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ABSTRACT The electromagnetic (EM) properties of two-component mixtures involving many disordered
regularly and irregularly shaped crystals are studied. The effective relative permittivities are calculated
utilizing the time-domain finite integration technique. The effective permittivity of disordered mixtures
deviates from establishedmixing theories especially in cases of high permittivity contrast between inclusions
and matrix material, and is strongly correlated to the cross-sectional area of the inclusion crystals. Electric
energy density localizes at the edges and corners of inclusions in a manner independent of inclusion shape
and influenced by EM propagation direction and surrounding inclusions. For mixtures with both disordered
irregular and more organized cube inclusions, energy localization increases as the EM signal travels through
the mixture before decreasing due to attenuation of the propagating EM signal. With a large number of
inclusion crystals (here in the hundreds), it is found that the impact on effective permittivity from differences
in individual inclusion shapes is negligible.

INDEX TERMS Composites, effective permittivity, electric energy density, electromagnetic propagation,
energy localization, hotspot, mixing rules, mixtures, pulsed microwaves, random medium, relative
permittivity, transient electromagnetic analysis.

I. INTRODUCTION
Natural and manufactured composites comprise two or more
components, and while the electrical properties of the individ-
ual components may be well known, the electrical properties
of a composite are generally thought to be dependent on the
shape, orientation, surface structure, and distribution of com-
ponents. An understanding of the electrical properties of com-
ponent mixtures, including energy localization, is important
in nondestructive testing, predicting the response of rocket
fuel and explosives to electromagnetic (EM) insult, remote
sensing, and in industrial heating and curing.

The EM behavior of such a non-magnetic complex object
is largely described by its effective permittivity. Studies of
effective medium properties have used various simulation
methods. The effective permittivity of a mixture has been cal-
culated using finite difference time-domain EM simulation in
two dimensions [1], [2] and three dimensions [3], [4], in two
dimensions using frequency-domain finite element EM anal-
ysis [5], and in three dimensions using the frequency-domain
finite difference [6]–[8] and finite element [9]–[11] methods.

The random combination of variously shaped inclusions with
a permittivity contrast to the embedding matrix can result
in macroscopic anisotropy. The standard electrical charac-
terization procedure is then to average the effective per-
mittivity calculated in each of three orthogonal directions
to obtain an overall effective permittivity of the mixture
[9]–[12].
Earlier studies considered a single type of inclusion in a

matrix material with permittivity contrasts between inclusion
and matrix of up to 10 to 1 [2], [3]. These studies were limited
to a few inclusions because of computational complexity,
and found that the effective permittivity depended on the
shape of the inclusion. In an earlier paper [12] we studied
the effective permittivities of mixtures modeled with a single
irregular crystal shape using the Finite Integration Technique
(FIT) and found deviation from established mixing theories
that was especially significant with high permittivity contrast
between inclusion and matrix material. This present paper
models mixtures with hundreds of irregularly and regularly
shaped inclusions in a disordered arrangement. The effective
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permittivity results are compared to the predictions of clas-
sical mixing rules and to each other. It is shown here that
with many inclusions (in the hundreds), even when there
is relatively high permittivity contast between inclusion and
matrix material of up to 28 to 1, the impact of inclusion shape
on effective permittivity is negligible. In addition, mixtures
withmany irregular and regular crystals are studied to provide
insight into how the combination of individual crystals within
a larger mixture impacts EM energy localization and the
creation of hotspots. Again it is seen that inclusion shape has
little effect on energy localization behavior.

This paper provides a basis for understanding how pulsed
microwave signals can be used to characterize materials and
for understanding how pulsed microwave signals can create
hotspots in materials either intentionally or inadvertently. For
this reason EM analysis is performed in the time domain.

II. CLASSICAL MIXING RULES
The classical Maxwell Garnett mixing theory gives the effec-
tive permittivity, εeff, of a two-component three-dimensional
mixture with spherical inclusions as [13]

εeff = ε2 + 3qε2
ε1 − ε2

ε1 + 2ε2 − q(ε1 − ε2)
. (1)

In (1) ε1 is the inclusion permittivity, ε2 is the matrix material
permittivity, and q is the filling factor (i.e., the volume fraction
of the inclusions). The quasistatic assumption inherent to the
development of (1) is that the inclusion size is much smaller
than the EM wavelength so that the effective permittivity
is independent of frequency. The Maxwell Garnett mixing
theory also assumes spherical non-touching inclusions that
are far apart [9], [12].

The classical Bruggeman mixing theory in three
dimensions and for spherical inclusions is [14]

(1− q)
ε2 − εeff

ε2 + 2εeff
+ q

ε1 − εeff

ε1 + 2εeff
= 0. (2)

In effect, the Bruggeman rule for the effective permittivity
weights the contribution of the inclusions by q and that of the
matrix material by (1− q) [12], [15].
The Maxwell Garnett and Bruggeman mixing laws can be

combined into one uniform equation [6], [11]:

εeff − ε2

εeff + 2ε2 + ν(εeff − ε2)
= q

ε1 − ε2

ε1 + 2ε2 + ν(εeff − ε2)
. (3)

where ν is a parameter used to describe a given mixing
equation. Maxwell Garnett can be obtained with ν = 0 and
Bruggeman with ν = 2 [6], [11]. However, the classical
mixing rules are not directly applicable to mixtures with
arbitrarily shaped inclusions [9], [12].

The maximum, εeff,max, and minimum, εeff,min, possible
effective permittivities of a mixture are described by the
Wiener bounds [1], [6], [11]:

εeff,max = qε1 + (1− q)ε2 (4)

εeff,min =
ε1ε2

qε2 + (1− q)ε1
. (5)

These maximum and minimum Wiener bounds for permit-
tivity correspond to capacitors in a circuit connected in par-
allel or series respectively [1], [6]. These bounds are also
applicable when the permittivities of the components are
complex [16].

III. METHOD OF SIMULATION
Calculated or measured scattering (S-) parameters can be
employed to find the effective permittivity of a sample with
a finite thickness d [12], [17]–[20]. Here these S-parameters
are derived from a time-domain EM analysis using aGaussian
excitation pulse. In particular, CST Microwave Studio [21],
utilizing the time-domain finite integration technique (FIT)
with hexahedral meshing, is used for EM simulations. To
confirm the accuracy of the simulations, the number of mesh
cells was increased until the effective permittivity converged
to an asymptotic value. To achieve a change in effective
permittivity of less than 1%, at least 5,000,000 mesh cells
were required. Computation used an 80 core machine with
160 GB of RAM and clocking at 2.66 GHz.
The refractive index n of a sample of length d in the prop-

agation direction can be calculated from the S-parameters
(for excitation at Port 1) as [12], [19], [20]:

n = ±
{

1
kd

arccos
[

1
2S21

(1− S211 + S
2
21)
]
+

2πm
kd

}
, (6)

where the free space wavenumber k = ω/c, ω is the angular
frequency, and c is the speed of light. The integer m indicates
that multiple solutions are possible. Also, the relative wave
impedance z is defined as [12], [19], [20]:

z = ±

√
(1+ S11)2 − S221
(1− S11)2 − S221

. (7)

In (6) and (7) the S-parameters are normalized to the
impedance of free space, η. When d and the wavelength λ are
comparable, obtaining a unique result for n can be difficult.
However in this paper d is less than λ/4 at the frequency
analyzed, 1 GHz, so a unique result for n can be found and
the default branch is used with m = 0 and positive n in (6).
With a passive material <(z) is positive, so in (7) the positive
branch is taken. These solutions for n and z can be used to find
the unambiguous effective permittivity for a nonmagnetic
mixture as [12], [19], [20]:

εeff =
n
z
. (8)

From [19], the calculations in (6) and (7) utilize the transmis-
sion and reflection coefficients for the mode that is propagat-
ing, which, for the situation analyzed in this paper, is TEM
through 50 GHz.

IV. MULTIPLE CRYSTAL MIXTURES
In this section the effective permittivity of various two-
component mixtures is derived. The mixtures have variously
shaped crystal inclusions having first low and then high per-
mittivity contrast with the embedding matrix. The mixtures
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involving many irregular and cube-shaped crystals created
in the CST Microwave Studio environment were defined
using an automatic procedure based on computer gaming
software [22]. In particular, a computer game was created in
which crystals (the inclusions) were poured into a box and
the physics engine of the game [23] modeled the jostling and
bouncing of the crystals as they packed under gravity.

A. CRYSTAL STRUCTURES IN CST MICROWAVE STUDIO
The irregular crystals used as inclusions have amaximum size
of 0.19 mm as used in [12]. A scaling factor in the range
of 0.1 to 1 (and so the crystal sizes are much smaller than
a wavelength at 50 GHz) was then used to randomly assign
sizes to each crystal. The different scaling factors for each
crystal create a structure with an array of crystal sizes but
each crystal has the same shape. An example of a complex
mixture with irregularly shaped crystal inclusions in the CST
Microwave Studio environment is given in Fig. 1. Additional
mixtures were created still exhibiting a disordered arrange-
ment of crystals, but this time with crystals shaped as cubes.
An example of such a structure is shown in Fig. 2. In both
Figs. 1 and 2 none of the crystals are touching (a separation
that can be controlled) and the crystals are surrounded by
matrix material with a relative permittivity of 1.

FIGURE 1. A total of 978 irregularly shaped inclusion crystals inside of a
block (with side length of 1.37 mm) in a TEM simulation environment. The
volume fraction of the inclusions is 27.5%.

EM propagation through the materials was modeled
by placing the structures into a parallel plate transverse
EM (TEM) environment [2], [12]. Waveguide excitation
Ports 1 and 2 are defined on the propagation axis, the z axis in
Figs. 1 and 2, and perfectly matched layer (PML) boundary
conditions at the x-y boundaries. This eliminated reflections
from the boundary planes back into the TEM structure. With
the crystal structure fixed, but with the boundary conditions
changed appropriately, propagation in the x and y directions

FIGURE 2. A total of 1,144 disordered cube inclusion crystals (each with
side length of 0.085 mm) inside of a vacuum outer block (with side length
of 1.37 mm). The volume fraction of inclusions is 27.5%.

were also analyzed. To obtain the S-parameters to be used in
(6) and (7), measurements were de-embedded to the surface
of the cubes in Figs. 1 and 2. Effective permittivity was then
determined using (8) and a Gaussian pulse excitation signal
with frequency content up to 50 GHz, as in [12].

B. LOW PERMITTIVITY INCLUSIONS
First, irregularly and cube shaped inclusions of mica-like
crystals having low relative permittivity were considered
to establish a lower permittivity contrast scenario between
matrix and inclusions. Specifically, mica has a relative per-
mittivity of 5.4 and a tan δ of 0.0006 measured at 1 GHz [24].
Propagation was analyzed for each orthogonal propagation
axis, representing Ex , Ey, and Ez polarizations. These results
were then averaged to obtain a single effective permittivity
(as described in [7], [8], [11], and [12]). Results of effective
permittivity at 1 GHz are compared to the Maxwell Garnett
and Bruggeman mixing theories and the Wiener bounds in
Fig. 3.

Fig. 3 indicates that the simulated effective permittivities
for the low permittivity contrast situation are close to the
results predicted by Bruggeman up to a 40% volume fraction.
(This volume fraction is approximately the limit of what
can be obtained using irregularly shaped crystals of various
sizes [22].) The simulated effective permittivities for the cube
crystals and the irregularly shaped crystals at the same volume
fraction differ by less than 0.5%. This indicates that, with low
permittivity contrast, the effective permittivity of mixtures
with many inclusions in a disordered arrangement has very
little dependence on inclusion shape.

C. HIGH PERMITTIVITY INCLUSIONS
The above simulations were repeated with the same struc-
tures, but this time with inclusion crystals of a higher
permittivity yielding a higher permittivity contrast with the
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FIGURE 3. Plots of real effective relative permittivity, <(εeff), versus
various filling factors for low permittivity irregular and cube inclusion
crystals along with various mixing theories.

matrix material. To represent zirconia-like inclusions the
crystals now have a relative permittivity of 28 with a tan δ
of 0.0009 taken at 1 GHz [12], [24]. Results of effective per-
mittivity at 1 GHz for irregularly shaped and cube inclusions
are given in Fig. 4.

FIGURE 4. Plots of real effective relative permittivity, <(εeff), as a function
of filling factor for high permittivity irregular and cube inclusion crystals
along with various mixing theories.

In Fig. 4 the simulated results fall within theWiener bounds
as expected. The effective permittivities for the irregular
inclusions and cube inclusions for this high contrast situation
also fall between the results predicted by Maxwell Garnett
and Bruggeman and are very close to each other. Numerically,
of the eight simulated volume fractions for the mixtures with
cube inclusions (as can be seen in Fig. 4), six differ from
the irregular inclusion results on average by 1% or less.
The greatest percent difference is 2.5% (with an absolute
difference in effective permittivity of approximately 0.07

occuring at 32.5% volume fraction). Fig. 4 shows that even
with a high permittivity contrast (here 28 to 1), the effective
permittivity of composite mixtures with hundreds of disor-
dered crystals still has very little dependence on inclusion
shape. Earlier research [2], [3], [7] has shown significant
differences in effective permittivity between inclusions of
different shapes for single-inclusionmixtures. Also, therewas
no significant convergence in the effective permittivity results
when up to eight of each type of inclusion were analyzed [3].

V. OVERALL INCLUSION STRUCTURE AND PERMITTIVITY
This section explores in greater detail how the overall
arrangement of inclusions influences the individual extracted
effective permittivity components (i.e., εeff,x , εeff,y, and εeff,z
components in the x, y, and z directions respectively) of a
mixture.

A. HIGH PERMITTIVITY INCLUSIONS
The scenarios that lead to the maximum and minimum possi-
ble effective permittivity, as described by the Wiener bounds,
are when the inclusion material has the shape of a plate [1].
For example, a structure having an effective permittivity cor-
responding to the upper Weiner bound is given in Fig. 5.

FIGURE 5. Structure showing a high permittivity inclusion arranged as a
plate in vacuum with 11.0% volume fraction.

In Fig. 5, the side length of the outer box is 0.91 mm
and the thickness of the plate in the z direction is 0.10 mm,
giving a volume fraction of 11.0%. The Wiener bounds
from (4) and (5) can be used to find the maximum and
minimum effective permittivity possible. For the structure in
Fig. 5, these bounds are found to be 3.97 for the maximum
<(εeff) and 1.12, changing the propagation direction, for the
minimum <(εeff).
These results will now be compared to the simulated effec-

tive permittivities. For the structure in Fig. 5 the extracted
effective permittivity depends on the axis of the electric field
polarization. The structure in Fig. 5 has the same electrical
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properties for x- and y-directed electric fields. For x and y
polarization <(εeff) from simulation was found to be iden-
tical, i.e. 3.97. Notably, this corresponds to the maximum
Wiener bound. For z-directed electric field, <(εeff) from sim-
ulation was found to be 1.13, nearly identical to the minimum
Wiener bound.

So, as described in [1], these results confirm that the maxi-
mum effective permittivity at a given volume fraction occurs
when the largest face of the inclusion plate is parallel to
the electrical polarization of the TEM field. The minimum
effective permittivity occurs when the largest face of the
inclusion plate is perpendicular to the electrical polarization
of the TEM field.

B. RELATIONSHIP TO CROSS-SECTIONAL AREA
In an effort to relate the arrangement of the plate in Fig. 5 to
the maximum or minimum effective permittivity, the cross-
sectional areas of the inclusion from Fig. 5 are studied.
Analyzing Fig. 5, the maximum effective permittivity occurs
when the inclusion has the minimum possible cross-sectional
area normal to the direction of the electric field polariza-
tion. In this scenario, the narrow edge of the plate is ‘seen’
first by the electric field. Conversely, the minimum effective
permittivity occurs when the inclusion has the maximum
possible cross-sectional area normal to the electric field polar-
ization direction. Here, the wide face of the plate is presented
to the incident electric field. So, this suggests that, for an
inclusion shaped as a plate, there is an inverse relationship
between the presented cross-sectional area of the inclusion
and the effective permittivity of the mixture. This conclusion
is consistent with our previous research [12] where a similar
inverse relationship between effective permittivity and cross-
sectional area was developed for a single arbitrarily shaped
inclusion crystal.

To investigate the cross-sectional area relationship for
structures containing many inclusions, a mixture containing
irregular crystals with a 15% volume fraction, as shown in
Fig. 6, and a mixture containing cube crystals also with a
15% volume fraction, as shown in Fig. 7, were considered.
Cross-sectional area was calculated using rays cast along the
appropriate axis using the Bullet physics library [23]. For
example, to determine the cross-sectional area presented by
crystals from the perspective of the x axis, the y-z face of the
outer box is divided into an N × N grid (here N = 500). For
every point on the grid, a ray is cast perpendicularly to the
y-z face (in the x direction) from one side of the outer box to
the other. If the ray hits a crystal, a hit is recorded. The cross-
sectional area of the crystals, Acrystals, is then defined as:

Acrystals = nAcell, (9)

where n is the number of hits and Acell is the area of one grid
cell. The cross-sectional area fraction, Aw, (w=x, y or z) is
further defined for a given axis perspective (the x direction is
used as an example here) as:

Ax =
Acrystals
Atotal

, (10)

where Atotal is the total area of the outer box. The cross-
sectional area of crystals and cross-sectional area fraction
are calculated in this manner for the x, y, and z directions
independently.

FIGURE 6. Structure showing 894 high permittivity irregular inclusions
inside a vacuum outer block (with side length 1.46 mm). The volume
fraction of inclusions is 15%.

FIGURE 7. Structure showing 624 high permittivity cube inclusions (each
with side length 0.085 mm) inside a vacuum outer block (with side length
1.37 mm). The volume fraction of inclusions is 15%.

With high permittivity inclusions at 15% volume fraction,
the effective permittivities and corresponding cross-sectional
area fractions, Aw, for each axis are given in Fig. 8. Compar-
ing all cases presented in Fig. 8, the highest cross-sectional
area fraction value corresponds to the lowest effective per-
mittivity component and vice versa, suggesting an inverse
relationship.
The differences in magnitude of the effective permittiv-

ity among the polarizations as presented in Fig. 8 can be
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FIGURE 8. Real effective permittivity, <(εeff), plotted as a function of
cross-sectional area fraction, Aw . The volume fraction of inclusions
is 15%. The letters near the data points indicate the electric field
polarization axis for each type of crystal as well as the cross-sectional
area fraction direction.

qualitatively related to the cross-sectional area fraction dif-
ferences by analyzing the mixtures in Figs. 6 and 7. Based on
the way the irregular structures are created using the Bullet
physics library, the crystals fall from above (with respect to
the y axis) and fall to the bottom of the outer box before
settling. The crystals therefore become tightly packed on the
bottom of the box as can be seen in Figs. 6 and 7.

Thismeans that from the perspective of the y axis, the inclu-
sion crystals have a high cross-sectional area fraction, Ay.
From the perspective of the x and z axes, the cross-sectional
areas of the inclusions are relatively small and so Ax and Az
are smaller. This can also be seen in Figs. 6 and 7, where from
the perspective of the x and z axes the upper part of the box
is the background material (with relative permittivity of 1).

Relating this to the permittivity values, a high Aw from
the perspective of the TEM electric field polarization axis,
w, leads to a low effective permittivity (e.g. here Ay is high
and the effective relative permittivity component in the y
direction, εeff,y, is low) while the other polarizations have
lower Aw and higher effective permittivity. This is the same
inverse relationship demonstrated by the plate of Fig. 5. Since
the crystals do not form a complete plate in any direction, the
maximum or minimum possible permittivity values as given
by the Wiener bounds are not reached. However, based on
the way the crystals are packed in the box in Figs. 6 and 7,
they are quite dense and close to the sides of the box. In this
situation it can be said that the inclusions exhibit plate-like
behavior. This can be seen through the sharing of an inverse
relationship between cross-sectional area fraction and effec-
tive permittivity for both the plate and the densely packed
crystals. This correspondence is seen for all of the simulation
results for low and high permittivity inclusions presented in
Figs. 3 and 4 respectively. Since all of the simulations

covering the various volume fractions in Figs. 3 and 4 were
created in the same manner (the crystals falling into the box
along the y axis and then settling) Aw for all simulations
was greatest looking along the y axis (i.e. w=y), and Ey
polarization always yielded the smallest effective permittivity
component.

VI. ENERGY LOCALIZATION
The other important phenomenon that characterizes the elec-
trical response to a pulsed microwave signal is energy local-
ization, in particular the concentration of electric energy in
a nonmagnetic composite. Composites respond to temporal
energy localization by delaminating and changing chemical
phase. Also, identifying energy localization can be used as a
diagnostic tool. Many of these effects respond over a short
time interval so that it is the transient time-domain electro-
magnetic response that is more important than the steady-
state response provided by a frequency-domain EM analysis.
Energy has been found to localize on the edges and corners of
single inclusions [2], [12]. This section explores localization
phenomena taken using time-domain monitors for mixtures
containing many crystals close together, highlighting phe-
nomena neglected by steady-state analyses.

FIGURE 9. Near-maximum electric energy density showing localization at
inclusion corners and edges, with highest localization in the bottom two
circles. The electric field is polarized along the x axis and the propagation
direction is positive z (down). The volume fraction is 32.5%.

A. HIGH PERMITTIVITY INCLUSIONS
First, electric energy density is plotted for a complex mix-
ture with 32.5% volume fraction. An example showing near-
maximum electric energy density in a high permittivity
(with a real relative permittivity of 28) inclusion mixture for
electric field polarized along the x axis and positive z propa-
gation direction is given in Fig. 9. The excitation signal is a
Gaussian pulse with frequency content up to 50 GHz. The
near-maximum energy density is shown in Fig. 9 at 48.1 ps.
The energy localizes to the greatest extent on the edges and
corners of the irregular inclusions shown inside the bottom
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two circles in Fig. 9 after the signal has passed through many
other inclusions. Propagation in the reverse direction, along
the negative z axis (up), results in the near-maximum electric
energy density scenario in Fig. 10. This image is taken at the
same time and plane as the structure shown in Fig. 9. The only
difference in simulation conditions between Figs. 9 and 10 is
an opposite direction of propagation.

FIGURE 10. Electric energy density with the same conditions as in Fig. 9,
but with propagation in the reverse direction (up). The strong localization
from Fig. 9 is not seen in the bottom two circles. Instead, there is higher
localization in the top circle.

The crystal indicated by the upper circle in Fig. 10
shows greater energy density compared to the same location
in Fig. 9. Conversely, the energy density on the crystals
indicated by the bottom two circles is smaller. Comparing
Figs. 9 and 10, the electric energy density localizes with
different magnitudes depending on the direction of propaga-
tion of the EM signal. At specific locations, indicated by the
black circles in Figs. 9 and 10, the magnitude of the energy
density at the edges and corners is higher when the signal has
traveled through more scatterers. As an additional test, the
Gaussian pulse duration was extended so that the frequency
content ranged from 0 to 25 GHz, and the energy was seen
to localize in the same locations with the same localization
behavior as for the 0 to 50 GHz bandwidth excitation used in
Figs. 9 and 10.

The physical interpretation is that the energy localization
maximum occurs when signals following multiple scattering
paths coalesce at the same time and position. Such a hotspot
is unlikely to occur at the surface of a composite but within
the material after multiple scattering events have occurred but
before the signal has been significantly attenuated.

B. ELECTRIC FIELDS FOR IRREGULAR INCLUSIONS
To gain a better understanding of the localization behavior
occurring in the circles in Figs. 9 and 10, simulation probes
were inserted to measure the electric field magnitudes over
the course of the simulation. The electric fields at the location
indicated by the bottom right circles in Figs. 9 and 10 are

given in Fig. 11, at the bottom left circles are given in Fig. 12,
and at the top circles are given in Fig. 13. In Figs. 11–13,
the electric field localizes at specific crystal corners and
edges to a greater amount when the EM signal has previously
traveled through more scatterers. From Figs. 11 and 12, peak
energy localization at the bottom crystals occurs after the
signal has traveled from top to bottom. The energy density
for this positive z propagation direction is shown in Fig. 9
at the time indicated in Figs. 11 and 12, i.e. 48.1 ps. From
Fig. 13, peak localization at the top crystal occurs after the
signal travels from bottom to top, with energy density for
this negative z propagation direction at the time indicated in
Fig. 13, 48.1 ps, given in Fig. 10. The electric field probes
from Figs. 11–13 confirm the results of energy density from
Figs. 9 and 10 that traveling through a greater number of
inclusions increases localization magnitude at a specific loca-
tion. Next, this behavior is studied for a simpler case of
identical inclusions placed on an organized grid.

FIGURE 11. Comparison of the electric field at the crystal corner indicated
by the bottom right circle in Figs. 9 and 10 with propagation direction. At
48.1 ps there is a significant difference in the electric field and electric
energy density depending on propagation direction. Higher peak
localization is seen with the positive propagation direction (down) when
the EM signal has traveled through more of the irregular surrounding
material.

C. BEHAVIOR FOR CUBE-SHAPED INCLUSIONS
From the previous section, the electric field localization mag-
nitude was seen to increase when the EM signal traveled
through a greater number of scatterers. This section studies
electric field localization for a much less complicated mixture
with high permittivity cube-shaped inclusions on a regular
three-dimensional grid. The aim of this paper is to determine
if a simpler simulation environment yields similar energy
localization results. First, two parallel layers of cubes in the
x-y plane are created as shown in Fig. 14. Each cube has a side
length of 0.1 mm. The left x-y plane in Fig. 14 has 20 cubes
placed randomly within the plane, two of which are referred
to as the back cubes. After the cubes have been placed in the
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FIGURE 12. Comparison of the electric field at the crystal corner indicated
by the bottom left circle in Figs. 9 and 10 with propagation direction.
Higher peak localization is seen at 48.1 ps with the positive propagation
direction (down) when the EM signal has traveled through more of the
irregular surrounding material.

FIGURE 13. Comparison of electric field for the top circle in Figs. 9 and 10
with propagation direction. At 48.1 ps there is a significant difference in
the electric field and electric energy density depending on propagation
direction. Higher peak localization is seen with the negative propagation
direction (up) when the EM signal has traveled through more of the
irregular surrounding material.

plane, the back cubes (the two closest cubes in this plane)
are then shifted in the positive z direction with the same x
and y coordinates in order to maintain the same distance and
orientation between the cubes but to isolate them in their own
x-y plane. This pair of cubes, to be referred to as the isolated
cubes, are shown on the right side of Fig. 14. The two cubes
are isolated in order to study the influence of surrounding
cubes within a plane on energy localization.

Next, additional cubes are placed in planes evenly spaced
between those shown in Fig. 14. The resulting structure is

FIGURE 14. Cube-shaped inclusions arranged in two planes. On the right
are the isolated cubes and on the left are the back cubes.

FIGURE 15. Layers of cube-shaped inclusions are added between the
layers in Fig. 14 with an increasing number of inclusions in each layer.

shown in Fig. 15. The distance between cubes in two adjacent
x-y planes in Fig. 15 is 0.05 mm and none of the cubes are
touching. Behind the two isolated cubes on the right, going in
the negative z direction (left), the next x-y plane has 1 cube,
then 3, 5, 10, and 15 before the left-most plane with 20 cubes
is reached. This gradually increases the number of inclusions
between the layers shown in Fig. 14. The goal is to confirm
the hypothesis that EM propagation through more inclusions
leads to an increase in the peak hotspot magnitude.
The total structure with all cubes along with the waveguide

Ports 1 and 2 is given in Fig. 16. In Fig. 16, the isolated cubes
from Figs. 14 and 15 are closest to Port 1 and the back cubes
are closest to Port 2. The two ports are the same distance to the
nearest high permittivity cube in either direction, specifically
1.55 mm. The electric field is polarized along the x axis and z
is the propagation axis. The excitation signal is a 0 to 50 GHz
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FIGURE 16. The structure in Fig. 15 (surrounded by vacuum) along with
waveguide ports for simulation.

Gaussian pulse. The near-peak energy density location in the
structure from Fig. 16 is shown in Fig. 17.

FIGURE 17. Near-peak electric energy density for the back layer of cubes
at 44 ps (time of near-maximum energy density) with highest magnitude
at the edges and corners of the back cubes as indicated by the black
circle. This occurs for Port 1 excitation.

In Fig. 17, the highest energy density among all the cubes
occurs at the edges and corners of the back cubes with Port 1
excitation. Again, localization magnitude is greater after the
signal has traveled from Port 1 to Port 2 through a greater
number of scatterers. The plane of cubes shown in Fig. 17 is
the back layer with the highest number of cubes (20) closest to
Port 2. The back cubes indicated by the black circle in Fig. 17
have edges and corners closest to each other within that plane,
and no edges between other adjacent cubes are closer in the
entire structure. So, adjacent cubes coming closer together
also increases temporal energy localization.

FIGURE 18. Electric field magnitudes for four different locations in the
structure in Fig. 16 as a function of time. Peak localization magnitude is
reached for the back cubes with Port 1 excitation after the signal has
traveled through other scatterers.

Electric field probes can be used to gain an understanding
of how the field magnitude changes over time. Probes are
utilized to measure the electric field at the edge of one of the
back cubes (encompassed by the circle in Fig. 17) as well as
the same relative location but on the isolated pair of cubes
closest to Port 1 (those indicated in Fig. 16). The results from
these two probes, each probe measuring electric field with
Port 1 and Port 2 excitation independently, are summarized
in Fig. 18. The isolated cubes and back cubes referenced in
Fig. 18 are analyzed because they represent themaximumEM
localization within the mixture shown in Fig. 16. In Fig. 18,
electric field localization magnitudes are plotted as a function
of time. As shown in Fig. 14, there are two pairs of cubes with
the same orientation to each other: the isolated cubes and the
back cubes. One pair is surrounded by many other inclusions
in the same plane (the back cubes shown in Fig. 14, in the
plane of cubes closest to Port 2 in Fig. 16, and referenced in
Fig. 18) and the other pair is isolated in a plane by itself (the
isolated cubes shown in Fig. 14, in the plane of cubes closest
to Port 1 in Fig. 16, and referenced in Fig. 18) to study the
impact of surrounding inclusions. The two cubes within a pair
are the same distance from each other and differ only in their
z coordinates.
Analyzing Fig. 18, for the back cubes closely surrounded

by other high permittivity cubes, the peak electric field mag-
nitude is higher for both propagation directions (i.e. for Port 1
and Port 2 excitation, representing propagation in the negative
and positive z directions respectively) than for either prop-
agation direction for the isolated cubes in the front. There
are more scatterers in the back layer, so the localization
magnitude is higher than in the front where in that layer there
are few scatterers. In summary, a greater number of scatterers
within a layer increases energy localization.
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For the back cubes in Fig. 18 (in the layer closest to Port 2 in
Figs. 16 and 17), looking at the differences caused by chang-
ing the propagation direction, there is higher localization for
Port 1 excitation than for Port 2 excitation. With excitation
at Port 1, the signal goes through six layers of scatterers to
get to the back layer (each layer can be seen independently
in Fig. 15). Port 2 excitation means that the back layer is the
first layer experienced by the signal. Since the EM field has
not undergone previous scattering events, the magnitude of
localization is lower for this propagation direction. Using the
same reasoning as for the back layer, for the isolated cubes in
Fig. 18 (closest to Port 1 in Fig. 16), Port 2 excitation yields
higher localization because the signal travels through more
scatterers before reaching the isolated cubes.

Also from Fig. 18 it is seen that the lowest overall localiza-
tion magnitude occurs when the isolated cubes (i.e. few cubes
in a layer) are the first scatterers encountered by the EMpulse.
These are the isolated cubes closest to Port 1 in Fig. 16 with
Port 1 excitation. Conversely, the highest overall localization
magnitude occurs for the back cubes closest to Port 2 in
Fig. 16 with Port 1 excitation (at the location encompassed
by the circle in Fig. 17). In this situation there are the most
scatterers within the layer and the signal has traveled through
the highest number of scatterers to reach this back point close
to Port 2.

In our previous research [12] we found energy localization
on the edges and corners of a single irregular inclusion crys-
tal. This paper studied energy density behavior for mixtures
with many disordered irregular, as well as organized cube,
inclusions. As the EM signal travels through more scatterers,
the peak energy density has been shown to increase even
if the inclusions are small compared to wavelength. These
results suggest that a direct relationship exists between the
disorder introduced by an increasing number of inclusions
and localization magnitude.

VII. CONCLUSION
The effective EM properties for mixtures involving many
disordered crystals were studied. In particular the crystal
shape was found to have no appreciable impact on effective
permittivity or energy localization behavior. The effective
permittivity derived from simulations deviates from that cal-
culated using conventional Maxwell Garnett and Bruggeman
mixing theories. This departure is especially significant when
there is a high permittivity contrast between the inclusions
and the embedding matrix. This is so when the inclusions
have irregular or regular shapes. For mixtures with hun-
dreds of crystals the effect of individual inclusion shape
and orientation on effective permittivity apparently averages
out. As expected, inclusions in the form of a plate yield
either maximum or minimum effective permittivity depend-
ing on the cross-section presented to the EM signal. In gen-
eral a strong inverse relationship was found between the
cross-sectional area presented by the inclusions and the
effective permittivity of the mixture. While established mix-
ing laws are functions of individual permittivity values and

volume fraction, this paper showed that cross-sectional area
is also an important parameter to consider when determining
the effective permittivity of mixtures of finite thickness.
Energy was seen to localize within mixtures containing

many inclusions. The specific location of EM localization is
on edges and corners of adjacent inclusions that are close
to each other in the direction of electric field polarization.
Temporal maximum energy density occurs only after appre-
ciable scattering has occurred but before the EM signal has
been attenuated.
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