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ABSTRACT This paper explores the effective temporal surface-illuminated properties of two-component
composites consisting of inclusions of regularly- and irregularly-shaped crystals in a matrix. Time-domain
electromagnetic modeling using the finite integration technique is used to calculate scattering (S-) param-
eters, and from these, the effective relative permittivities are calculated. It is shown that the orientation of
inclusions with high permittivity contrast affects the effective electrical permittivity of a composite mixture.
For both low and high contrast inclusions, fields localize at edges and corners of the irregular inclusion in a
manner not dependent on boundary conditions used in simulation.

INDEX TERMS Cross-sectional area, effective permittivity, electric field, electromagnetic analysis,
energetic materials, energy density, finite integration technique, HMX, irregular crystals, localization,
mixing rules, relative permittivity, rotation.

I. INTRODUCTION
The detection and neutralization of energetic materials
using stand-off techniques is of significant and growing
importance [1]– [5]. Most solid energetic materials are
random mixtures comprising irregularly-shaped explosive
crystals embedded in a passive composite or binder. In part,
the energetic material can be characterized by its steady-
state bulk electrical permittivity. However, with standoff elec-
tromagnetic (EM) probing, the probe will interact with the
surface and near-surface structure of the energetic material
rather than the material bulk. Also the probe will be transient
with the EM waveform appearing as a radio frequency (RF)
pulse as the probe scans the energetic material. This paper
explores the electrical properties and energy localization of
irregular materials excited by a temporal EM pulse. The elec-
trical properties determined are compared with the standard
mixing theories based on extrememixing situations and using
steady-state considerations alone. Time-domain monitors are
also used to analyze the near-maximum temporal energy
distributions for these irregular crystals.

Synthetic composites comprising irregularly-shaped crys-
tals in a matrix are examined here with a view to characteriz-
ing their effective EM properties and so establish a baseline
for remote detection and material characterization. In the
past, studies of effective medium properties have used time-

and frequency-domain EM simulation methods with various
abstractions and simplifications made to render the simula-
tion computationally tractable. The most common simplifica-
tion is to consider regularly-shaped inclusions and sometimes
a 2-D projected structure is analyzed. In the time domain,
the effective permittivity has been calculated in 2-D for ran-
dom mixtures using finite difference time-domain (FDTD)
simulation [6] (where inclusions are disks), [7] (disks, reg-
ular polygons and fractals), and 3-D random mixtures using
FDTD [8] (spheres, crosses and regular polyhedrons), and [9]
(spheres and a complex yet symmetric structure). With time-
domain EM analysis, regular shapes, such as cubes, spheres,
and regular polygons have been studied because these enabled
simplified gridding using rectangular meshing (and ana-
lytic projections onto a rectangular mesh in the case of
spheres).
Frequency-domain EM analysis of 2-D random mixtures

of regularly-shaped inclusions has been studied using the
finite element method [10] (polygons and fractals); 3-D
random mixtures of regularly-shaped inclusions using a
frequency-domain finite difference method [11] (spheres),
[12] (spheres, crosses, cylinders, and polyhedrons), and [13]
(spheres and cylinders); and 3-D random mixtures using a
frequency-domain finite element method [14] (polyhedrons),
and [15], [16] (spheres). Such steady-state analyses are
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limited as they, for example, do not capture temporal local-
ization of energy.

In remote probing, a region is scanned and a steady-state
is not necessarily obtained as the applied signal is effectively
a radio frequency (RF) pulse. The significant internal reflec-
tions of a crystal-based composite illuminated by an RF pulse
result in what is referred to as a long-tail response. This
characteristic is similar to that observed with RF bandpass
filters where multiple internal reflections in response to an RF
pulse cannot be predicted from steady-state observations [17].

A composite of two materials will typically be anisotropic
due to the fabrication or manufacturing process favoring
particular crystal orientations. When the crystals are much
smaller than a wavelength, in which case anisotropy results
from the combination of shapes, the standard characterization
procedure is to determine an effective permittivity of the
mixture by averaging the extracted effective permittivities of
each of three orthogonal directions [14]–[16].

Several conventional theories exist for predicting the effec-
tive permittivity of two-component mixtures with one of
the components considered as an inclusion embedded in the
other component. Analytic approaches, calledmixing laws, to
determining effective permittivity rely on a volume average
of individual permittivities. While the volume fractions are
important elements of mixing laws, internal sizes of the inclu-
sions are not considered [18]. The accuracy and applicability
of these laws has been questioned as they have been limited to
relatively simple scenarios that are dilute and geometrically
simple [18], [19]. Overall, mixing law approaches do not
provide a generally acceptable solution for effective permit-
tivity, but have been adjusted to fit experimentally derived
data [18], [20]–[22].

Additional understanding of the properties of mixtures
was brought about with the development of the effective
medium approximation (EMA) [18], significantly discussed
by Bruggeman [23] in 1935. EMA methods are applicable
at low volume fractions of inclusions with the assumptions
that groupings or overlapping of inclusions do not occur [18].
Since in the effective medium the energy density is seen
to be uniform throughout the entire volume, EMA methods
break down at higher volume fractions of inclusions since
they do not take into account the interactions between the
various components of a mixture [18]. So, EMA approaches
do not provide an all-encompassing complete solution for
two-component mixtures [18]. Results taken from computer
simulations can be utilized to confirm or disprove EMAmeth-
ods [18]. There are numerous methods [18] that have been
studied with the aid of computers, including Fourier expan-
sion [24], [25], FDTD [26]–[28], finite element [29]–[31],
the transfer matrix method [32], and boundary-integral equa-
tions (BIE) [33]– [35]. Here, the time-domain finite integra-
tion technique (FIT) is utilized.

This paper studies two materials comprising crystals in a
lossless matrix. The first is an explosive material consisting
of HMX crystals [36] and the other is a material with crystals
having a higher relative permittivity. For the high permittivity

material, both regular and irregular shapes are studied. For
both materials, realistic crystal shapes (as opposed to spheres,
cubes, etc.) are considered. As such, the inclusions do not
necessarily have symmetric shapes. Effective properties are
extracted for the composites using forward and reverse prop-
agation, and for various crystal orientations. The overall goals
of this research are to determine under what situations irreg-
ularly shaped inclusions behave similarly to spheres (through
comparison with the classical mixing rules based on spheres)
and cubes in calculations of effective permittivity, and to
analyze how rotation of the inclusion influences the effec-
tive permittivity of composites. Electromagnetic modeling of
mixtures with irregularly shaped inclusions is computation-
ally intensive and knowing when simpler geometries can be
used is advantageous.

II. THREE-DIMENSIONAL MIXING RULES
Several conventional mixing theories exist that predict the
effective properties of two-component mixtures. One of these
is the Maxwell Garnett mixing theory, which provides the
effective permittivity of a composite as [37]

εeff = ε2 + 3qε2
ε1 − ε2

ε1 + 2ε2 − q(ε1 − ε2)
. (1)

Here ε1 is the permittivity of spherical inclusions, ε2 is the
permittivity of the surrounding material, and q is the volume
fraction, i.e. filling factor, of the inclusions. The inclusion
size here is much smaller than the EM wavelength. A few
assumptions of the Maxwell Garnett mixing theory are that
the inclusions are spherical in shape, the spheres do not touch
each other, and the radius of an individual spherical inclusion
is much smaller than the distances between the spheres [14].
That is, the mixing rule can only be properly used with
composites that have a low proportion of inclusions whereas
the crystals in energetic materials can have a volume fraction
of up to 95%.
The second classical mixing theory is known as the

Bruggeman rule [23]

(1− q)
ε2 − εeff

ε2 + 2εeff
+ q

ε1 − εeff

ε1 + 2εeff
= 0. (2)

As with the Maxwell Garnett mixing theory, the Brugge-
man mixing rule is derived with the assumption of widely
separated spherical inclusions. More complicated structures,
such as irregularly-shaped crystals, are expected to provide
different results [14].
As described in [38], an important assumption of the

Bruggeman rule is that there is no separation between the
matrix material and the inclusions. Rather, the mixture is
treated as a homogenized medium over which polarizations
are evaluated. Thus the Bruggeman rule treats the inclu-
sions and surrounding material as being symmetric. The
Bruggeman rule, (2), balances the components in relation to
the effective medium, weighting each component by q for
inclusions and 1 − q for the surroundings. Conversely, the
Maxwell Garnett theory does not utilize such symmetry.
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Mixing rules developed for composites are based on the
two classical mixing rules (Maxwell Garnett and Bruggeman)
but none cover all types of inclusions [14]. In this paper the
applicability and limitations of the classic Maxwell Garnett
and Bruggeman rules are further developed.

III. SIMULATION METHOD AND TECHNIQUE
The effective permittivity of a sample of finite thickness can
be determined using measured or simulated scattering (S-)
parameters as described in [39]–[42]. The time-domain finite
integration technique (FIT) solver with hexahedral meshing
implemented in the commercial electromagnetic (EM) pack-
age CST Microwave Studio is utilized for these simulations.
This package allows complex 3D shapes to be modeled and
simulated. FIT is equivalent computationally to the finite
difference time-domain (FDTD) except that the time-domain
Maxwell’s Equations are discretized in integral form rather
than differential form [42] and gridding is generalized.

The adaptive meshing algorithm used refines the mesh
until convergence of electrical characterization is obtained.
Refinement of the mesh by an additional step led to an
effective permittivity change of less than 0.5% (indicating
that acceptable accuracy had been reached). The number of
mesh cells for each simulation run was at least 250,000.
Computation was performed using an 80 core machine with
160 GB of RAM and clocking at 2.66 GHz. Where required,
time results were Fourier transformed to yield frequency-
domain characterization from an applied wideband EM pulse.

With the RF component having angular frequency ω, the
free space wavenumber k = ω/c where c is the speed
of light. With excitation at Port 1 (the incidence port), the
wavenumber, the thickness d of the structure in the direction
of propagation, and the calculated S-parameters were used
to derive the refractive index n of a sample surrounded by
vacuum using [41], [42]

n = ±
{

1
kd

arccos
[

1
2S21

(1− S211 + S
2
21)
]
+

2πm
kd

}
, (3)

where m is an integer indicating multiple possible solutions.
In (3), n is negative if the permittivity and permeability are
both negative. The relative wave impedance z of the sample,
with the impedance normalized to the impedance of free
space, η, is [41], [42]

z = ±

√
(1+ S11)2 − S221
(1− S11)2 − S221

. (4)

The S-parameters in (3) and (4) are normalized to η. Informa-
tion about the material can be used to remove the ambiguities
in (3) and (4). When d is large compared to the wavelength
λ in the medium, the branches of the arccosine function
determined by m in (3) can be close together. This can make
finding a unique solution for n difficult. However, in the
following simulations d is less than λ/4 so that there is a
unique result for n. So, the default branch of m = 0 and
positive n is chosen in (3). A passive material means that<(z)
is positive, so that the positive branch is chosen for (4). Now,

with unique solutions for n and z, the effective permittivity is
[41], [42]

εeff =
n
z
. (5)

From [41], n can be well defined by amaterial that supports
one propagating mode at a certain frequency, which is true
here. For the frequency range studied of up to 50 GHz, there
is only one propagating mode, TEM, all other modes are
evanescent, and (3) and (4) use the transmission and reflection
coefficients for the mode that is propagating. Thus, to make
the computation tractable the bulk effective permittivity relies
on an abstraction to utilize the single propagating mode rather
than on evanescent modes in its derivation. The results that
follow for the effective permittivities of mixtures use the
procedure above to determine εeff unambiguously.

IV. MODELING OF IRREGULAR CRYSTALS
Several different types of irregular inclusions are analyzed
here in the following subsections.

A. MODELING OF IRREGULAR CRYSTALS IN CST
An important goal of this research is modeling inclusions
of a size and shape representative of materials comprising
irregularly-shaped crystal inclusions. For reference, the crys-
tal size of the irregular energetic material HMX is typically
0.15 mm [36]. This was modeled in CST as the irregularly-
shaped crystal shown in Figure 1. This becomes an inclusion
in a matrix modeled here as having a relative permittivity
of 1. In Figure 1, the irregular crystal spans 0.15 mm in the
z direction with a maximum dimension of 0.178 mm and
0.192 mm in the x and y directions respectively. The total
volume of the irregular crystal is 0.00351 mm3. The outer
box shown is a cube with a side length of 0.26 mm, giving
an inclusion volume fraction of q = 0.20 for Figure 1. For
propagation in free space, a unit cell side length of 0.26 mm

FIGURE 1. An irregularly-shaped inclusion inside an outer box. The
inclusion volume fraction here is 20%. The crystal is within a cube with a
side length of 0.26 mm.
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corresponds to approximately 0.00087λ at the studied fre-
quency of 1 GHz. The size of the irregular crystal is kept
constant and the outer box side length is changed to obtain
the various volume fractions.

EM propagation through the material is modeled using
CST Microwave Studio with the crystal placed in a parallel
plate transverse EM (TEM) environment [7].With the electric
field polarized in the x direction, the TEM environment is
established by setting the opposite pair of normal faces in the
x direction as electric walls, the opposite pair of normal faces
in the y direction as magnetic walls, and the final opposite
pair of normal faces in the z direction using open boundary
conditions. In simulation the open faces are modeled as per-
fectly matched layers (PMLs) that eliminate reflections back
into the TEM environment. Measurement ports are set up at
the open faces (Port 1 and Port 2), defining the axis of EM
propagation in the z direction, see Figure 2.

1

2

FIGURE 2. The irregular crystal of Figure 1 shown with waveguide ports
(Port 1 and Port 2) set along the propagation axis, the z axis. In turn the
x and y propagation directions were also considered with the crystal
structure fixed in position and boundary conditions changed
appropriately.

In Figure 2, the ports are separated from the mixture,
providing an averaging effect similar to what happens with
stand-off remote sensing. Specifically, the spacing from the
waveguide ports to the structure is λ/4 of the maximum
frequency component (50 GHz) of the applied RF pulse.
Propagation in free space results in a separation distance
of 1.5 mm for both ports in Figure 2. Measurements at the
ports shown in Figure 2 were referred to reference planes
on the surface of the cube also shown in Figure 2. This
yielded the S-parameters used with (3) and (4) to determine
the effective permittivity of the mixture calculated using a
Gaussian pulse excitation signal, Fourier analyzed temporal
response, and (5).

One of the issues in EM modeling is that the size of the
structure that can be simulated is limited and it is necessary
to establish simulation boundaries close to the structure being
investigated. Thus the possible impact that the boundary con-
ditions have on the extracted results is a concern. The TEM

waveguide environment is necessary to extract the effective
permittivity and the environment (i.e., the TEM set of bound-
ary conditions) emulates a large structure that mirrors cells
[16] as shown in two dimensions in Figure 3. Other periodic
boundary conditions emulate structures with other arrange-
ments of repeating cells. In the following it is shown that the
boundary conditions chosen have negligible effect on energy
localization and, by extrapolation, on effective permittivity.

FIGURE 3. Cross section of the larger emulated structure based on a unit
cell shown in Figure 1. The electric and magnetic boundary conditions of
the TEM environment create electric and magnetic mirror boundaries,
extended here for the 25 inner most cells.
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FIGURE 4. Gaussian pulse excitation signal used in simulation.

B. ENERGY LOCALIZATION
EM remote probing of compounds presents the material with
an RF pulse resulting in time-localized energy concentra-
tions rather than steady-state energy concentrations. Tempo-
ral localization of energy is explored in this section using the
Gaussian pulse shown in Figure 4 (with an appreciable fre-
quency content from 0 to 50 GHz) and the irregularly-shaped
crystal shown in Figure 1. An irregularly-shaped crystal of

526 VOLUME 1, 2013



A. Pickles, M. B. Steer: Effective Permittivity of 3-D Periodic Composites

HMX (having low real relative permittivity of 2.03 [43], [44])
in a binder having a relative permittivity of 1, and in the
TEM environment has the (near-maximum) temporal energy
distribution shown in Figure 5. That is, this is the EM energy
distribution close to the point in the mixture that has the
highest electrical energy concentration at any position and
time.

FIGURE 5. Peak electric energy density at t = 40 ps for the HMX-based
composite (calculated as J/m3 and here normalized to a maximum of
1) with highest density at the edges and corners indicated by the black
oval. Calculated using the TEM environment with the applied electric field
polarized in the x direction and propagating in the positive z direction.

It is seen that the electric energy density localizes around
the edges and corners of the crystal as expected [7]. These
corners and edges are specifically the ones closest to the outer
box, i.e. the adjacent crystal for the emulated structure, in the
polarization axis of the applied electric field (the x axis here).
Before considering alternative boundary conditions, consider
energy localization for a high permittivity material. For a
zirconia-like high permittivity inclusion (with real relative
permittivity of 28 [45]) the resulting electric energy density in
the composite is given in Figure 6. The simulation conditions
are the same as for Figure 5. Again the electric energy density
localizes at the same corners and edges of the inclusion.
Now, the peak electric energy density is approximately 8
times greater than with the composite with the HMX (low
permittivity) inclusion.

To investigate the effect of the specific boundary condi-
tions on energy localization, simulations were repeated with
periodic boundary conditions at the y-z and x-z planes on the
boundaries. This creates a repeating non-mirrored periodic
structure in the x and y directions. With these boundary
conditions it is also necessary to change the source excitation
from a waveguide port to a plane wave. The plane wave is
linearly polarized, propagating along the z axis with electric
field polarized in the x direction. The peak electric energy
densities for the low- and high-permittivity inclusions are
shown in Figures 7 and 8 respectively. In Figures 7 and 8, the

FIGURE 6. Peak electric energy density for the zirconia-like high
permittivity inclusion normalized to the energy density in Figure 5.
Conditions correspond to those in Figure 5.

FIGURE 7. Normalized peak electric energy density for the HMX (low
permittivity) inclusion with highest density at the edges and corners
indicated by the black oval. Plane wave excitation and periodic
boundaries are utilized. The electric field is polarized in the x direction
with propagation in the positive z direction.

periodic boundary conditions result in localization of electric
energy density at the corners and edges of the inclusion and
the relative energy distribution is approximately identical to
that obtained when the mirrored boundaries were used in
simulation as in Figures 5 and 6.
Comparing the energy densities in Figures 5 and 7, and

in Figures 6 and 8, and comparing the scales in Figures 6
and 8 enables the important conclusion to be reached that
the simulation conditions have little effect on energy density.
Figures 6 and 8 show the energy density when the high
permittivity inclusion is used with the simulation reported in
Figure 6 using mirror boundaries and Figure 8 using periodic
boundaries. The peak energy density differs by less than 5%.
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FIGURE 8. Electric energy density for the high permittivity inclusion
normalized to the energy density in Figure 7 with the same simulation
conditions as in Figure 7.

Thus the results in Figures 5–8 show that there is no sig-
nificant dependence of electric energy localization on simu-
lation boundary conditions. This conclusion was reinforced
by simulations with the crystal rotated and energy density
again found to have little dependence on boundary conditions.
With these results, the effective permittivity of the compounds
can be explored without being concerned with the impact of
boundary condition choice. Specifically TEM conditions are
used, which enables the effective permittivity to be extracted
using scattering parameters that can be conveniently extracted
using the TEM environment.

C. EFFECTIVE PERMITTIVITY WITH HMX INCLUSIONS
HMX has been measured to have a relative electrical per-
mittivity from 1 to 6 GHz of εr = 2.03 − 0.0035 and
this is expected to be constant up to 20 GHz [43], [44]. The
flat permittivity indicates that the loss mechanism is due to
dielectric relaxation and that, at least between 1 and 6 GHz,
there is negligible loss due to material conductivity. The real
component of the effective relative permittivity, <(εeff), at
1 GHz derived from EM simulations for the HMX-based
compound versus filling factor is compared to that calculated
using the conventional mixing theories in Figure 9.

For the results in Figure 9 derived from EM simulations,
a total of 6 propagation directions were considered in turn.
Both the forward and reverse propagation directions along
each of the 3 coordinate axes (x, y, and z), each corresponding
to a unique polarization of electric field, E , are used to gather
six independent results for effective permittivity according
to (3)–(5). Figure 9 compares <(εeff) taken as the arithmetic
average of either just the positive propagation directions, or
of all six directions. In Figure 9, the forward and reverse
propagation directions for a given polarization yield the
same effective permittivity within 1% and the two averaging
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FIGURE 9. Plots of the real component of the effective relative
permittivity versus volume fraction, i.e. filling factor q, for a compound
with irregular HMX crystal inclusions. The squares identify the effective
permittivities calculated (using EM simulated results) as the equally
weighted average of the effective permittivities extracted for each of the
three positive orthogonal propagation directions. The plus signs identify
the effective permittivities calculated similarly but now considering both
positive and negative propagation directions. Also shown are the
effective permittivities calculated using the Maxwell Garnett and
Bruggeman mixing theories.

schemes yield results within 1%. Thus, while individual
permittivity values differ among x, y, and z polarizations,
effective permittivity is independent of propagation direction
for the same electric field polarization. As an additional test,
the unit cell was doubled in the direction of propagation,
and the calculated effective permittivity was found to differ
from the situation of a single unit cell in the propagation
direction by less than 0.05%.
At least for the low permittivity contrast material (as with

the HMX compound here), the results shown in Figure 9 for
the simulated effective permittivity closely follow the predic-
tions of the Maxwell Garnett and Bruggeman mixing theo-
ries even for high filling factors. At a 45% volume fraction,
q = 0.45, the discrepancy of the four results is less than
0.94%. The Maxwell Garnett and Bruggeman mixing theory
results were based on an assumption that the inclusions are
spheres and that the spheres are not close to each other
(corresponding to low filling factors typically under 10%)
[14]. That is, for a low permittivity contrast granular material,
the Maxwell Garnett and Bruggeman mixing theories can be
used with irregular inclusions and with filling factors up to
45% within 1% error.

D. EFFECTIVE PERMITTIVITY WITH HIGH PERMITTIVITY
INCLUSIONS
In this section the previous results for granular materials
having low permittivity inclusions are compared to those
for a granular material having a high permittivity contrast
between the inclusions and thematrix. Thematerial examined
has zirconia-like crystal inclusions. The zirconia-like crystals
have a relative permittivity of 28, a tan δ of 0.0009 (measured
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at 1 GHz [45]), have negligible conductivity, and have the
same shapes as the HMX crystals to remove crystal shape as
a variable. Using the same simulation environment as used
previously, the calculated effective electrical permittivities at
1 GHz are compared to those derived using the Maxwell
Garnett and Bruggeman mixing theories in Figure 10. As
before the simulated effective permittivity is independent of
propagation direction. Now, however, there is a significant
difference between the effective permittivities calculated and
the classicmixing theories. The discrepancy is near 1%up to a
volume fraction of 0.05 growing to 22% and 61% differences
from the Maxwell Garnett and Bruggeman mixing theories,
respectively, at a volume fraction of 0.45. This compares to
less than 1% discrepancy at this volume fraction for the lower
permittivity HMX compound.
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FIGURE 10. Plots of the real component of the effective relative
permittivity (derived from EM simulation results) versus filling factor for
an irregular high permittivity inclusion crystal. The squares indicate the
equally weighted average of the effective permittivities calculated for
each of the three positive orthogonal propagation directions. The plus
signs indicate the equally weighted average effective permittivities of the
positive and negative propagation directions (6 total). Also shown are the
effective permittivities calculated using the Maxwell Garnett and
Bruggeman mixing theories.

E. SUMMARY
The Maxwell Garnett and Bruggeman mixing theories are
based on spherical and regularly ordered inclusions and are
generally accepted as being applicable for volume fractions
of 0.1. The investigations here have shown that with a small
permittivity contrast between the matrix material and the
inclusion (here 2.03), the Maxwell Garnett and Bruggeman
mixing theories are accurate at high filling factors and for
irregular structures. However, with a high permittivity con-
trast between the inclusion and thematrix there is a significant
departure between the predictions of the conventional mixing
theories and the simulated effective electrical permittivity of
granular compounds. From Figure 10 it is also evident that
for irregularly-shaped inclusions, high permittivity contrast
between inclusion and matrix material produces significantly
different results from conventional mixing theories at filling

factors above 0.05. Thus for high filling factors as seen in
Figure 10, the traditional mixing theories do not accurately
predict the effective properties of irregularly shaped mixtures
when the permittivity contrast of the inclusion and of the
matrix is high. This observation is compatible with previously
reported research results for high permittivity contrast when
the inclusions have a regular shape [14], [16].

V. MODELING OF MULTIPLE CRYSTALS
This section continues the investigation of compounds with
a high permittivity contrast scenario but now using multi-
ple cubic crystal inclusions in an ordered arrangement in
order to study the properties of a large volume with mul-
tiple inclusions but now with a regular shape. The use of
a regular shape simplified the gridding used in simulation
and resulted in a simulation model that fit in the available
160 GB of RAM. An example of such a structure is shown in
Figure 11. In Figure 11, each cube is 0.056 mm on a side and
the side length of the outer box is 1.37 mm so that the volume
fraction is 5%. For propagation in free space at 1 GHz, a unit
cell size of 1.37 mm corresponds to approximately 0.0046λ.
Also shown in Figure 11 are Ports 1 and 2, the waveguide
simulation ports. The side length of each cubic inclusion
varies with volume fraction and increases to approximately
0.15 mm for a 0.95 volume fraction. The inclusions are the
high permittivity material and the matrix has a relative per-
mittivity of 1. Results of the simulated effective permittivity
versus volume fraction are given at 1 GHz in Figure 12.

2

FIGURE 11. A total of 729 cubic crystals (inclusions) arranged on a grid
within a free space outer block. The volume fraction of inclusions here
is 5%.

In Figure 12, the effective permittivity derived from sim-
ulations closely matches the predictions of the Maxwell
Garnett mixing theory for all volume fractions. Com-
paring Figure 12 with Figure 10, with the same high
permittivity contrast, irregular inclusion shapes exhibit
greater effective permittivity differences from estab-
lished theory (see Figure 10) than when symmetric and
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FIGURE 12. Plots of real effective relative permittivity, <(εeff), versus
various filling factors for high permittivity cubic inclusion crystals on a
grid along with various bounds.

ordered inclusion crystals on a grid are considered (see
Figure 12). It is also possible that the larger structure, as with
the Figure 12 results, provides a greater averaging effect than
the thin layer of crystals considered with Figure 10. This is
examined further by considering properties of a crystal while
it is rotated.

VI. ROTATED CRYSTALS
This section considers the electrical characteristics of both
regularly-shaped and irregularly-shaped crystals when the
crystals are rotated, with permittivity results taken at 1 GHz.
Effective permittivity is calculated as the inclusion crystals
are rotated, and this behavior is compared with plots of
cross-sectional area. The zirconia-like crystals having high
permittivity contrast are considered since these were found
to have the greatest deviation from established theory previ-
ously. However, the crystal is now rotated around each of the
coordinate axes (x, y, and z) to investigate the influence of
crystal orientation on the determination of effective relative
permittivity. These are particularly interesting effects as they
form the basis of a sensing modality with the source of illu-
minationmoving rather than rotation of the crystal inclusions.
Note that the manufacture of many compound objects results
in aligned crystals.

A. CUBE-SHAPED ROTATED HIGH PERMITTIVITY
INCLUSIONS
The analysis begins with a simple rotation scenario, a high
permittivity cubic crystal inclusion with a volume fraction
of 0.10, see Figure 13. In Figure 13, the inner cube has a
side length of 0.195 mm and the outer box has a side length
of 0.420 mm. A unit cell size of 0.420 mm corresponds
to approximately 0.0014λ for propagation in free space at
1 GHz. The effect of rotation on effective permittivity with
the electric field polarized in the x direction is shown in
Figure 14. Figure 14 indicates that when the inclusion rotates

2

FIGURE 13. Cube-shaped high permittivity inclusion crystal at 10%
volume fraction in the TEM simulation environment.
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FIGURE 14. The real effective relative permittivity, <(εeff), of a high
permittivity cube-shaped inclusion at a filling factor of 0.10 versus
rotation angle around the x , y , and z axes. Here, the electric field is
polarized in the x direction.

around the x axis (the direction of electric field polarization),
there is negligible change in <(εeff) of the mixture. However,
<(εeff) does vary with rotation of the crystal around the y and
z axes. Many possible sources of this rotational dependency
were found with the strongest correlation being with the pro-
jection of the immediate cross-sectional area of the crystals
on the plane transverse to the direction of polarization. Thus
a plot of cross-sectional area fraction is shown in Figure 15.
The cross-sectional area fractionwith respect to a given axis is
the ratio of the cross-sectional area of the inclusions projected
in the plane normal to the axis to the area of the projection of
the inclusions plus surrounding material in that plane. This
ratio is calculated for the first crystal layer, which is the layer
that interacts most strongly with an illuminating field. This
ratio is shown in Figure 15 with respect to the x axis, here the
electric field polarization.

By comparing Figure 14 with Figure 15, it is evident that
overall the effective permittivity of the mixture with rotated
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FIGURE 15. Cross-sectional area fraction from the perspective of the x
axis for a 10% filling factor. For other filling factors the curves are directly
scaled.

cube-shaped inclusion follows the behavior of the cross-
sectional area fraction graph when rotated about the corre-
sponding axis. If the cross-sectional area fraction is constant
(as is the case for the x axis rotation here), the effective
permittivity is also approximately constant. However, from
40◦ to 50◦ rotation around the y and z axes, the cross-sectional
area fraction continues to increase but the effective permit-
tivity goes down. Outside this narrow range of angles there
is a high correlation of the cross-sectional area and effective
permittivity.

Next, another cube-shaped high permittivity inclusion is
used but this time at 20%filling factor to see how the effective
permittivity versus rotation angle is altered when the fill-
ing factor is increased. The results for effective permittivity
from these simulations are given in Figure 16. The same
behavior seen with lower filling factor is observed but now
exaggerated.
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FIGURE 16. The real effective relative permittivity, <(εeff), of a high
permittivity cube-shaped inclusion at 20% volume fraction versus
rotation angles around the x , y , and z axes. The electric field is polarized
in the x direction.

For the most part, effective permittivity follows the behav-
ior of the cross-sectional area fraction. Now however, there
is a wider region over which the cross-sectional area frac-
tion increases but the effective permittivity goes down. In
Figure 16 this dip is shown to be from 35◦ to 55◦ rota-
tion compared to 40◦ to 50◦ rotation for the 10% volume
fraction simulations in Figure 14. For both 10% and 20%
volume fraction, as the crystal begins to rotate (y and z axis
rotation here) the cross-sectional area fraction goes up. The
volume fraction is constant but because the cross-sectional
area fraction is going up more of the crystal is seen by the
electric field and the effective permittivity goes up. However,
an inverse relationship develops between cross-sectional area
fraction and effective permittivity centered around 45◦. Since
the inner crystal is rotating, at 45◦ rotation it is closest to
the nearest crystal. The crystals getting close to each other
causes another phenomenon to take over where an inverse
relationship develops between cross-sectional area fraction
and effective permittivity.
The range over which the dips in Figures 14 and 16 occur

can be understood by comparing the structures in these two
situations. In the 20% volume fraction scenario in Figure 16,
the inner crystal is taking up more space inside the outer box
compared to the 10% volume fraction case in Figure 14. In
Figure 16 the region of the dip has a larger 20◦ range for
the 20% volume fraction scenario because (starting with 0◦

rotation as shown in Figure 13) it takes less rotation for the
crystal to get close to the outer box. There is a smaller 10◦

range of the dip for the 10% volume fraction scenario in
Figure 14, where because the crystal is so small within the
outer box it takes close to 45◦ rotation for the crystals to
get close enough to each other for the inverse relationship to
develop.
In effect, for both the 10% and 20% volume fraction

mixtures with cube-shaped inclusions all of the inclusions
are rotating and at 0◦ and 90◦ the crystals are at maximum
separation. At 45◦ the crystals are closest to each other, where
fringe effects influence the effective permittivity.

B. IRREGULAR ROTATED HIGH PERMITTIVITY
INCLUSIONS
In this section, the same high permittivity material proper-
ties are used for the inclusion, but this time an irregular
structure is used instead of the cubes from the previous
section. From Sections IV and V, the greatest deviation from
established mixing theories occurred with high permittivity
irregular inclusions, and these structures are studied in more
detail here. The shape of the inclusion is shown in Figure 1.
This allows a more realistic and complicated structure to be
rotated. For all of the following rotations the volume fraction
is kept constant at 20%. First, the electric field is polarized
in the x direction, and results of permittivity versus rotation
angle are given in Figure 17.

In Figure 17, rotation around the same axis as electric
field polarization shows virtually no deviation in effective
permittivity with rotation angle. However, rotation around the
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FIGURE 17. The real effective relative permittivity, <(εeff), of a high
permittivity irregular-shaped inclusion at 20% filling factor versus
rotation angle around the x , y , and z axes. The electric field is polarized
in the x direction.
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FIGURE 18. Cross-sectional area fraction of the rotated irregular crystal
from the perspective of the x axis (electric field polarization axis) as the
crystal is rotated around a given axis.

other axes shows unique oscillating behaviors. In an attempt
to understand the reasons for these oscillations in permittivity,
Figure 18 shows cross-sectional area fraction looking along
the x axis (the electric field polarization axis) as the irregular
crystal is rotated. By comparing Figure 17 with Figure 18, the
behavior of cross-sectional area fraction with rotation follows
that of effective permittivity for rotation around the x (electric
field polarization axis) and y axes. The cross sectional area
with rotation around the z axis oscillates just as the effective
permittivity does when rotated around the z axis, but with an
inverse relationship. Still, correlation between cross-sectional
area fraction and effective permittivity is evident.

Next, the electric field is polarized in the y direction and
the crystal is rotated around each axis. Results of effective
permittivity are given in Figure 19. Again, in Figure 19
there is constant permittivity when the irregular inclusion is
rotated around the y axis (electric field polarization axis),
and oscillating behavior with rotation around the other axes.

0 20 40 60 80 100 120 140 160 180
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

R
ea

l e
ffe

ct
iv

e 
re

la
tiv

e 
pe

rm
itt

iv
ity

Rotation angle (degrees)

Rotation around x axis
Rotation around y axis
Rotation around z axis

FIGURE 19. The real effective relative permittivity, <(εeff), of a high
permittivity irregular-shaped inclusion at 20% filling factor versus
rotation angle around the x , y , and z axes. The electric field is polarized
in the y direction.
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FIGURE 20. Cross-sectional area fraction of the rotated irregular crystal
from the perspective of the y axis (electric field polarization axis) as the
crystal is rotated around a given axis.

A plot of the cross-sectional area fraction is provided when
looking from the perspective of the y axis in Figure 20.
A comparison of Figure 19 with Figure 20 shows a direct
correlation between cross-sectional area fraction with rota-
tion and effective permittivity for rotation around the x and y
(electric field polarization) axes. Rotation around the z axis
causes cyclical variation in both figures, but with an inverse
relationship.
Analyzing Figures 17–20, it is evident that there are two

situations where the effective permittivity variation does not
show a direct relationship to the cross-sectional area fraction.
These situations are rotation about the z axis for electric field
polarized in the x direction (Figures 17 and 18) and rotation
about the z axis for electric field polarized in the y direction
(Figures 19 and 20). Analyzing Figure 1 it is seen that these
two situations involve the same type of rotation. In Figure 1,
looking down the x or y axes and rotating the crystal around
the z axis causes the crystal to keep the same width (in the
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z direction) and rotate end over end. In this situation entire
sides of the crystals are becoming close to each other. The
degree of proximity is greater than in the other situations.
For example, in rotation about the y axis for electric field
polarized in the x direction (Figure 17), the edges rather than
the faces of the crystals approach each other. So, just as in
Figure 14 and Figure 16 where the cubic crystals approaching
each other resulted in an inverse relationship of the effective
permittivity with the cross-sectional area fraction, the situa-
tions of rotating the crystal end over end in Figures 17–20
cause enough of the crystals to be in close proximity for an
inverse relationship to develop. The simulations have shown
that close adjacency of neighboring inclusions results in an
inverse relationship between cross-sectional area fraction and
effective permittivity.

Finally, the electric field is polarized in the z direction and
the crystal is rotated along each axis. The effective permittiv-
ity for this scenario is given in Figure 21. Just as shown in
Figures 17 and 19, when the inclusion is rotated around the
same axis as the electric field polarization in Figure 21 (z axis)
there is no change in effective permittivity. Rotation around
the x and y axes shows the same oscillating behavior. For
comparison purposes, Figure 22 shows cross-sectional area
fraction looking down the z axis (electric field polarization
axis) as the irregular crystal is rotated.
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FIGURE 21. The real effective relative permittivity, <(εeff), of a high
permittivity irregular-shaped inclusion at 20% filling factor versus
rotation angle around the x , y , and z axes. The electric field is polarized
in the z direction.

Comparison between Figures 21 and 22 shows that the
cross-sectional area fraction with rotation from the perspec-
tive of the z axis (electric field polarization axis) shows the
same behavior as effective permittivity of the rotated inclu-
sion for all axes. In Figures 21 and 22, there is no inverse
relationship with cross-sectional area fraction because the
situation of rotating end over end (z axis rotation) with sides
of the crystals getting close to each other does not change the
cross-sectional area fraction or the effective permittivity.

Overall, rotating the inclusion crystals provides strong
evidence for a relationship between cross-sectional area
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FIGURE 22. Cross-sectional area fraction of the rotated irregular crystal
from the perspective of the z axis (electric field polarization axis) as the
crystal is rotated around a given axis.

fraction of inclusions and effective permittivity of mix-
tures. For both regular and irregular crystals, the effec-
tive permittivity and cross-sectional area fraction share a
direct relationship except in situations where a significant
amount of the inner crystal reaches close to the outer
box, or to adjacent crystals, where an inverse relationship
develops.
Rotation of the inclusion crystals and changing the elec-

tric field polarization axis highlights the anisotropy of the
composites studied. Effective permittivity is found to differ
based on electric field polarization direction. The results in
Figures 9 and 10 average together the various permittivities
obtained from varying the polarization direction to obtain a
single effective permittivity. The sections describing rotation
also highlight anisotropy even at a constant volume fraction.
We change the electric field polarization axis and rotate the
inclusion crystal, and the significant differences observed are
highlighted in the figures.

C. IMPACT OF OPERATING FREQUENCY
The results in the preceding sections take effective permittiv-
ity at a low frequency (1 GHz) where the inclusions are small
compared to a wavelength. To see the impact on effective
permittivity when the operating frequency varies, Figure 23
shows effective permittivity for the high permittivity irregular
inclusion at 20% volume fraction with electric field polarized
in the z direction (results from all rotations given in Figure 21)
but specifically for 0◦ rotation. Here the unit cell has side
length of 0.26mm, corresponding to approximately 0.00087λ
at 1 GHz and 0.043λ at 50 GHz for propagation in free
space.

With a crystal size of approximately 0.15 mm, in Figure 23
the effective permittivity is flat through 25 GHz before start-
ing to increase by less than 0.5% up to 50 GHz, a negligible
change from the static value. Similar results were obtained for
other polarizations and rotation amounts that also show a flat
response across frequency.
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FIGURE 23. The real effective relative permittivity, <(εeff), of the high
permittivity irregular-shaped inclusion at 20% volume fraction (results for
all rotation angles given in Figure 21) for 0◦ rotation as a function of
frequency.

VII. CONCLUSION
This paper studied the effective permittivity and electric
energy localization behavior of crystal-based compounds
with high and low contrast between the electrical permittivity
of inclusions and the matrix. The results addressed the appro-
priateness of the simulation boundary conditions, applicabil-
ity of traditionalmixing rules, and characteristics that can lead
to new sensingmodalities. In particular all investigations used
a temporal pulse corresponding to a remote probing scenario.

For both mirrored and periodic boundaries, electrical
energy localized to the greatest extent on the edges and cor-
ners of the inclusion crystal closest to another crystal in the
direction of electric field polarization. The energy localiza-
tion varied with time indicating the importance of not using
steady-state analysis to determine peak energy density. In
particular, it is only necessary to obtain high energy concen-
tration at one point in space and time to activate an energetic
material. The energy distribution and temporal response were
virtually independent of the boundary conditions used in sim-
ulation. It is therefore reasonable to assume that the boundary
conditions have negligible effect on the effective permittivity
of mixtures extracted from EM simulations.

The effective permittivities were extracted for both forward
and reverse propagation and for each electric field polar-
ization (x, y, and z). Since the irregular structures are not
symmetric with respect to all polarization directions, it is
not surprising that directional dependency of the effective
permittivity was observed. However, for the same electric
field polarization the effective permittivity did not depend on
forward or backward propagation direction.

The classical mixing rules for spherical inclusions,
Maxwell Garnett and Bruggeman, were compared to the
effective permittivities extracted from EM simulations. With
low permittivity contrast between inclusion and matrix mate-
rial (here 2.03), therewas little dependence on inclusion shape
for effective permittivity up to a volume fraction of 0.45

(typically the highest volume fractions of energetic materials
not ofmilitary grade). For high permittivity contrast (here 28),
the effective permittivity derived was significantly different
from the prediction of the classic mixing theories. For ordered
cubic inclusions on a grid, the behavior of the effective per-
mittivity derived from EM simulations was similar to that of
the Maxwell Garnett theory for all volume fractions (up to
0.45), while neither Maxwell Garnett nor Bruggeman were
able to correctly predict the effective permittivity of mixtures
with inclusions having irregular shapes for volume fractions
above 0.05.
One of the purposes of the study was to explore new

sensing modalities, that is physical behaviors that could be
observed remotely with the focus here being the dependence
of effective permittivity on observation direction. The effect
of a moving probe was emulated by rotating the crystal in
the compound. When the inclusions were rotated, there was
a variation in effective permittivity of the mixture leading
to anisotropy even at a constant volume fraction. Thus, the
effective permittivity of a mixture varies as the angle of
observation changes. As the crystal inclusions were rotated
(corresponding to a variation in the angle of observation for
a mixture fixed in position), the effective permittivity for a
given electric field polarization axis was highly correlated
to the fractional cross-sectional area of the first crystal layer
from the perspective of the axis of polarization. It is this first
crystal layer that most strongly interacts with an applied EM
pulse. An inverse relationship between effective permittivity
and cross-sectional area fraction was observed. Note that
manufactured energetic materials will typically have aligned
crystals. That is, there is a dependency of the observed
effective permittivity on the polarization and on the angle
of observation. This dependency is not accounted for in the
classic Maxwell Garnett and Bruggeman mixing theories and
deserves further investigation.
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