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ABSTRACT Multi-objective robot exploration constitutes one of the most challenging tasks for autonomous
robots performing in various operations and different environments. However, the optimal exploration path
depends heavily on the objectives and constraints that both these operations and environments introduce.
Typical environment constraints include partially known or completely unknown workspaces, limited-
bandwidth communications, and sparse or dense clattered spaces. In such environments, the exploration
robots must satisfy additional operational constraints, including time-critical goals, kinematic modeling, and
resource limitations. Finding the optimal exploration path under these multiple constraints and objectives
constitutes a challenging non-convex optimization problem. In our approach, we model the environment
constraints in cost functions and utilize the cognitive-based adaptive optimization algorithm to meet time-
critical objectives. The exploration path produced is optimal in the sense of globally minimizing the required
time as well as maximizing the explored area of a partially unknown workspace. Since obstacles are sensed
during operation, initial paths are possible to be blocked leading to a robot entrapment. A supervisor is
triggered to signal a blocked passage and subsequently escape from the basin of cost function local minimum.
Extensive simulations and comparisons in typical scenarios are presented to show the efficiency of the
proposed approach.

INDEX TERMS Autonomous agents, optimization methods, path planning, cognitive robotics.

I. INTRODUCTION
Autonomous exploration by a single mobile robot has
attracted much research interest in the previous decades giv-
ing rise to many robust and efficient solutions. This led to
an increasing usage transition of mobile robots from labora-
tory testbed environments to real world ones. However, this
transition has not yet been fully exploited and, therefore, it
still remains an active area of research. Compared to the lim-
ited constraints found in laboratory testbed robot exploration,
the transition to real world operations might pose several
new constraints and operational objectives, including: a) lim-
ited operational time; b) multi-objective temporal goals; and
c) environmental constraints, such as limited communications
and sparse or dense clattered workspaces.

In typical robot exploration, the single goal of the robot
is to maximize the overall explored area. The solution to
this problem is to find optimal target points that the robot
should follow, so as to explore as much of the unexplored
workspace minimizing, if possible, the potential to explore
the same region. During the on-line exploration procedure,
the observation positions, and therefore the trajectories along
which the robot moves, are computed during the exploration
task.
In real world scenarios, the robot exploration goal might be

accompanied with operational time limitations, extending the
problem to a more complex one, since the robot must explore
as much of the workspace as possible in a minimum time.
An adequate exploration strategy should be: effective, to build
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an accurate, precise and reliable map, efficient, to cover the
environment as fast as possible, and adaptable, to work in dif-
ferent kinds of environments [1]. Robot exploration problem
is equivalent with the one of dynamically deploying a mobile
sensor to learn about an unknown environment [2]. In other
words, such a task is of immediate relevance to the fields
of sensor networks, calibration and terrain-aided navigation
[3], [4]. It is worth noting that on-line path planing is essen-
tial for Simultaneous Planning Localization and Mapping
(SPLAM) [5], [6].

In the proposed work, we address a twofold challenge of
realistic robotic exploration operations, that is the ability to
efficiently handlemultiple temporal goals while satisfying the
mission constraints. More precisely, the temporal goals, such
as multiple region exploration and target finding, are modeled
by different cost functions and are constantlymonitored. Each
cost function is then triggered depending on the occurrence
of the required preconditions of each goal. Highly computa-
tional burden optimization algorithms were not selected, but
a cognitive-based adaptive optimization algorithm was used
instead [7]. The used methodology possesses the capability
of efficiently handling optimization problems for which an
analytical form of the function to be optimized is unknown,
but the function is available for measurement at each iteration
of the algorithm employed to optimize it. Thus, the overall
method is characterized by low computational cost rendering
it appropriate for real life robot exploration applications.

The rest of this paper is organized as follows. In section II
we briefly revisit approaches related to the proposed single
robot on-line expiration strategy, before we select and model
a search and rescue problem as our case study in section III.
In section IV, we analyze the proposed method, and more
particular, we define the mathematical constraints and objec-
tives that are subsequently introduced to the cognitive-based
adaptive optimization algorithm. In section V, we report
the simulation results and compare the performance of the
proposed algorithm with other widely used exploration algo-
rithms through quantitative measurements. Finally, we pro-
vide concluding remarks in section VI.

II. RELATED WORK
Applications of effective and efficient exploration include
planetary exploration [8], search and rescue [9] and mili-
tary uses [10]. A promising robot exploration approach has
been presented in [11], where the time-optimal path track-
ing problem is transformed into a convex optimal control
problem, yet ignoring the high-level geometric constraints of
the workspace. Similarly, authors in [12] face the path opti-
mization problem as equivalent to finding the best decision
sequence maximizing an auxiliary convex cost function. In
this approach, state and decision spaces are assumed to be
discrete and finite. The minimization of the search execution
time has also been addressed in [13], where time is modeled
by a cost function in which a back-projection algorithm prop-
agates constraints from the goal towards the start state. This
approach is efficient while it models the uncertainty evolution

in time, however, it is applicable only if the final goal remains
the same. In [2], Martinez et al. model the path planning
problem with a partially observed Markov decision process,
with continuous states and actions. The problem of path
optimizing for a single robot was also studied by Chekuri
and Pal [14], who developed a recursive greedy algorithm
with strong theoretical approximation guarantees. Unfortu-
nately, the running time of this algorithm makes the approach
impractical. In [15], the authors proposed an expansion of this
approach so as to overcome these limitations, making it prac-
tical for real world sensing and robot exploration problems.
This approach is however restricted to off-line path planning
and thus, does not easily adapt to dynamic environments.
When multiple goals confine the overall robot exploration

operation, including for example, the minimization of trav-
eling cost together with the maximization of the estimated
information gain, the problem expands to finding an optimal
joint policy. These multiple goals are often conflicting and
might not be feasible to be reached simultaneously. Most of
the existing approaches tend to employ evaluation functions
for each goal. In the sequel, they combine the results of
the functions in an ad hoc global utility function that is
maximized in order to find the next best candidate position
[16]–[18]. A typical multi-objective scenario was presented
in [19], where high-level representation of petri net plans
formalism was used to address this problem. The authors
attempted to represent effectively concurrent robotic pro-
cesses in order to specify complex strategies for addressing
and resolving the respective multiple goals. However, this
approach does not encode such multiple goals in weighted
functions to be optimized, but a rather strategic level solution
is adopted. A different approach has been adopted in [1],
where the values of the evaluation function of each goal are
kept separated without combining them in a particular utility
function.
Multi-objective optimization solutions have also been

widely proposed in the literature, yet their computational
complexity remains high, rendering them inappropriate for
time critical real world operations. A strive to handle moder-
ately complex robotic tasks in real world robotic applications
has been recently proposed in [20]. The efficiency of the
system was enhanced by incorporating point-based partially
observable Markov decision processes, which sample a lim-
ited set of points from robot’s state space and by constructing
a simplified representation of the state space. The resulted
policies for target finding and navigation were reported to be
less time consuming and with high success rates. However,
in cases where the robot should take multiple actions so
as to reach a certain goal, a long time horizon is required.
The increased time steps result in an exponential complexity
growth, thus hindering the adoption of the aforementioned
method in long time robot operations.
Cost functions have been also considered for evaluat-

ing candidate observation locations by combining distance,
expected information gain and probability of successful com-
munication. Global evaluation of the exploration strategy
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performance was investigated in [21] according to time and
multiple visit metric. Thismetric is estimated at each step, and
the next robot position is chosen by maximizing the expected
increase of global performance. Global cost functions were
also presented in [22] by combining criteria in an aggregated
way and by utilizing a theoretic approach based on multi-
criteria decision making. However, this theoretic approach
cannot guarantee always a good exploration strategy.

III. PROBLEM FORMULATION
In a typical search and rescue operation the first responder
teammust safely and quickly reach an incident inside a build-
ing without any robotic agent assistance [23]. Howsoever, the
team must be able to retract itself to the nearest exit, when
the conditions in the building become dangerous. This simple
task of reaching a target and being able to retract from the
building becomes a challenge when several constraints are
imposed in the operational environment. One typical example
is the operation of firefighters when they try to locate a victim
inside a certain area of a damaged building. In such scenarios,
the firefighters might not afford more than a few minutes
or even seconds to reach the victim, before the conditions
become threatening against their own lives. Once they locate
the victim, they must find their way to the exit as quickly
as possible. This may appear to be a particularly troublous
occasion in the case that the rescuer workers fail to retreat
along the same path they followed to enter the building,
e.g. owing to a collapse. Even when the operation conditions
are not directly life-threatening, precious time may be wasted
by searching the same room twice or failing to search another.

A substantially harder situation is when emergency ser-
vices have to respond to terrorist attacks in urban environ-
ments, where possible explosions may cause loss of life or
damage in real estate [24]. In such scenarios, bomb squads are
required to search and explore an urban area for locating the
threat by deploying remote robotics under demanding time
constraints [25]. Conditions such as poor lighting or limited
communication range may occur in such fields [26], [27].

In our proposed framework, we will study and model the
operation of a first responder robot holding the common goals
and constraints of the aforementioned emergency scenarios.
More precisely, the robot will share the same initial knowl-
edge as the first responder units and will operate in multi-
objective and multi-constraint scenarios. In natural language,
the desired robot multi-objective scenario is described as
follows:Given an initial unexploredmap, your initial position
and a certain time window, try to find the subject around a
target position. If you find the subject, explore as much of the
target region as you can and then return to the exit. If you
did not find the subject, resume the search. When returning
to exit, provided that the time constraints allow, explore as
much of the unexplored region map. In any case, keep your
communication link and do not exceed the given time window.
More precisely, our work focuses on mobile robot path

planning in high dimensional and partially known envi-
ronment, with timing and multi-objective considerations.

The kinematic problem is not considered throughout the
methodology, assuming accurate and deterministic mod-
els. Additionally, we assume that the robots are per-
fectly localized. The same assumption has been adopted in
[18], [28], and [29]. The goal-directed mobile robot path
planing, entails a robot moving from some initial state to
a target state while satisfying constraints and updating map
information through an onboard sensor. The state space is
continuous and bounded. In each time step, the robot moves
from the current location to a new one, located on the cir-
cumference of a circle whose center is considered the current
position of the robot.

IV. PROPOSED METHODOLOGY
A. MATHEMATICAL PROBLEM FORMULATION
In order to achieve all the aforementioned first responder
goals we must firstly model all the operational conditions
and constraints in a unified structure. This section aims to
define both the parameters and the constraints and subse-
quently introduce them as cost functions to the cognitive-
based adaptive optimization algorithm.
Vectors R,G, S,H ∈ R2 define the robot, target point,

entry point and wireless node transmitter coordinates, respec-
tively. Cr is the maximum safe range that allows communi-
cation between the deployed wireless node transmitter and
the first responder robot on-board receiver. The two vector
input operator D(x1, x2) : R2

→ R, computes the respective
Euclidean norm between x1 and x2.
The universe setV contains all possible states of a point in a

map. The complementary subsets V1,V2,V3,V4 ⊂ V , where
Vi ∩ Vj = ∅, i 6= j, represents a possible state as follows:
V1 : {Traversable and explored by the robot}
V2 : {Traversable and not explored by the robot}
V3 : {Known Obstacle}
V4 : {Obstacle explored by the robot}
The matrix P represents the initial belief of the state

space as provided by blueprint CAD models of the emer-
gency scenes. Apart from the known obstacles defined
by the blueprints, the rest points are initially defined as
traversable. Thus, in matrix P all elements may belong to
any of the subsets V1,V2, or V3. The matrix M initially
contains the known obstacles, as in matrix P, whereas the
rest of the points are considered to be unexplored. While
the robot scans the emergency scene, the points that stand
within the field of view, transit to subsets V1 or V4. In other
words, the corresponding matrix M is iteratively updated
and enriched with information from the first responder robot
exploration.
Given a radius rc and the coordinates of the goal G, the

circular goal area Cg is defined as the matrix points that lie
within that circle. The following equations summarize the
regions of an emergency scene as follows:

Ae =
∑
i,j∈V1

Mij (1)
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Ab =
∑

i,j∈V1,V2

Pij (2)

Ge =
∑
i,j∈V1

Mij, ∀Mij ∈ Cg (3)

Gb =
∑

i,j∈V1,V2

Pij, ∀Pij ∈ Cg (4)

Exploiting the above regions of interest, we define the
following terms:

F1 =
Ae
Ab

(5)

F2 =
Ge
Gb

(6)

F3 = e
−

D(R,G)
max |D(R,G)| (7)

F4 = e
−

D(R, S)
max |D(R, S)| (8)

where F1 is a regularized term that indicates the exploration
percentage of the emergency scene. The F1 term will be equal
to one only in the case that there are no explored obstacles
in the area apart from the known ones. The F2 regularized
term indicates the percentage of the target area that has been
explored. The F3 term defines a function that encourages the
emergency situation robot to reach a position near the target,
since the exponential term acts as a strong attractor toG due to
its rapidly decreasing nature. Similarly, the F4 term promotes
positions nearby the initial point S. With all the above defini-
tions we can now define the following two cost functions:

CF1 =
(w1F1 + w2F2 + w3F3)

1+ e(|D(R,H )|−Cr )
(9)

CF2 =
(w1F1 + w3F4)
1+ e(|D(R,H )|−Cr )

(10)

FIGURE 1. Two different world maps a) and b) with the potential path
trajectories for w1 � w3 (green path) and w1 � w3 (yellow path).

where w1,w2 and w3 are user defined weight factors reflect-
ing the respective importance in each different emergency
scenario. When the ratio w1/w3 increases, the robot is highly
motivated to explore the area and, as a result, it lags behind
with reaching the Cg. At the same time, a high w1/w3 value
ensures that even if the target is not within the robot’s field
of view, it will be able to find the target G by partially
contributing in the local minimum avoidance, as shown in
Fig. 1. The reader can find more detailed information about
the selected local minimum avoidance strategy in the next two

subsections. When the ratio w1/w3 decreases, the robot will
reach the target position G faster, tending, however, to get
trapped in a local minimum.
Figure 1 illustrates two potential path trajectories for two

different maps, depending on the parameter selection. The
first path is calculated when w1 � w3 and the second one
when w1 � w3. In Fig. 1(a) the resulting path for w1 � w3
aids the robot to explore the unknown areawhile it approaches
the target position. On the other hand, the second resulting
path, i.e. for w1 � w3, is a straight line heading the robot
straight towards the target position. In a more confined world,
such as the one depicted in Fig. 1(b), the estimated path
when w1 � w3 tends to explore the unknown area, helping
ultimately the robot to overcome the obstacle and reach the
target area. However, the estimated path when w1 � w3
follows a straight line approach and, thus, fails to approximate
the goal area beyond the obstacle.
By setting the value of parameter w2 greater than

w1 and w3, the robot is motivated to explore the area
nearby Cg. The numerator of Eq.(9) guides the robot to
explore as much of the emergency area along with the target
area and also helps the robot to find a position, such that
the goal will be in its line of sight. The denominator acts
as an attractor to the wireless node transmitter position H,
according to its maximum signal range.
When the robot has eventually explored adequate target

area, it should act as the human first responders do, i.e. it must
retreat to the initial exit point as soon as possible. Within the
same time interval, the second cost function of Eq. (10) is
enabled, the numerator of which boosts the robot to reach its
starting point and sets out to explore the rest of the region
to the maximum extent possible. This trade off between the
two objectives is highly correlated with the available time
remaining. As stated earlier in this section, the initial ratio
w1/w3 motivates the task of exploration, but as the time
horizon decreases, this ratio progressively drops driving the
robot to the exit.
In both Eq. (9) and Eq. (10) the individual terms in which

the numerator is more persistent depends on the operator’s
discretion and the current emergency scenario needs. The
critical transition between the two cost functions is achieved
if the conditions in Eq. 11 and Eq. 12 hold. More precisely, a
vector of length Tn stores the most recent values of F2. Given
a threshold Tf 2, where 0 < Tf 2 < 100, a transition is allowed
when the mean value of Tn is greater than zero (Eq. 11) and
the absolute difference between the mean value and the value
of F2 is smaller than a percentage of the mean value. That
threshold percentage is defined via the Tf 2, as expressed by
Eq. 12. By defining the mean value greater than zero, it is
ensured that the goal area will be at least partially explored
by the first responder robot. A second threshold Tm for the
mean value can be also applied, forcing the robot to explore
the goal area in a defined desired level.∑Tn

i=0 F2[i]

Tn
> 0 (11)
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∣∣∣∣∣
∑Tn

i=0 F2[i]

Tn
− F2[i+ 1]

∣∣∣∣∣ <
∑Tn

i=0 F2[i]

Tn

Tf 2
100

(12)

In each time-step the robot moves a distance α from its
current position towards a given direction. Considering the
robot current positionR in time-step Tc as the center of a circle
with radius α, the possible next positions in time-step Tc + 1
would lie on the circumference of that circle. However, when
the condition in Eq. 13 holds, a local minimum situation is
detected. The adaptive optimization algorithm will then try to
avoid such minima by increasing the value of α iteratively,
seeking for new possible robot positions that would lie in
the circumference of the updated circle. For any time step in
which the condition in Eq. 13 holds α is increased by one until
the condition is no longer valid; then the value α returns to
one. The consecutive number of time-steps in which the robot
is trapped in a local minimum equals to the expansion rate of
the parameter α. Equation 13 affects the robot performance
in the same fashion as the one in 12. The criteria to select
the most suitable future position of the robot are described in
subsection IV-C.∣∣∣∣∣

∑Tg
i=0 F1[i]

Tg
− F1[i+ 1]

∣∣∣∣∣ <
∑Tg

i=0 F1[i]

Tg

Tf 1
100

. (13)

B. COGNITIVE-BASED ADAPTIVE OPTIMIZATION
APPROACH
The Cognitive-based Adaptive Optimization (CAO) approach
[7], [30], [31] was originally developed and analyzed for
the optimization of functions for which an explicit form is
unknown but their measurements are available as well as for
the adaptive fine-tuning of large-scale nonlinear control sys-
tems. Recently, CAO based methodologies have been applied
in a wide range of robotics related applications. In [32] CAO
was used to position a team ofmobile robots for a surveillance
task in a non-convex 2D environment with obstacles. The
robots were equipped with global positioning capabilities
and visual sensors able to monitor the surrounding envi-
ronment. In [33] CAO was used to align a team of flying
robots to perform surveillance coverage missions over an
unknown 3D terrain of complex and non-convexmorphology.
The performance of the proposed approach was analyzed in
terms of convergence, scalability and applicability. CAO was
combined in [34], with a state-of-the-art visual-SLAM algo-
rithm [35] in a two-step procedure which allowed the align-
ment of a team of aerial robots to perform terrain surveillance
coverage over a terrain of arbitrary morphology by using only
onboard vision. CAO was also implemented in the case of
teams Autonomous Underwater Vehicles (AUVs), to fully-
autonomously navigate them when deployed in exploration
of unknown static and dynamic environments towards pro-
viding accurate static/dynamic maps of the environment [18].
Another application in the case of mobile robots is presented
in [36], where CAO was utilized to facilitate navigation in
an unknown complex environment, while interacting with
humans considering their comfort.

In this section, we will describe how the CAO approach
can be appropriately adapted and extended, so as to be appli-
cable to the problem of a first-responder robot, where it must
generate a sufficiently accurate map of the environment for
reporting target location and possible traversable paths, in a
strictly defined time window. More explicitly, let us consider
the problem as formulated in section IV-A. The optimization
criterion can be expressed as a function of the robot’s posi-
tions:

Jk = J (xk ) (14)

where k = 0, 1, 2, . . . denotes the time-index, Jk denotes the
value of the optimization criterion at the k-th time-step, xk
denote the position of the robot and J is a nonlinear function
which depends – apart from the robot’s positions – on the
particular environment where the robots live; for instance,
it depends on the location of the various obstacles that are
present. At each time-step k , an estimate of Jk is available
through robot’s sensor measurements,

Jk = J (xk )+ ξk (15)

where Jk denotes the estimate and ξk denotes the noise intro-
duced in the estimation of Jk due to the presence of noise in
the robot’s sensors.

Apart from the problem of dealing with the optimization
criterion, we have to consider the constraints deriving from
the operation of the robot, i.e obstacle avoidance. In other
words, at each time-instant k , the vector xk should satisfy a
set of constraints which, in general, can be represented as
follows:

C(xk ) ≤ 0 (16)

where C is a set of nonlinear functions of the robot’s positions.
As in the case of J , the function C depends on the particular
environment characteristics (e.g. location of obstacles).

Given the mathematical description presented above, the
problem can be mathematically described as the problem of
moving xk to a position that solves the following constrained
optimization problem:

maximize (14)
subject to (16) .

(17)

As a first step, the CAO approach makes use of function
approximators for the estimation of the unknown objective
function J at each time-instant k according to

Ĵk (xk ) = ϑτk φ(xk ). (18)

Here Ĵk (xk ) denotes the approximation/estimation of J
generated at the k-th time-step, φ denotes the nonlinear vector
of L regressor terms, ϑk denotes the vector of parameter
estimates calculated at the k-th time-instant and L is a positive
user-defined integer denoting the size of the function approx-
imator (18). The vector φ of regressor terms must be chosen
so that it satisfies the so-called Universal Approximation
Property [37], i.e. the approximation accuracy of the approxi-
mator (18) should be an increasing function of the approxima-
tor’s size L. Polynomial approximators, radial basis functions,
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kernel-based approximators, etc, are known to satisfy such a
property (see [37] and the references therein). The parameter
estimation vector ϑk is calculated according to:

ϑk = argmin
ϑ

1
2

k−1∑
`=`k

(Jn` − ϑ
τφ(x`))2 (19)

where `k = max{0, k − L − Th} with Th being a user-
defined nonnegative integer. Standard least-squares optimiza-
tion algorithms can be used for the solution of (19).

As soon as the estimator Ĵk is constructed according to
(18), (19), the set of new robot’s positions is selected as
follows:

Firstly, a set ofN candidate robot’s positions is constructed
according to:

x ik = xk + αζ ik , i ∈ {1, . . . ,N } , (20)

where ζ ik is a zero-mean, unity-variance random vector with
dimension equal to the dimension of xk . As mentioned in
section IV-A, α is the distance the robot moves in each time-
step. This value remains constant and equal to 1, while the
condition in Eq. 13 does not hold. In order to avoid the
entrapment of CAO algorithm in a local minimum, for any
time step in which the condition in Eq. 13 holds, α increases
by one, until the condition is no longer valid.

Among all N candidate new positions x ik , i ∈ {1, . . . ,N },
the ones that correspond to non-feasible positions/poses – i.e.
the ones that violate the constraints (16) – are neglected and
then the new robot’s positions are calculated as follows:

xk+1 = argmax
i ∈ {1, . . . ,N }
x iknot neglected

Ĵk (x ik )

In this paper we apply the CAOmethodology using the cost
functions described in details in section IV-A. The optimiza-
tion criterion used corresponds to Eq. 9 and Eq. 10, depending
on the value of the threshold Tf 2. We have also considered the
physical constraints which apply in the aforementioned case,
which include the following:
• the robot remains within the terrains limits, i.e. within
[xmin, xmax] and [ymin, ymax] in the x- and y-axes, respec-
tively;

• the robot do not approach the obstacles closer than a
minimum allowable safety distance dr .

• the robot can move only towards to a fully estimated and
within the line of sight position

It is not difficult for someone to realize that all the above
constraints can be easily cast in the form of Eq. 16 and thus
can be handled by the CAO algorithm.

C. LOCAL MINIMUM AVOIDANCE
This section presents the selected local minimum avoidance
strategy that is followed by the first responder robot. Using
the definitions described in subsection IV-A, the proposed
method defines the entrapment in a localminimumby exploit-
ing the F1 term. Since F1 is a regularized term that indicates

the percentage of the map that has been explored, it can be
treated also as a strictly accumulative term. Thus, Eq. 13 can
be considered as an inequality where the left part stands for
the absolute difference between the current value of F1 and
the mean of previous Tg values, while the right part of the
inequality acts as a threshold value.
A hypothetical supervisor monitors Eq. 13 in every Tl

steps and, in case that the inequality is valid, it indicates the
entrapment of CAO in a localminimum. The value ofα is then
increased by one, initiating a phase where the CAO algorithm
attempts to step away from the current local minimum. Since
CAO tries to leave the basin of attraction of the current local
minimum, a small increase of α by one guarantees that it
will not step away too far and possibly miss the optimum
which is expected to be somewhere nearby the current local
minimum. After Tl steps, the supervisor recomputes the left
term of Eq. 13, increasing iteratively the α value only if the
inequality is satisfied. In any other case the α value is reset to
its initial value of one, identifying a successful completion of
local minimum avoidance.

FIGURE 2. Two different local minimum states and the respective
solutions provided by the supervisor. (a) In this case, the evaluation of
randomly selected positions can help the robot to escape from its local
minimum. (b) In that case, in order to avoid the depicted local minimum,
the α value is increased.

In Fig. 2, for the shake of comprehension, we simplify the
state model. In this case, we assume that in each time step
the robot moves from its current position to one of the 8
discrete neighbour cells. This simplified approach illustrates
two different cases of local minimum, where the supervisor
initiated a local minimum avoidance loop. More explicitly, in
Fig. 2(a) the CAO falls into a local minimum and entraps the
robot between the two only possible positions of P1 = (2, 2)
and P2 = (3, 3). In that example the constant alternation
between these two positions prevents the robot from exploring
the area. One of the great advantages of CAO approach relies
in the fact that in each time step (iteration) the algorithm
selects the most appropriate position for the robot, among a
set of randomly selected neighboring positions and not among

696 VOLUME 1, 2013



A. A. Amanatiadis et al.: Multi-Objective Exploration Strategy for Mobile Robots

the total available positions. In this example, an exhaus-
tive search algorithm would select as the most appropriate
position, the one resulting in a local minimum (P(3, 3)). In
this example, at the specific time interval, CAO is evaluating
the two randomly selected position P1(3, 1) and P2(1, 3). As
it can be seen, both new possible positions can help the robot
to escape from its local minimum.

In Fig. 2(b) the robot is trapped between the two positions
of P1 = (6, 4) and P2 = (5, 3), thus, the left part of the
Eq. 13 constantly decreases, until it becomes lower than the
threshold value. In that case, in order to avoid the depicted
local minimum, the α value is equivalently increasing to 3.

V. SIMULATION RESULTS
This section presents simulation results based on the Webots
real-time dynamic simulation platform. In our simulation
experiments, each scenario is represented as a 150m by 150m
3D virtual world of an outdoor parking lot where the Pioneer
3-AT mobile robot is equipped with a SICK 291 laser mea-
surement system fixed to a pan servo actuator as shown in
Fig. 3.

FIGURE 3. The Open Dynamics Engine mobile robot simulation
environment.

The Open Dynamics Engine library was utilized for all
the necessary physics features such as mass, friction, com-
munication range and laser accuracy. More precisely, the
utilized laser sensor range was 8 meters with an angular
resolution of 0.5◦, performing a full 360◦ rotation per second.
A bidirectional communication between the robot node and
the supervisor node was also modeled. The cruising speed
as well as the rotation speed of the robot were kept uniform.
The simulation environment was particularly useful because
it allowed us to perform fast, automatic sensor data collection
and analysis over various parameter sets in extensively large
operational fields such as the 22500m2 parking lots.
The experimental evaluation was performed by compar-

ing the final explored map produced by the search algo-
rithms under evaluation along with the ground truth map
which is considered to be the fully explored map. Further-
more, an equal and predefined time window was set for
all the map scenarios and the search algorithms as well.

Figure 4(a), (b) and (c) depict the ground truth maps of
Scenario #1, Scenario #2 and Scenario #3, respectively.
The known obstacles where modeled as red barrels, while
the unknown ones are considered to be the parked cars. The
orange circle is used to point out the position of the goal and
the green one the starting position of the robot along with the
stationary communication node. Finally, the two overlaid red
and yellow circles indicate the circumference of rc for 50 and
100 meters, respectively.
Comparison results using different parameters for both

scenarios are shown in Tables 1, 2 and 3 respectively. The
proposed algorithm was compared with both the random [38]
and the Simultaneous Perturbation Stochastic Approximation
(SPSA) [39], [40] search techniques. The random one was
selected as the baseline method while the SPSA due to the
fact that it emulates gradient descent optimization in simi-
lar terms, as CAO does. The SPSA differs from the CAO
approach since the first one employs an approximation of
the gradient of the appropriate cost function utilizing only
the latest samples, while the CAO approach employs linear
parameter approximators that incorporate information of past
experiments in certain time intervals together with the con-
cept of candidate perturbations for efficiently optimizing the
unknown function.
For each set of parameters the experimental procedure was

repeated ten times, due to the stochasticity of all the compared
methods, thus, the presented results are the mean values of
those iterations. Different values for rc radius were examined
during the simulations. The rc radius is used for defining the
circular areaCg around the target and the rv radius defines the
laser sensor range. In our experiments we defined rv = 8m,
a typical range used in such applications. The comparison
tables illustrate for all the three aforementioned search algo-
rithms the influence of rc parameter into the maximum values
of cost functions CF1 and CF2, along with the explored per-
centage of the goal area and the overall explored percentage
of the map. It must be noticed that the standard deviation of
the exploration percentage derived from the proposed method
is very small in all the simulations conducted, indicating the
proposed algorithm’s stability.
Figures 5 and 6 illustrate in eight time steps the derived

trajectory of the proposed methodology for the Scenario #1
and the Scenario #2, respectively. In both figures, the known
obstacles are the barrels in red color, while the unexplored
area -colored in black- turns into a visible area along each
progressive scan conducted by the laser measurement sensor
mounted on the robot.We selected to include known obstacles
in our experiments since this represents a typical emergency
scenario, where the blueprints of a critical infrastructure are
available to the first responder teams. The green dot indicates
the robot starting position, while the yellow circle indicates
the target area, Cg, to be explored. Starting from an initial
position, the robot heads towards the circle Cg, in order
to explore this particular area. When the Tn value of F2
term meets the predefined threshold, a transition between
CF1 and CF2 is triggered. As a result the robot explores in
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FIGURE 4. (a) Scenario #1 ground truth map for rc = 50 and rc = 100, (b) Scenario #2 ground truth map for rc = 50 and rc = 100, (c) Scenario #3 ground
truth map for rc = 50 and rc = 100.

TABLE 1. Simulation Results for Scenario #1.

FIGURE 5. The explored area in different time steps T for the Scenario #1.

the remaining available time the rest of the unexplored area
and eventually returns in its initial position.

TABLE 2. Simulation Results for Scenario #2.

Table 1 shows the simulations results on Scenario #1.
The CF1 and CF2 values are derived from the positions of
the robot on the map. Since CAO, SPSA and random tech-
niques are responsible for the selection of those positions,
higher cost function values demonstrate better fitting and,

TABLE 3. Simulation Results for Scenario #3.

FIGURE 6. The explored area in different time steps T for the Scenario #2.

thus, according to Table 1, SPSA selects more appropri-
ate positions than the random method. However, for certain
parameter values in CF2 function, some results could be
considered comparable. Nevertheless, CAO exceeds in per-
formance both the other two search algorithms in all the
sets of parameter values. Regarding the percentages of the
goal area exploration, the random method cannot cover more
than the 15.69%, while the SPSA manages, under specific
parameter values, to cover 65.27%. On the other hand, CAO
explores 81% of the goal area in the worst case, while
in certain simulations it has accomplished a total of 89%
coverage.
Concerning the exploration of the whole map, the random

approach performs significantly better than in the previous
simulations. The SPSA achieves a very good performance
that is superior to the random algorithm performance, nev-
ertheless CAO outperforms both techniques. The simulation
results of Scenario #2, as shown in Fig. 6 and Table 2, confirm
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FIGURE 7. (a) The blue line indicates the shortest path in the absence of
obstacles and the green one the ideal path considering the obstacles
(b) An illustrated example of how the SPSA method "gets stuck" in local
minimum.

the superior performance of the proposed method since the
analogy of the compared results in all the measurable proper-
ties remains the same.

In scenario #3 a rather non typical parking lot was consid-
ered, in order to evaluate the presented methodology regard-
ing its local minima avoidance properties. For purposes of
comparison, both SPSA and random algorithms were also
evaluated. In Fig. 7(a) the thick green dot represents the
starting point while the blue line depicts the shortest path in
the case where no obstacles where existed, i.e. the euclidean
distance. On the contrary, the green line shows the ideal path
taking also the obstacles into consideration.

The first evaluated algorithm was the SPSA, which pre-
sented the poorest results. In fact, SPSA did not manage
to complete the task for all tested sets of parameter values,
since it got trapped in local minima in every trial. In order to
minimize the function criterion, SPSA chooses between only
two possible values, which are in opposite direction to each
other. In a test case, such as the one illustrated in Fig. 7(b), the
first value would increase the cost function while the second
one would refer to a position on non-traversable obstacle.
More precisely, the red arrow denoted with P− corresponds
to the first possible value which increases the cost function
and the red arrow denoted with P+ corresponds to the second
possible position which leads to a non-traversable position.
In these particular but possible states, SPSA gets trapped in a
local minimum, for all tested sets of parameter values.

FIGURE 8. The explored area in different time steps T for the Scenario #3.

Figure 8 presents in eight time steps the derived trajectory
of the proposedmethodology. In time step T = 13 the robot is
trapped for the first time in a local minima, while in T = 22 it
manages to get away. The same process is repeated in T = 57
and T = 67, respectively. TheCF2 is initiated at T = 356 and
the rest of the area is explored while the robot returns to its
initial position. The correspondence between the ideal course
in Fig. 7(a) (green line) and the one derived by the proposed
method, as illustrated in Fig. 8, demonstrates the ability of the
proposed algorithm not to step too far away from the global
optimum, while avoiding local minima. The summarization
of the simulation results is shown in Table 3, where the
superiority of the proposed algorithm is confirmed oncemore.
In particular, CAO was shown to exhibit satisfactory (local)
convergence characteristics where SPSA and random failed
to provide convergent solutions for any choice of their design
parameters.

FIGURE 9. The values of (a) CF1 and (b) CF2, with respect to time steps in
a single repetition, for rc = 100 and rv = 8.

Figure 9 presents of cost functions CF1 and CF2, with
respect to time step T . Although, the criterion for the tran-
sition from CF1 to CF2 includes only the F2 term, it is shown
that the cost function CF1 also converges to a certain value
as well.

VI. CONCLUSION
In this paper we have proposed a systematic multi-objective
strategy for search and rescue mobile robots based on multi-
constraint scenarios. The proposed strategy can effectively
address multiple non binary temporal goals utilizing a low
computational cost cognitive optimization algorithm. The
search and rescue temporal goals were modeled thought
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different cost functions which can only be triggered when
certain operational preconditions are met. The overall method
is characterized by low computational cost rendering it appro-
priate for real-time search and rescue applications. Simula-
tion results demonstrated the effectiveness of our approach
when compared with other well known search optimization
techniques. For future work, we plan to extend the proposed
technique from a single-robot approach to multi-robot one.
Systems employing multi-robots have several advantages
over single robot systems but pose several new challenges,
including: Coordination and cooperation, integration of infor-
mation collected by different robots into a single map, dealing
with limited communication, uncertainty in localization and
sensing, Decision making, reasoning, task sharing and navi-
gation [41].
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