN algorithm (8) to the Gough-Stewart platform
[30] and get

b(tk+1) =− L(b(tk), E(tk))
(
a1(γa

k)− γd
k)+

a2

k∑
j=0

(γa
j − γd

j )
)

+ b(tk), (10)

where matrix L(b(tk), E(tk)) ∈ R6×3 is related to leg lengths
b(tk) and E(tk) = [e1

k, e
2
k, e

3
k, e

4
k, e

5
k, e

6
k] ∈ R3×6 which

represents the vector of each link in direction from base to top.
Note that the above equation (10) is called DTNSNP solution
for short.

To validate how DTNSN algorithm (8) surpasses other
algorithms for the redundancy resolution of redundant ma-
nipulators with unknown noises jamming, Table I presents the
NRI algorithm, ZDE algorithm, and ZDT algorithm [30]–[33]
for serial and parallel redundant manipulators.

IV. THEORETICAL ANALYSES AND RESULTS

In terms of certifying the convergence performance of the
proposed DTNSN algorithm (8) with various kinds of noises,
we give the following theorems.

Theorem 1: Under theoretically noiseless conditions, the
steady-state residual error limk→∞ ‖ε(tk)‖2 synthesized by
DTNSN algorithm (8) drops to O(l2), where vector O(l2) is
made up of element O(l2) and ‖·‖2 denotes the Euclidean
norm.

Proof: In the beginning, by simply transposing, DTNSN
algorithm (8) transforms into

J(y(tk))(y(tk+1)− y(tk)) =− a1ϕ(y(tk))−

a2

k∑
j=0

ϕ(y(tj)) (11)

which is obviously equal to

J(y(tk))
(
y(tk+1)− y(tk)

)
+
(
ϕ(y(tk))− ϕ(y(tk−1))

)
=− a1ϕ(y(tk))− a2

k∑
j=0

ϕ(y(tj)) + ϕ(y(tk))−

ϕ(y(tk−1)). (12)

Substituting Taylor expansion formula [30] into equation (12)
obtains

J(y(tk))lẏ(tk) + lϕ̇(y(tk)) + O(l2)

=− a1ϕ(y(tk))− a2
k∑
j=0

ϕ(y(tj)) + ϕ(y(tk))−

ϕ(y(tk−1)). (13)

Then, according to the principle of partial differential, the
above equation (13) with regard to ε(tk) is converted into

lε̇(tk) + O(l2) =− a1ε(tk)− a2
k∑
j=0

ε(tj) + ε(tk)−

ε(tk−1). (14)
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Finally, discretizing ε̇(tk) [30], we obtain

a1ε(tk) + a2

k∑
j=0

ε(tj) + O(l2) = 0. (15)

Considering the ith subsystem of equation (15), one can
readily educe

a1ε
i(tk) + a2

k∑
j=0

εi(tj) +O(l2) = 0. (16)

Next, the time difference equation of (16) is provided

(a1 + a2)εi(tk+1) = a1ε
i(tk) +O(l2). (17)

In order to transform formula (17) into state-space represen-
tation, the definition Ai(tk+1) = [εi(tk+1), εi(tk)]T is given
and then we can get

Ai(tk+1) = GAi(tk) + O(l2), (18)

with G = [a1/(a1 + a2), 0; 1, 0]. Then, in accordance with
Triangle Inequality, it is elicited

‖Ai(tk+1)‖2 ≤ ‖GAi(tk)‖2 + ‖O(l2)‖2
≤ ‖G‖2‖Ai(tk)‖2 +O(l2)

≤ ‖G‖2‖GAi(tk−1)‖2 + ‖G‖2O(l2) +O(l2)

≤ ‖G‖22‖Ai(tk−1)‖2 +O(l2)

...
≤ ‖G‖k2‖Ai(t1)‖2 +O(l2). (19)

Given that the eigenvalues of G are c1 = a1/(a1 + a2) and
c2 = 0, whose absolute values are both less than 1. Therefore,
from (19), we can infer limk→∞ ‖G‖k2 = 0 and subsequently

lim
k→∞

‖Ai(tk+1)‖2 ≤ lim
k→∞

‖G‖k2‖Ai(t1)‖2 +O(l2) = O(l2).

(20)
Thus, the steady-state residual error of DTNSN algorithm (8)
can drop to O(l2). The proof is thus completed.

Theorem 2: Under linear noise Ξ(tk) = ptk + s,
the steady-state residual error of DTNSN algorithm (8) is
limk→∞ ‖ε(tk)‖2 is ‖p/a2‖2+O(l2) which degrades to O(l2)
when linear noises become constant bias as p = 0.

Proof: Let us discuss what role linear noises play in

a1ε
i(tk) = −a2

k∑
j=0

ε(tj) + pikl + si. (21)

Conducting the Z-transformation on equation (21), it is pre-
sented as

εi(z) =
pilz + siz(z − 1)

a1(z − 1)2 + a2z(z − 1)
, (22)

where the poles of denominator are, z1 = 1 and z2 =
a1/(a1 + a2). Subsequently, according to Z-transformation

final theorem, the infinite limit of εl(tk) is

lim
k→∞

εi(tk) = lim
z→1

(z − 1)εi(z)

= lim
z→1

pilz + siz(z − 1)

a1(z − 1) + a2z

=
pil

a2
. (23)

Consequently, the steady-state residual error of DTNSN algo-
rithm (8) is generated from linear noises which is

lim
k→∞

‖ε(tk)‖2 = ‖ pl
a2
‖2 =

pl

a2

and inherent algorithm itself which is O(l2).
In conclusion, the steady-state residual error of DTNSN

algorithm (8) influenced by linear noises approaches to pl/a2+
O(l2). If p = 0, linear noises fall into constant bias Ξ(tk) = s
and the steady-state residual error of DTNSN algorithm (8)
under constant bias is obtained

lim
k→∞

‖ε(tk)‖2 = O(l2).

The proof is thus completed.
In the subsequent part, the orientation is to investigate

the effect of bounded random noises acting on the DTNSN
algorithm (8).

Theorem 3: The steady-state residual error of DTNSN al-
gorithm (8) with bounded random noise Ξ(t) = χ is
limk→∞ ‖ε(tk)‖2 = 2m sup1≤f≤k, 1≤q≤m |l

q
f |/(1−‖G‖2)+

O(l2).
Proof: Likewise the superposition method conducted in

Theorem 3, the residual error triggered by bounded random
noises and other factors is allowed to be deduced individual-
ly. Consequently, the difference equation related to bounded
random noise is

(a1 + a2)εi(tk+1) = a1ε
i(tk) + χi(tk)− χi(tk−1). (24)

Defining a matrix %i(tk) = [χi(tk) − χi(tk−1), 0]T, thereby
equationGough-Stewart (24) with regard to Ai(tk) could be

Ai(tk+1) = GAi(tk) + %i(tk), (25)

Afterwards, the two-norm of Ai(tk+1) is estimated through
applying Triangle Inequality, which is

‖Ai(tk+1)‖2
≤ ‖GAi(tk)‖2 + ‖%i(tk)‖2
≤ ‖G‖2‖Ai(tk)‖2 + ‖%i(tk)‖2
≤ ‖G‖2‖GAi(tk−1)‖2 + ‖G‖2‖%i(tk−1)‖2 + ‖%i(tk)‖2
≤ ‖G‖22‖Ai(tk−1)‖2 + ‖G‖2‖%i(tk−1)‖2 + ‖%i(tk)‖2

...

≤ ‖G‖k2‖Ai(t1)‖2 + ‖G‖k−12 ‖%i(t1)‖2 + . . .+ ‖%i(tk)‖2
< ‖G‖k2‖Ai(t1)‖2 + max

1≤f≤k
‖%ip‖2/(1− ‖G‖2)

< ‖G‖k2‖Ai(t1)‖2 + 2 max
1≤f≤k

|χip|/(1− ‖G‖2). (26)

Due to the value range that ‖G‖2 < 1, it is evident that
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limk→∞ ‖G‖k2 = 0 so as to ensure

lim
k→∞

‖Alk+1‖2<2 max
1≤f≤k

|χip|/(1− ‖G‖2).

In the end, superimposing the residual error of each subsystem,
we can get

lim
k→∞

‖ε(tk)‖2<2m sup
1≤f≤k, 1≤q≤m

|χlp|/(1−‖G‖2) +O(l2).

The proof is completed.

V. SIMULATIVE EXPERIMENTS

In this section, simulative experiments are conducted to val-
idate the extraordinary performance of the proposed DTNSN
algorithm (8) for the redundancy resolution based on serial
and parallel redundant manipulators, compared with other
algorithms listing in Table I.

A kinematic “butterfly” motion planning task for the serial
redundant manipulator is allocated as

γd(tk) = ecos(θk) − 2 cos(4θk) + sin5(θk/12), (27)

where the whole running time and the initial value of θk ∈ R5

is set to be 10 s and θ0 = [0,−π/6, π/2,−π/4, 0]T, respec-
tively. In this example, the steady-state residual error ‖ε(tk)‖2
is chosen as the main indicator measuring whether DTNSNS
solution (9) and other existing solutions listed in Table I are
capable of withstanding unknown noises for the illustrative
redundancy resolution problem (27).

Fig. 1 and Fig. 2 plot the comparable results that DTNSN
solution (9) and other existing traditional algorithms (Table
I) generate for “butterfly” motion planning (27) under the
constant bias disturbing, from the perspective of the end-
effector trajectory of the serial manipulator, joint angle and the
residual error, respectively. As shown in Fig. 1, under constant
bias Ξ(t) = 2, the steady-state residual error of DTNSNS
solution (9) is as low as 10−6, which leads to the actual path
of the end effector consistently coinciding with the desired
“butterfly” path. Besides, what plots in Fig. 1(c) illustrates
that the end effector of the serial manipulator rotates within
the normal working range. In contrast, as Fig. 2 plots, the
actual path of the end effector implanted by NRIS solution
(Table I) completely diverges from the desired path, where the
steady-state residual error of NRIS solution (Table I) is almost
10 meters as well as ZDES solution and ZDTS solution (Table
I).

Note that for the parallel manipulator, it is vividly shown in
Fig. 3(a) and Fig. 3(b) that the trajectory of the end effector
generated by DTNSNP solution (10) is the same as the actual
path with the presence of noises. However, as seen in Fig. 3(c),
NRIP solution (Table I) fails to complete the given motion
planning task (28).

For the parallel redundant manipulator, a six-DOF parallel
redundant manipulator is considered to track the following
desired path which is presented in cylindrical coordinate: υ = 0.6tk

γd(tk) = 0.2− (0.2 sin(2.5υ))2

Z = (γd(tk) sin(2.5υ))2 + 1.
(28)

As seen from Fig. 3, the tracking result of DTNSNP solution
(10) in the space rectangular coordinate is relatively precise
while NRISP solution (Table I) fails to drive the parallel
redundant manipulator to complete the allocated task (28) with
constant bias Ξ(t) = 1.

Ulteriorly, it can be observed from Fig. 4 that in front of
time-dependent linear noise Ξ(tk) = tk+200, the steady-state
residual errors of DTNSNP solution (10) are 10−1, 10−2, and
10−3 as the values of l are set as 0.01 s, 0.001 s, and 0.0001 s,
which are at least 102 times less than those of NRIP solution,
ZDEP solution and ZDTP solution (Table I).

As observed in Fig. 5, with presence of bounded random
noise Ξ(t) ∈ [499.7, 500.3], DTNSNP solution (10) suc-
cessfully keeps the steady-state residual error less than 0.1.
However, the system that programmed by the NRIP solution
collapses with the output being 103. Though the steady-
state residual errors of ZDEP solution and ZDTP solution
(Table I) decline as the time sampling interval increases, the
corresponding end effector still is not able to work efficiently.
Besides, it is rather difficult to infinitely decrease of l.

VI. CONCLUSIONS

In this paper, the DTNSN algorithm (8) with the aid of
the superior integral control method has been proposed for
the manipulator redundancy resolution with the presence of
unknown noises. Through thorough analyses and proof, the
stability and satisfying convergent performance of the DTNSN
algorithm under constant bias, time-dependent noises and
bounded random noises have been identified and guaranteed.
As a case study, based on the proposed DTNSN algorith-
m, kinematic solutions have been designed and proposed
for serial and parallel redundant manipulators, respectively,
which leads to DTNSNS solution and DTNSNP solution
with the proven performance. Besides, simulative experiments
have substantiated the feasibility of DTNSNS solution and
DTNSNP solution. It is noteworthy that with succinct and
practical structure, DTNSN algorithm is effective to solve the
redundancy resolution with the anti-noise ability, which gives
rise to the potential in more industrial applications. Moreover,
the research on applying the proposed DTNSN algorithm when
the noise is highly complex and solving the requirement that
the iterative initial value needs to be close to the theoretical
solution would be our future research direction.
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