
Received October 7, 2013, accepted November 5, 2013, date of publication November 12, 2013, date of current version
November 21, 2013.

Digital Object Identifier 10.1109/ACCESS.2013.2290623

Solving Large Nonlinear Systems of First-Order
Ordinary Differential Equations With Hierarchical
Structure Using Multi-GPGPUs and an Adaptive
Runge Kutta ODE Solver
AHMAD AL-OMARI1, JONATHAN ARNOLD3, THIAB TAHA4, AND HEINZ-BERND SCHÜTTLER2
1Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
2Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA
3Department of Genetics, University of Georgia, Athens, GA 30602, USA
4Department of Computer Science, University of Georgia, Athens, GA 30602, USA

Corresponding author: A. Al-Omari (aomari@uga.edu)

This work was supported by the grants NSF QSB-0425762 and NSF DBI-1062213 and the Department of Systems Engineering and
Medical Bioinformatics, Yarmouk University, Irbid, Jordan.

ABSTRACT The adaptive Runge–Kutta (ARK)method onmulti-general-purpose graphical processing units
(GPUs) is used for solving large nonlinear systems of first-order ordinary differential equations (ODEs) with
over ∼10 000 variables describing a large genetic network in systems biology for the biological clock. To
carry out the computation of the trajectory of the system, a hierarchical structure of the ODEs is exploited,
and an ARK solver is implemented in compute unified device architecture/C++ (CUDA/C++) on GPUs.
The result is a 75-fold speedup for calculations of 2436 independent modules within the genetic network
describing clock function relative to a comparable CPU architecture. These 2436 modules span one-quarter
of the entire genome of a model fungal system, Neurospora crassa. The power of a GPU can in principle be
harnessed by using warp-level parallelism, instruction level parallelism or both of them. Since the ARKODE
solver is entirely sequential, we propose a new parallel processing algorithm using warp-level parallelism
for solving ∼10 000 ODEs that belong to a large genetic network describing clock genome-level dynamics.
A video is attached illustrating the general idea of the method on GPUs that can be used to provide new
insights into the biological clock through single cell measurements on the clock.

INDEX TERMS Bioinformatics, biological clock, general-purpose graphical processing unit, finite element
method, ordinary differential equation, adaptive Runge–Kutta integration, systems biology, warp-level
parallelism.

I. INTRODUCTION
In a systems biology approach bridging genomics, bioinfor-
matics, and engineering our goal is to explain the behavior of
traits controlled by many genes, such as carbon metabolism,
the biological clock, development, and cancer in terms of
biochemical pathways found within living cells [1]. Since
the 1990s, a variety of teams have assembled large maps
of biochemical pathways in a variety of organisms with this
goal in mind [2-4]. At the turn of the millennium it became
possible to measure the dynamics of genomic-scale pathways
spanning a whole living system [1, 5, 6]. We are now poised
to describe the dynamics of an entire cell [7, 8]. A video

is attached describing how this can be achieved through the
integration of genomics, bioinformatics, and engineering [9].
Genetic networks describe time-dependent concentrations

of molecular species, such as genes, their RNAs, and their
proteins as well as their substrates [10]. These networks can
be expressed as a system of coupled nonlinear first-order
ordinary differential equations (ODEs). Understanding such
networks enables us to discover the biochemistry and genetic
activity of a cell and how the cell evolves as a function of
time (including its metabolism, signal transduction, and cell
cycle). Many problems could be solved and understood once
these ODEs are identified. For example, human diseases like

770 2169-3536
 2013 IEEE VOLUME 1, 2013

Al-Omari et al.: Solving Large Nonlinear Systems of First-Order ODEs

prostate cancer, the phenotype of other complex traits such
as development [11], and the biological clock of an organism
[12] could also be described. The most widely used approach
to modeling these biochemical pathways are nonlinear sys-
tems of first-order ordinary differential equations [13].

GPUs have been used recently for solving computationally-
intensive problems for many applications [14-17] including
those in Bioinformatics [18, 19], numerical computations
[20, 21], ray tracing [22], volume ray casting [23], com-
putational fluid dynamics [24], and weather modeling [25].
Here we harness this new computing approach to develop
new ODE solver methods employing Adaptive Runge Kutta
Method (ARK) [26] on GPUs to simulate large genetic net-
works and ultimately identify these networks from available
genomics data [12, 27-29].

A major proving ground for the new tools of systems biol-
ogy has been the study of the molecular basis of the biological
clock [30]. The key problem is linking the model identifica-
tion of the clock to guiding expensive genomics experiments
designed to identify the underlying network [13]. This model-
guided discovery process, which we call computing life [12],
requires the ability to simulate large nonlinear systems of
first-order ODEs.

There are particular challenges to solving these ODEs. The
system of ODEs is usually large. The experimental data are
noisy and limited from molecular quantitative studies. More
importantly, designing a new experiment is very expensive
in terms of money (using genomics experiments) and time.
To overcome the problem of many parameters and limited
noisy data, new methods were developed for fitting these
ODEs called ensemble methods [13, 27, 28]. The ensemble
approach overcomes the limited genomics data on a particular
network with many parameters by giving up on finding one
best model. Instead, the search in the ensemble approach is
for an ensemble of 40,000+ models consistent with the data.
Averaging is then done over the ensemble to make predictions
about the time-dependent behavior of the system. In order to
implement these ensemble methods the ODE solver must be
very fast!

Using the ARK method in the ensemble approach implies
that the system of ODEs should be re-solved for each pro-
posed ensemble Monte Carlo updating step, and solving for
the time step t+h requires the solution at the prior t. For
example, solving a genetic network as the one shown in
(Fig. 1) [28] for the clock and constructing the ensemble of
the unknown parameters that fit the experimental data needs a
very large amount of time (i.e., 30 days on older processors).
The diagram in (Fig. 2) specifies a much larger system of
ODEs with hierarchical structure. There is a master clock
module controlling 2436 slave modules each with 4 variables
representing molecular species concentrations. We need a
new approach to solve problems on this genomic scale.

Mainly, besides making these ensemble methods broadly
available, our goal is to solve a genetic network shown in
(Fig. 2) that consists of a master module (clock) and 2436
slave modules (subunits). Solving such a genetic network

FIGURE 1. A genetic network for the biological clock from [28]. Molecular
species (i.e., reactants or products) in the network are represented by
boxes. The white-collar-1 (wc-1), white-collar-2 (wc-2), frequency (frq),
and clock controlled gene (ccg) gene symbols are sometimes
superscripted 0, 1, r0, r1, indicating, respectively, a transcriptionally
inactive (0) or active (1) gene or a translationally inactive (r0) or active
(r1) mRNA. Associated protein species are indicated with capitals. A phot
(in yellow) symbolizes the photon species. Reactions in the network are
represented by circles. Arrows pointing to circles identify reactants;
arrows leaving circles identify products; and bi-directional arrows identify
catalysts. The labels on each reaction, such as S4, also serve to denote the
rate coefficients for each reaction. Reactions labeled with an S, L, or D
denote transcription, translation, or degradation reactions, respectively.
Reactions without products, such as D7, are decay reactions. From [12].

using a CPU implies that all of these subunits should be solved
simultaneously and each subunit, solved many times sequen-
tially. This makes the process of finding the unknown param-
eters in the network using the ensemble method massively
time consuming. In some cases where the network consists
of 2436 subunits [12], the ensemble method is beyond the
capability of the fastest serial computers. We developed an
algorithm using the concept of warp-level parallelism [31]
with a GPU and ARKmethod that makes possible simulating
2436 subunits under clock control with a speed up of about
75-fold relative to a solution of serial version on a CPU
architecture. The code (see supplement for code + input
file) is written in C++/CUDA computer language for the
GPU and is written in C++ and compiled with g++ using
–O2 and –O3 optimization flags for the CPU. What makes
our approach attractive is that as more subunits and ODEs
are added, the speed up achieved increases, if we consider
the availability of the GPUs. The strategy we describe here
for solving large nonlinear systems of first-order ODEs is an
alternative to another ODE solver recently developed [32].

II. METHODS
TheWarp-level parallelism concept is used to exploit and har-
ness the power of a GPU for solving 2436 systems of ODEs
using the ARK method for a large genetic network shown
in (Fig. 2) describing the biological clock in N. crassa [12].
Since such a genetic network consists of many subunits and
all of these subunits have the same mathematical form (as
ODEs) as shown below but with different parameters, solving
all of these systems of ODEs once in parallel suits the SIMD

VOLUME 1, 2013 771

Al-Omari et al.: Solving Large Nonlinear Systems of First-Order ODEs

FIGURE 2. The whole genetic network consisting of 2436 slave modules
(subunits) to be solved by the GPUs. The subunits are independent from
each other but depend on the clock master module consisting of genes,
wc-1, wc-2, frq, and their products. The subunits have the same
mathematical form (ODEs) but different parameters. Identifying this huge
genome scale network is beyond the fastest serial computer in the
existence. Thus, the GPUs are necessary for solving such a network. This
figure shows a modified genetic network for the biological clock from [28]
in the genome. The notation to describe this network is the same as in
(Fig. 1). An abbreviation of the notation for the clock controlled genes is
now given: g0 = [ccg0] = concentration of ccg0; g1 = [ccg1] =

concentration of ccg1; gr = [ccgr1] = concentration of ccgr1;
gp = [CCG] = concentration of CCG.

(single instruction, multiple data) and warp-level parallelism
concepts (warp size for current NVIDIA GPUs is 32 threads).
A common parallelization strategy in this category is to
increase the number of warps and consequently the number
of thread blocks (TBs) per streaming multiprocessor (SMX)
on a GPU and decrease a TBs size (number of threads per
block). In addition to the fact that this optimization strategy
increases the number of thread blocks assigned to each SM,
it provides more independent warps from other thread blocks
when one warp is stalled [33]. (Fig. 2) shows 2436 systems of
nonlinear ODEs (slave modules) that are needed to be solved
to enable the implementation of the ensemble method with
an ARK ODE solver [28]. The independence of these slave
modules enabled us to suggest an algorithm to solve all of
these modules in a parallel fashion using the ARK method
and multi-GPGPUs.

In the Warp-level parallelism GPU(s) execute many warps
concurrently. For example, on the Kepler K20x GPU, the
maximum number of warps per SM equals to 64 warps, and
the maximum number of TBs per SM equals to 16 TBs.
Increasing the number of TBs and decreasing the block size
is a well considered optimization strategy especially when
the instruction level parallelism, i.e., thread code consists
of multiple independent instructions in sequence, is hard to
implement in some algorithms [33]. For example, the ARK
method is in essence a sequential algorithm, and it is very hard
to be parallelized by instructional level parallelism because
ARK doesn’t have independent instructions in sequence and
because the time taken by each warp is unpredictable [20].
To maximize the usage of warp level parallelism we use a
warp per block to solve the dynamics of the slave module
consisting of a systems of nonlinear ODEs using the ARK
method. The pressure of using a large number of blocks to
solve our genetic network (2436 blocks) leads us to use multi-
GPUs to increase the speed up as is shown in (Fig. 3) and
(Fig. 4).

FIGURE 3. The time required for solving 2436 slave modules just one time
using a NVIDIA GPU(s) [Kepler K-20x Tesla] over an extreme edition of
optimized CPU [Quad-cores CPU [Intel(R) Core(TM) i5-2400 CPU@
3.10GHz]. Using four of the GPUs to solve our target genetic network
800,000 times shown in the (Fig. 2) to fit the observed data requires just
twelve days while using the CPU requires a year and six months.

FIGURE 4. The achieved speed up using Multi-GPU [NVIDIA Kepler K-20x
Tesla] over an extreme edition of CPU [Quad-cores CPU [Intel(R) Core(TM)
i5-2400 CPU@ 3.10GHz]. Red line shows the speed up without using the
–O2 and –O3 flags for CPU optimization (C++ code/g++ compiler) and
blue line shows the speed up with using –O2 and –O3 flags for CPU
optimization.

1) THE ALGORITHM
Each slave module can be described as an initial value prob-
lem of a system of nonlinear first ODEs for a genetic network
as is shown in (Fig. 2) and is specified by

dg0
dt
= Bcg1 − Acg0w (t)

dg1
dt
= Acg0w (t)− Bcg1

772 VOLUME 1, 2013

Al-Omari et al.: Solving Large Nonlinear Systems of First-Order ODEs

dgr
dt
= Scg1 − Dcrgr

dgp
dt
= Lcgr − Dcpgp

The variables in this subsystem are the concentrations of the
clock-controlled genes (g0 and g1 in the inactive and active
state, respectively), their mRNAs (gr), and proteins (gp).
The testingwas done onQuad-cores CPU [Intel(R) Core(TM)
i5-2400 CPU@ 3.10GHz] Extreme Edition processor and
a Tesla GPU [Kepler K-20x] to measure the speed up of
our approach. A Kepler K-20x GPU handles double preci-
sion numbers and consists of 15 streaming multiprocessors
(SMX), each (SMX) consisting of 192 SIMD cores and han-
dling up to 16 TBs with restriction for 2048 threads per SMX.
The idea of the algorithm is to assign each slave module to
one TB consisting of 32 threads (a warp). The load of 2436
slaves modules (systems of nonlinear ODEs equations) are
distributed equally across a Multi-GPUs system with a poten-
tial for a slight decrease or increase in the number of slave
modules for the last GPU. For example, using four GPUs
implies that to launch a kernel (a function to be executed on
the GPU) on each GPU involves configurations of grid size
equal to 609 thread blocks and a block size of 32 threads with
a total number of threads equals to 19,488 threads per GPU.
Each warp is responsible for solving a system of equations for
one slavemodule. The number of slavemodules (292) that are
strongly supported to be under clock control was determined
by a series of model-guided experiments [12].

2) THE PROCEDURE
1) Copying a file to the constant memory of each GPU that

consists of a 200 time point solution to interpolate for
the variable w(t) appearing in the equations above. Those
time points come from the master clock module and are
passed to each slave module as is shown in (Fig. 2). All
of the TBs need to access the same file in the constant
memory.

2) Each thread block executes a kernel, which contains the
ARK ODE solver.

3) All threads in the same block hold the same data (i.e. ini-
tial conditions and parameters values), and execute the
same system of equations for an assigned slave module.

4) ARK’s constants are declared in the constant memory of
the GPU and are seen by all of the threads.

5) Kernel configuration consists of a grid size equal to the
number of slave modules (609 slave modules per GPU)
and a block size equals to a warp size.

Parameter values of this clock network problem are given
in Table1; all of the slavemodules have the same set of param-
eters for the sake of simplicity and accuracy, and calculating
performance of a CPU and GPU.

III. RESULTS
Identifying a large clock genetic network is beyond the capa-
bilities of the fastest CPU ever manufactured and needs a
much more expensive super computer than the GPUs that we

TABLE 1. Initial conditions at t=0 and parameters values.

TABLE 2. A comparison of the simulation of a large clock genetic network
on Kepler K-20x GPUs vs. a Quad-cores CPU [Intel(R) Core(TM) i5-2400
CPU@ 3.10GHz] Extreme Edition Processor with 2436 clock-controlled
genes providing 2436 slave modules to the system of ODEs. The time
required for solving the whole 2436 slave modules once using
–O2 and –O3 optimization flags on the CPU equals to 64090 ms while
without optimization flags equals to 159150 ms.

use with high capabilities to solve such a network. The pro-
posed parallel procedure uses NVIDIAKepler K-20x GPU(s)
to solve a genetic network shown in (Fig. 2) within a very
short period of time compared with the time required on a
CPU as is shown in (Fig. 3). The Ensemblemethodmentioned
before needs this genetic network to be solved 40,000+
sweeps for an equilibration stage (each sweep is equivalent
to solving the genetic network 10 times so that on average
each variable out of ten variables in a slave module is updated
once) and 40,000+ sweeps for an accumulations stage. The
total number of sweeps to identify the genetic network of
2436 slave modules is shown in (Fig. 2) is 80,000+ sweeps.
From Table 2, (Fig. 3), and (Fig. 4), the solution for 2436
slave modules from over 80,000 sweeps needs a CPU time
of about one year and 6 months (considering 64090 millisec-
onds (ms) is needed to solve the 2436 slave modules once),
while solving the same number of slave modules using just
4 GPUs needs about 12 days (considering 1346 ms is needed
to solve the 2436 slave modules once), which is feasible and
doable. Algorithm performance appears to plateau for 2436
slave modules somewhere between 4 and 6 GPUs in (Fig. 4).
The genome dynamics of 295 clock-controlled genes over a
48 hour window are displayed in the attached video [9].

A. ALGORITHM PERFORMANCE AS A FUNCTION OF THE
NUMBER OF SLAVE MODULES IN THE CLOCK NETWORK
In previous work, we identified a total of 2436 genes that were
circadian in theN. crassa genome [12], which is considerably

VOLUME 1, 2013 773

Al-Omari et al.: Solving Large Nonlinear Systems of First-Order ODEs

more than the 292 reported clock-controlled genes [12]. The
simplest null hypothesis to be investigated is that all 2436
genes that have a WCC binding site and are circadian in
expression are in fact all clock-controlled genes [34]. To
test this hypothesis with the ensemble method would involve
being able to simulate the clock mechanism +2436 slave
modules.We now do this and examine the computational time
of the algorithm as a function of the number of slave modules
up to 2436 such modules.

In (Fig. 5) we depict the relationship between different
numbers of slave modules and time required for solving them
using a fixed number of GPUs. Providing a brief introduc-
tion for the Kepler K-20x Tesla architecture and the pro-
gramming model helps to elucidate the results in (Fig. 5)
and (Fig. 6). The Kepler K-20x consists of 15 SMX with
a maximum of TBs per streaming multiprocessor equals to
16 TBs. Thus, theoretically the device (GPU) can hold and
run about 240 TBs simultaneously, given sufficient hardware
resources, such as a register file and shared memory. Consid-
ering the sufficient resources, TBs do not leave a streaming
multiprocessor until its execution is finished [35], and once
TBs finish their time span, the scheduler keeps launching new
TBs on these vacated SMXs for this kernel until all of the TBs
have executed. For example, from (Fig. 5), on one hand, the
time required on a single GPU for solving 200 or (800/4) slave
modules or TBs (each slave module assigned to exactly a TB)
equals to 462ms. On the other hand, the time required for
solving 250 TBs (slave modules) needs 823ms, almost double
the amount of time. This jump in the time is due to the fact
that the device should solve theoretically 240 slave modules
simultaneously until they finish their execution, and then it
should start a new pass by solving the next 240 TBs or the rest
of the available TBs simultaneously. Therefore, in this case,
the 10 TBs difference need almost the same amount of time
that is required for solving of 240 slave modules. As a matter
of fact, although the theoretical number of TBs that can be run
simultaneously on the device equals to 240, in our algorithm
and as it is shown in (Fig. 5) and (Fig. 6), the number of blocks
that can run simultaneously on the device is about 224 TBs,
and after this number of blocks a jump in the time occurs for
even one thread block more. The above clarifications should
explain the scenario occurring on six GPUs as is shown in
blue (Fig. 5) and (Fig. 6). Based on the fact that the time of the
CPU is monotonically increasing with respect to the number
of slave modules to be solved serially, then the drop in the
speed up is shown in (Fig. 6) from time to time should be due
to the jump in the time as is shown in (Fig. 5) given that the
speed up=Time used by the GPU(s)/Time used by the CPU.

IV. DISCUSSION
This new parallelization strategy for solving large systems
of ODEs on GPUs opens up the possibility of simulating
genome dynamics. The parallelization strategy means that
it is now feasible potentially to use ensemble methods for
fitting genome-scale genetic networks when they have hier-
archical structure. The need for such methods stems from

FIGURE 5. The relationship between number of thread blocks (slave
modules) to be solved on the device and the required time. The jump in
time is due to exceeding the maximum number of TBs running
simultaneously on the device. If a GPU is capable of running N blocks
simultaneously, then from 1 to N blocks takes the same time to complete.

FIGURE 6. The relationship between number of thread blocks (slave
modules) to be solved on the device and the speed up. The drop in the
speed up is due to exceeding the maximum number of TBs running
simultaneously on the device, given that the time of the CPU is
monotonically increasing.

genomics data being noisy and sparsely distributed across the
genome [28]. The key to this parallelization strategy is to
identify hierarchical structure in the genetic network. There
is some experimental evidence that this hierarchical structure
may be widespread [36], and has been argued to be a feature
of the clock network [34]. This approach can be coupled
with classic well-performing solvers, such as ARK, to make
possible model-guided discovery about genetic networks on
a genomic scale [12].
The GPU is used in [37] to solve a system of ODEs for

another oscillatory system, and the maximum achieved speed

774 VOLUME 1, 2013

Al-Omari et al.: Solving Large Nonlinear Systems of First-Order ODEs

up is 47-fold using a LSODA solver [38]. This system of
ODEs consists of 3 species, 6 reactions, and 8 parameters.
In this paper, our proposed parallel algorithm uses an ARK
ODE solver to solve systems of ODEs and operates on a
much larger genome scale, consisting of 9744 species, 14616
reactions, and 24360 parameters. Our GPU implementation
also leads to a higher speed up reaching up to 75-fold.

Our approach can also be compared with an adaptive step
size GPU ODE solver for simulating electric cardiac activ-
ity [39]. Garcia et al. [39] developed a method for solving
systems of ∼300 ODEs describing cardiac activity with a
single precision accuracy and a speed up of 9.07-fold while
in our work here we solved a system of∼10,000 ODEs using
a double precision and a speed up of 75-fold.

An inherent limitation of the parallelization strategy here is
the use of sequential ODE solvers, such as the ARK method.
In order to calculate the trajectory at time t+h, it is nec-
essary to have solved with high accuracy the trajectory at
time t first. The ARK method is then inherently sequential.
We recently developed an alternative parallelization strategy
using a Galerkin Finite Element Method with Hat Func-
tions as ODE solver [32], which is as accurate as the ARK
method. It will be interesting to see how this alternative
compares with parallelization using the hierarchical structure
of the network. In comparison to [32], here in this paper
another procedure using the ARK method along with the
power of GPUs are functioning to solve the large genetic
network using warp level parallelism, while in the Galerkin
approach [32] is using instruction level parallelism along-
side warp level parallelism in the GPUs. The only caveat is
that the serial version of the Galerkin ODE solver is slower
than ARK method and it is harder to implement on the
GPUs.

A third parallelization strategy might involve a parallel
implementation on multiple CPUs with MPI to narrow the
gap in performance between CPUs and GPUs in Fig 4.
We think the GPU is the preferred approach here for four
reasons. One, using MPI across multiple CPUs needs hun-
dreds of CPU cores, a more expensive strategy than multiple
GPUs. Two, the thread on a GPU is very ‘‘lightweight’’
if it is compared with the thread on a CPU. Three, some-
times launching a certain number of threads on a CPU
degrades the overall performance especially if the number
of threads exceeds the number of cores. Finally, the best
practice for implementation of ensemble methods has been
serial implementations of solvers, and so we want to ascer-
tain how the use of a GPU based ODE solver changes
the speed of the ensemble method relative to best current
practice.

This methodology of the ARK method on a GPU is
enabling a new approach to understanding the kinetics of
the cell on a genome scale. As captured in the attached
video, new approaches in nanotechnology are enabling the
measurement of the clock in single cells [9]. This will open
a whole new area of inquiry about the clock. We can begin
to ask if the clock is truly stochastic with variation in the

oscillators from cell to cell and whether or not there is any
cell-to-cell communication of oscillators in different cells.
To address these questions will require the solution to three
methodological challenges. New engineering approaches will
be needed to make single cell measurements [40]. As indi-
cated in the video, this approach involves capturing individual
cells with microfluidics technology. New models will be
needed to incorporate stochastic behavior in the clock models
[41]. While stochastic clock models have been proposed, they
have no empirical basis and have not been tested. Third,
new parallelization strategies will be needed to understand
the large networks describing clock behavior. The clock net-
work in a single cell could involve potentially 2436 distinct
genes responding to the clock mechanism or equivalently,
1/4 of the genome [12]. In this paper, we have introduced
the second of two strategies to address the fitting of genome
scale networks by the ensemble method. The time estimates
in Table 1 implies that it is now feasible to fit a genome-
scale network to genome dynamics within a single cell, like
that of the clock, with ensemble methods needed to overcome
noisy data that is sparsely distributed across the genome.
A 75-fold speedup of the simulation of a hierarchical network
on GPUs was achievable (Table 1). This speedup is sufficient
to fit the entire clock network to the genome dynamics of a
single cell.

V. CONCLUSION
In this paper we harness the power of multi-GPGPUs to
solve many systems of nonlinear ordinary differential equa-
tions that belong to a large genetic network describing clock
genome-level dynamics using an Adaptive Runge Kutta ODE
solver. Implementing the proposed algorithm opens up a door
to utilize the ensemble approach to overcome the problem of
many parameters and limited noisy genomics data on a par-
ticular network. Consequently, understanding such networks
enables us to discover the biochemistry and genetic activity of
a cell and how the cell evolves as a function of time (including
its metabolism, signal transduction, and cell cycle).

REFERENCES
[1] T. Ideker, V. Thorsson, J. A. Ranish, R. Christmas, J. Buhler, J. K. Eng,

et al., ‘‘Integrated genomic and proteomic analyses of a systematically
perturbed metabolic network,’’ Science, vol. 292, no. 5518, pp. 929–934,
May 2001.

[2] I. M. Keseler, J. Collado-Vides, A. Santos-Zavaleta, M. Peralta-Gil,
S. Gama-Castro, L. Muniz-Rascado, et al., ‘‘EcoCyc: A comprehensive
database of Escherichia coli biology,’’ Nucl. Acids Res., vol. 39, pp. D583–
D590, Jan. 2011.

[3] S. Okuda, T. Yamada, M. Hamajima, M. Itoh, T. Katayama, P. Bork, et al.,
‘‘KEGG Atlas mapping for global analysis of metabolic pathways,’’ Nucl.
Acids Res., vol. 36, pp. W423–W426, Jul. 2008.

[4] R. Overbeek, N. Larsen, G. D. Pusch, M. D’Souza, E. Selkov,
N. Kyrpides, et al., ‘‘WIT: Integrated system for high-throughput genome
sequence analysis and metabolic reconstruction,’’Nucl. Acids Res., vol. 28,
no. 1, pp. 123–125, Jan. 2000.

[5] J. L. DeRisi, V. R. Iyer, and P. O. Brown, ‘‘Exploring the metabolic and
genetic control of gene expression on a genomic scale,’’ Science, vol. 278,
no. 5338, pp. 26–37, Oct. 1997.

[6] S. J. Maerkl and S. R. Quake, ‘‘A systems approach to measuring the
binding energy landscapes of transcription factors,’’ Science, vol. 315, no.
5809, pp. 233–237, Jan. 2007.

VOLUME 1, 2013 775

Al-Omari et al.: Solving Large Nonlinear Systems of First-Order ODEs

[7] M. W. Covert, E. M. Knight, J. L. Reed, M. J. Herrgard, and
B. O. Palsson, ‘‘Integrating high-throughput and computational data elu-
cidates bacterial networks,’’ Nature, vol. 429, no. 6987, pp. 82–96,
May 2004.

[8] J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M. Jacobs,
B. Bolival, et al., ‘‘A whole-cell computational model predicts phenotype
from genotype,’’ Cell, vol. 150, no. 2, pp. 389–401, Jul. 2012.

[9] T. R. Dickey, ‘‘Single cell measurements on the biological clock by
microfluidics,’’

[10] S. H. Strogatz, ‘‘Exploring complex networks,’’ Nature, vol. 410, no. 6825,
pp. 268–276, Mar. 2001.

[11] J. Jaeger, S. Surkova, M. Blagov, H. Janssens, D. Kosman, and
K. N. Kozlov, ‘‘Dynamic control of positional information in the early
Drosophila embryo,’’ Nature, vol. 430, pp. 368–371, Jul. 2004.

[12] W. Dong, X. Tang, Y. Yu, R. Nilsen, R. Kim, J. Griffith, et al., ‘‘Systems
biology of the clock in Neurospora crassa,’’ PloS One, vol. 3, no. 8,
pp. e3105-1–e3105-3, Aug. 2008.

[13] A. K. Chakraborty and J. Das, ‘‘Pairing computation with experimentation:
A powerful coupling for understanding T cell signalling,’’ Nature Rev.
Immunol., vol. 10, pp. 59–71, Jan. 2010.

[14] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston, J. Owens,
et al., ‘‘GPGPU: General-purpose computation on graphics hardware,’’
in Proc. ACM/IEEE Conf. Supercomput., Nov. 2006, p. 208.

[15] S. Ohshima, K. Kise, T. Katagiri, and T. Yuba, ‘‘Parallel processing of
matrix multiplication in a CPU and GPU heterogeneous environment,’’
in High Performance Computing for Computational Science-VECPAR
(Lecture Notes in Computer Science). New York, NY, USA: Springer-
Verlag, 2007, pp. 305–318.

[16] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. E. Lefohn, et al., ‘‘A survey of general-purpose computation on graphics
hardware,’’ Comput. Graph. Forum, vol. 26, no. 1, pp. 80–113, 2007.

[17] C. J. Thompson, S. Hahn, andM. Oskin, ‘‘Using modern graphics architec-
tures for general-purpose computing: A framework and analysis,’’ in Proc.
35th Annu. ACM/IEEE Int. Symp. Microarchit., Aug. 2002, pp. 306–317.

[18] W. Liu, B. Schmidt, and W. Müller-Wittig, ‘‘Performance analysis of
general-purpose computation on commodity graphics hardware: A case
study using bioinformatics,’’ J. VLSI Signal Process. Syst. Signal, Image,
Video Technol., vol. 48, no. 3, pp. 209–221, Sep. 2007.

[19] M. Charalambous, P. Trancoso, and A. Stamatakis, ‘‘Initial experiences
porting a bioinformatics application to a graphics processor,’’ in Advances
in Informatics. New York, NY, USA: Springer-Verlag, 2005, pp. 415–425.

[20] L. Murray, ‘‘GPU acceleration of Runge-Kutta integrators,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 23, no. 1, pp. 94–101, Jan. 2012.

[21] G. Khanna, ‘‘High-precision numerical simulations on a CUDAGPU: Kerr
black hole tails,’’ J. Sci. Comput., vol. 56, no. 2, pp. 1–15, Aug. 2013.

[22] C. Gribble andA. Naveros, ‘‘GPU ray tracingwith rayforce,’’ inProc. ACM
SIGGRAPH, Jul. 2013, p. 98.

[23] T. L. Falch, J. B. Floystad, D. W. Breiby, and A. C. Elster, ‘‘GPU-
accelerated visualization of scattered point data,’’ IEEE Access, vol. 1,
no. 9, pp. 564–576, Sep. 2013.

[24] S. Park and H. Shin, ‘‘Efficient generation of adaptive Cartesian mesh for
computational fluid dynamics using GPU,’’ Int. J. Numer. Methods Fluids,
vol. 70, no. 11, pp. 1393–1404, Dec. 2012.

[25] I. Demeshko, N. Maruyama, H. Tomita, and S. Matsuoka, ‘‘Multi-GPU
implementation of the NICAM atmospheric model,’’ in Proc. Euro-Par
Parallel Process. Workshops, 2013, pp. 175–184.

[26] E. W. Cheney and D. R. Kincaid, Numerical Mathematics and Computing.
Pacific Grove, CA, USA: Brooks/Cole, 2012.

[27] D. Battogtokh, D. K. Asch, M. E. Case, J. Arnold, and H. B. Schüttler, ‘‘An
ensemble method for identifying regulatory circuits with special reference
to the qa gene cluster of Neurospora crassa,’’ Proc. Nat. Acad. Sci. United
States Amer., vol. 99, no. 26, pp. 16904–16909, Dec. 2002.

[28] Y. Yu, W. Dong, C. Altimus, X. Tang, J. Griffith, M. Morello, et al.,
‘‘A genetic network for the clock of Neurospora crassa,’’ Proc. Nat. Acad.
Sci. United States Amer., vol. 104, no. 8, pp. 2809–2814, Feb. 2007.

[29] X. Tang, W. Dong, J. Griffith, R. Nilsen, A. Matthes, K. B. Cheng, et al.,
‘‘Systems biology of the qa gene cluster in Neurospora crassa,’’ PloS One,
vol. 6, no. 6, pp. e20671-1–e20671-3, Jun. 2011.

[30] H. Ukai and H. R. Ueda, ‘‘Systems biology of mammalian circadian
clocks,’’ Annu. Rev. Physiol., vol. 72, pp. 579–603, Mar. 2010.

[31] J. Passerat-Palmbach, J. Caux, P. Siregar, and D. R. C. Hill, ‘‘Warp-level
parallelism: Enabling multiple replications in parallel on GPU,’’ in Proc.
Eur. Simul. Model. Conf., 2011, pp. 24–26.

[32] A. Al-Omari, H. B. Schuttler, J. Arnold, and T. Taha, ‘‘Solving nonlinear
systems of first order ordinary differential equations using a galerkin finite
element method,’’ IEEE Access, vol. 1, no. 7, pp. 408–417, Jul. 2013.

[33] S. Ryoo, ‘‘Program optimization strategies for data-parallel many-core
processors,’’ Ph.D. dissertation, Dept. Electr. Comput. Eng., Univ. Illinois
at Urbana-Champaign, Urbana, IL, USA, 2008.

[34] C.-H. Chen, C. S. Ringelberg, R. H. Gross, J. C. Dunlap, and J. J. Loros,
‘‘Genome-wide analysis of light-inducible responses reveals hierarchical
light signalling in Neurospora,’’ EMBO J., vol. 28, no. 8, pp. 1029–1042,
Apr. 2009.

[35] L. Chen, O. Villa, S. Krishnamoorthy, and G. R. Gao, ‘‘Dynamic load
balancing on single-and multi-GPU systems,’’ in Proc. IEEE IPDPS,
Apr. 2010, pp. 1–12.

[36] D. Segre, A. DeLuna, G. M. Church, and R. Kishony, ‘‘Modular epistasis
in yeast metabolism,’’ Nature Genet., vol. 37, no. 1, pp. 77–83, Jan. 2004.

[37] Y. Zhou, J. Liepe, X. Sheng, M. P. H. Stumpf, and C. Barnes, ‘‘GPU
accelerated biochemical network simulation,’’ Bioinformatics, vol. 27, no.
6, pp. 874–876, Mar. 2011.

[38] A. C. Hindmarsh,ODEPACK—A Systematized Collection of ODE Solvers,
vol. 1, R. S. Stepleman, Ed. Amsterdam, The Netherlands: North Holland,
1983, pp. 55–64.

[39] V. M. Garcia, A. Liberos, A. M. Climent, A. Vidal, J. Millet, and A. Gon-
zalez, ‘‘An adaptive step size GPU ODE solver for simulating the electric
cardiac activity,’’ in Proc. Comput. Cardiol. Conf., Sep. 2011, pp. 233–236.

[40] G. M. Whitesides, ‘‘The origins and the future of microfluidics,’’ Nature,
vol. 442, pp. 368–373, Jul. 2006.

[41] D. Gonze, J. Halloy, and A. Goldbeter, ‘‘Robustness of circadian rhythms
with respect to molecular noise,’’Proc. Nat. Acad. Sci. United States Amer.,
vol. 99, no. 2, pp. 673–678, Jan. 2002.

AHMAD AL-OMARI received the B.Sc. degree
in electrical and computer engineering from
Yarmouk University, Irbid, Jordan, in 2004. He
was a Teaching Assistant and Lab Engineer
with the Department of Electrical and Computer
Engineering, Yarmouk University, from 2004 to
2010. He was involved in more than 30 different
projects on computers, communication, and elec-
tronic engineering. He received a grant of over
$100 000 from Yarmouk University to pursue the

Ph.D. degree in bioinformatics. He is currently a Research and Teaching
Assistant and the Ph.D. degree in bioinformatics under the supervision of
Prof. J. Arnold with the University of Georgia, Atlanta, GA, USA, on systems
biology and genetic networks. His current research interests include parallel
computation, systems biology, finite elements method, machine learning and
pattern recognition, biological circuits and gene networks, and numerical
analysis.

JONATHAN ARNOLD received the B.S. degree
in mathematics from Yale University in 1975 and
the M.Phil. and Ph.D. degrees in statistics from
Yale University in 1978 and 1982, respectively. In
1982, he joined the Departments of Statistics and
Genetics, College of Arts and Sciences, University
of Georgia, where he has risen through the ranks to
professor of Genetics, Statistics, and Physics and
Astronomy. He has authored or co-authored over
130 papers in journals, book chapters, and confer-

ence proceedings in the subjects of statistical genetics, population genetics,
computational biology, and fungal genomics. He has served on the NSF
Computational Biology Panel, DOE Genome Panel, and as a charter member
on the NIH Genetic Variation and Evolution Study Section from 2005 to
2008. His research interests include the development and identification of
genetic networks of fundamental processes in the model system Neurospora
crassa, i.e., Computing Life. He was elected an AAAS fellow in 2011.

776 VOLUME 1, 2013

Al-Omari et al.: Solving Large Nonlinear Systems of First-Order ODEs

THIAB TAHA received the Ph.D. degree from
Clarkson University in 1982. In 1982, he joined
the Computer Science Department, University of
Georgia. His research interests include scientific
and distributed computing and software develop-
ment for solving problems in nonlinear waves,
optical fiber communication systems, biochemi-
cal reaction networks, and related topics. He has
authored more than 60 research papers. He is a
Senior Editor of the Mathematics and Computers

in Simulation Journal and the Vice President of IMACS. He received the
M. G. Michael Award for Research in the Sciences at UGA in 1985 and was
a Fulbright scholar from 1995 to 1996. Currently, he is the Director of the
CUDA Teaching Center, UGA.

HEINZ-BERND SCHÜTTLER received the
Diplom degree in physics from Technische Uni-
versitätMünchen, Germany, in 1981, and the Ph.D.
degree in physics from the University of California
Los Angeles in 1984. After post-doctoral appoint-
ments at the University of California Santa Barbara
and at the Argonne National Laboratory, he joined
the faculty of the Department of Physics and
Astronomy, University of Georgia, in 1987, where
he currently serves as a Professor of physics. His

research interests include applications of computational statistical mechanics
in biology and condensed matter physics. His recent notable contributions in
computational biology include the development of the ensemble network
simulation (ENS) method for the reconstruction of biological circuits; and
ENS-based methods for maximally informative next experiment design.

VOLUME 1, 2013 777

