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ABSTRACT The signal processing concept of signal-to-noise ratio (SNR), in its role as a performance
measure, is recast within the more general context of information theory, leading to a series of useful insights.
Establishing generalized SNR (GSNR) as a rigorous information theoretic measure inherent in any set of
observations significantly strengthens its quantitative performance pedigree while simultaneously providing
a specific definition under general conditions. In turn, this directly leads to consideration of the log likelihood
ratio (LLR): first, as the simplest possible information-preserving transformation (i.e., signal processing
algorithm) and subsequently, as an absolute, comparable measure of information for any specific observation
exemplar. The information accountingmethodology that results permits practical use of both GSNR and LLR
as diagnostic scalar performance measurements, directly comparable across alternative system/algorithm
designs, applicable at any tap point within any processing string, in a form that is also comparable with the
inherent performance bounds due to information conservation.

INDEX TERMS Data compression, decision theory, detection algorithms, information measures, infor-
mation theory, Kullback–Leibler divergence, log likelihood ratio, performance evaluation, performance
measures, self-scaling property, signal processing algorithms, signal to noise ratio, statistical analysis.

I. INTRODUCTION
Optimal detection theory is traditionally developed from the
underlying perspective of either Bayesian cost minimization
or Neyman-Pearson hypothesis testing. By contrast, one pur-
pose of this paper (and anticipated future papers) is to demon-
strate that optimal detection theory may be at least equally
well founded on the fundamental principles of information
theory, upon recognition of generalized signal-to-noise ratio
(GSNR) as a measure of relative entropy, as first proposed for
discrete random variables by Shannon and later extended to
continuous random variables by Kullback and Leibler.

Fundamentally, the current work contrasts with traditional
signal processing and detection literature in its underlying
roadmap of concept and consequence. While precise general-
izations of alternative conceptual structures are difficult, the
author takes a definitive text such as [1] as representative
of the consolidated line of thought in this area. Figure 1
provides a conceptual block diagram for a generic binary
decision process. The conceptual focus of traditional theory
is the careful formulation of the right-hand block. For this

particular problem, the log likelihood ratio (LLR) and the
associated threshold are derived as the two sides of the quan-
titative thresholding process which optimizes either of two
useful (but heuristic) objective functions, namely average cost
(or risk) as defined in a Bayesian sense, and probability of
detection PD for any specific constrained probability of false
alarm PF (the Neyman-Pearson criteria). Since Bayesian cost
factors are often difficult to specify on a practical basis (and
thus typically treated as a thought experiment for the purpose
of justifying the optimal decision process), performance is
then measured by assembly of (PD,PF ) pairs into two dimen-
sional receiver operating characteristic (ROC) curves.
As many of the underlying data models involve various

forms of signal in additive noise, the concept of signal-to-
noise ratio (SNR), specifying the relative size of the two con-
tributions, is subsequently introduced as an ad-hoc measure
related to performance in an intuitively obvious but quantita-
tively ambiguousway. For the specific case of known signal in
Gaussian noise, the mathematics is simple enough to actually
derive the relationship and subsequently prove that, for the
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FIGURE 1. Block diagram of generic binary decision process.

specific case, it is the only parameter required to uniquely
evaluate the associated ROC curve.

For all intents and purposes, this traditional conceptual
roadmap does not consider potential existence of the left-hand
signal processing block. While those carefully schooled in
suchmatters might (correctly) argue that the traditional line of
thought implies that the optimal solution is to use the data as
the output statistic (completely eliminating existence of the
left-hand block), this implication is generally left unstated,
let alone being explored and emphasized. Further, no special
pedigree is imputed to the LLR; indeed, the full LLR is
often considered too tedious to compute, leading to partial
calculation of only the data dependent terms.

The traditional line of thought was established long before
the formulation of information theoretic concepts, the ini-
tiation of which is commonly attributed to Shannon [2],
and subsequent extension to continuous random variables to
Kullback and Leibler [3]. As shown here and in subsequent
papers, consideration of information-based performance con-
cepts allows one to explicitly address both the left and right
hand blocks in a unifiedmanner. Thismodified line of thought
starts with the recognition of SNR (in a generalized form) as
a measure of the mean information available, and as a conse-
quence then introduces the LLR as the scalar statistic literally
quantifying that information for any particular exemplar of
the data.

Multiple considerations motivate the author’s interest in
documenting the information theoretic basis for optimal
detection theory. First, it provides an alternate way of think-
ing about signal processing at a very fundamental level; the
author is unaware of any existing orderly exposition of either
the train of logic or the theoretical and practical implica-
tions that result. Second, it imparts impeccable information
measurement pedigrees to the traditional signal processing
constructs of SNR and LLR, significantly strengthening both
their meaningfulness and their quantitative utility. Third, it
vastly simplifies (both conceptually and practically) the rela-
tionship between signal processing application and perfor-
mance, yielding rigorous scalar performance measures to
replace the (PD,PF ) pair that comprises the centerpiece of
traditional detector performance assessment.

The last item deserves further elucidation, particularly
from a practical perspective. The careful empirical measure-
ment required to obtain a high-quality ROC curve often
entails a task of such magnitude that it can easily dwarf
system development in both cost and schedule. Moreover,
the real world presents such a range of uncontrollable
variables that most field tests can provide only a gross aver-
age result, with large, inherent uncertainty when applied to
any one particular operating condition. In the sonar arena

(the author’s experience base), this all too often leads to
discounting the utility of quantitative performance predic-
tion; comparative performance assessments involving side-
by-side ‘‘beauty contests;’’ and a distinct inability to precisely
‘‘prove’’ (and thus improve) system performance. The author
suspects that similar (although perhaps less extreme) situa-
tions exist in other applications. By contrast, the approach
outlined here supports quantitative comparisons on a case-
by-case basis. This massively simplifies any required test
regimen in a manner that is tolerant of real-world variability.
This paper is intended to be the first in a series,

specifically focusing on the interpretation and practical
application of quantitative information measurement to the
performance characterization of arbitrary signal processing
algorithms (i.e., the left-hand block of Figure 1). Devel-
opments are couched specifically in terms of joint den-
sity functions of random vectors (the practical reality of
signal processing in the digital age), with all associated
multi-dimensional functions assumed to possess well-defined
Jacobian matrices so the resulting random variable transfor-
mations may be handled using traditional density stretching
techniques. As such, some more esoteric mathematical con-
cerns are handled less rigorously than might otherwise be
desired; in particular, probability space concepts are avoided,
solely in favor of the practical consideration of extending the
audience for this paper.
In the preparation of this paper, a concerted (but certainly

not exhaustive) literature search was conducted. Surprisingly
little existing work could be found along these lines, and
what material was found is in the information theory literature
rather than the signal processing literature. In particular, the
closest recent work appears to the cross-entropy analyses
of Shore and Johnson, circa 1980, that form the basis for
the (indirectly) related subject of least informative priors
([4], [5], [6]); and a series of more recent papers, begin-
ning with Guo, et.al. [7], relating mutual information with
minimum mean-square estimation error. The latter primarily
address Gaussian background statistics, with the exception of
a very recent extension to Poisson channels [8], and make
no claim to consider the general case. That said, particularly
given the extensive base of potentially relevant literature
across multiple fields, the author is extremely hesitant to label
any particular result presented here as new.
As an outgrowth of the review process, the author has

been asked to comment on why the results found here should
be considered novel and not obvious. Indeed, several of the
theoretical results in Sections 2 and 3 could quite reason-
ably described as ‘‘intuitively obvious’’. The unique aspect
of the theory as developed here is rather the demonstration
of its rigorous mathematical underpinnings, elevating these
concepts beyond conjecture and into the realm of the ‘‘laws
of information’’. The self-scaling property of LLRs is an ideal
example of this, a property so obvious that its critical role as
proof of any ‘‘true’’ information measure has been previously
overlooked. By contrast, the true novelty of the current work
resides in the future application of these newly minted laws to
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practical real-world signal processing design and assessment,
which even a cursory consideration of Sections 4, 5, and 6
shows is not currently the case.

II. A RIGOROUS GENERALIZED DEFINITION OF SNR
The term ‘‘signal-to-noise ratio’’ (or SNR) is loosely defined
as a ratio of a size or strength measure (typically energy
or power) of the signal (or ‘‘interesting’’) component to an
equivalent measure of the noise (or ‘‘uninteresting’’) com-
ponent against which it is competing in some set of obser-
vations [9]. While a detailed history of the term is beyond
the scope of this paper, over time it has clearly acquired a
second distinct (but related) connotation as a scalar measure
of signal processing performance. The source of the duality
of nomenclature may be seen by considering the specific case
of detecting a known signal s in additive, jointly Gaussian
random noise that is zero mean with covariance Rn. For this
case SNR, specifically defined for real data as [10]

SNR = s+R
−1
n s (1)

is demonstrably a rigorous performance measure, since, for
threshold η, the binary detector ROC curve depends only
upon SNR, i.e., [11]

PD =
1
2
erfc

(
ln η
√
2 SNR

−
1
2

√
SNR
2

)
and

PF =
1
2
erfc

(
ln η
√
2 SNR

+
1
2

√
SNR
2

)
. (2)

For complex data, an additional factor of two must be
included in (1).

Unfortunately, for more general cases, this duality breaks
down.While the equivalent non-dimensional ratio can be (and
typically is) defined in multiple ways, demonstrability as a
measure of performance is never addressed, leaving a perfor-
mance accounting regimen that, short of the laborious (and
often ambiguous) process of explicit ROC curve evaluation,
is less than fully rigorous.

By comparison, information theory provides a direct, rig-
orous measure of the average information on the detection
decision that is carried by the observations. This measure is
the relative entropy, (also called the Kullback-Leibler (KL)
divergence or distance), defined in symmetric form as [12]

J
(
δ
)
= I1:0

(
δ
)
+ I0:1

(
δ
)

=

∫
dδ

[
ln

(
p1
(
δ
)

p0
(
δ
)) p1 (δ)+ ln

(
p0
(
δ
)

p1
(
δ
)) p0 (δ)]

=

∫
dδ ln

(
p1
(
δ
)

p0
(
δ
)) [p1 (δ)− p0 (δ)] (3)

where the lack of stated bounds implies integration over the
fully allowable, multi-dimensional range of the observations
δ. It is well recognized [13], [14] that the KL divergence,
in either the symmetric form J

(
δ
)
or the two asymmetric

components I1:0
(
δ
)
and I0:1

(
δ
)
, is the direct generalization

of Shannon’s fundamental measure of information (relative
entropy) for the case of continuous random variables. As
such, it precisely quantifies the mean available information,
once the two data densities p1/0

(
δ
)
(conditional only upon the

pending decision) have been specified. For the previous case
of known signal in additive Gaussian noise, the data model
for target present is

H1 : δ = s+ n

⇒ p1
(
δ
)
=

1

(2π)N /2
√
det

(
Rn
)e− 1

2 (δ−s)
+R
−1
n (δ−s)

(4)

(whereN is the number of elements in δ), while that for target
absent is

H0 : δ=n ⇒p0
(
δ
)
=

1

(2π)N /2
√
det

(
Rn
)e− 1

2 δ
+R
−1
n δ. (5)

Evaluation of the intermediate algebra then leads to the con-
clusion that

J
(
δ
)
= s+R

−1
n s = SNR (6)

strongly suggesting the author’s fundamental proposition;
namely, that the symmetric KL divergence is the appropriate
generalization of SNR when used in the role of a measure of
performance.
This proposed definition of generalized SNR (labeled here

as GSNR, to denote its intended role as a performance mea-
sure) is mathematically self-consistent, as Gibbs’ Inequality
guarantees that I1:0, I0:1, and J all be non-negative. Several
important advantages derive, including
• A precise, quantitative definition of SNR under general
conditions.

• Rigorous validation of the role of SNR as a scalar per-
formance measure of Shannon information (versus the
rather ad hoc pedigree it currently possesses).

• Related general (but mathematically demonstrable)
insights within the arena of optimal detection theory.

In the next section, a few of the most critical insights are
explored for the purpose of establishing the information-
theoretic basis of the log likelihood ratio. The remainder of
this paper then addresses the practical implications of the
second item, with further conceptual expansions left as the
subject for future articles.

III. THE LOG LIKELIHOOD RATIO (LLR) FROM THE
PERSPECTIVE OF INFORMATION THEORY
A critical insight gleaned from the proposed definition in
Section 2 is that, rather than resulting from the signal pro-
cessing applied to the observations, GSNR is a property
inherent in the observations themselves. Indeed, the following
theorem (proven in Kullback and Leibler’s original paper, but
recast here in the parlance of signal processing and traditional
probability densities [15]), being the statistical equivalent of
the Second Law of Thermodynamics, represents a death knell
to notions of ‘‘SNR improvement.’’
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Theorem 1 (Information Limit Theorem): Let the mean
information available from an observation vector δ, with
associated densities p1/0

(
δ
)
, be denoted by

GSNR
(
δ
)
= J

(
δ
)
. (7)

No well-defined function F transforming δ to a vector ε =
F
(
δ
)
can provide additional information beyond that origi-

nally available; that is, under all circumstances

GSNR
(
ε
)
≤ GSNR

(
δ
)
. (8)

Proof: Theorem 4.1 [16] guarantees that I1:0
(
ε
)
≤

I1:0
(
δ
)
and I0:1

(
ε
)
≤ I0:1

(
δ
)
, which, in turn, implies the

inequality in (8). While the underlying functional transforma-
tion is strictly required only to be measurable [17], the words
‘‘well-defined function’’ are used herein to mildly further
restrict consideration to those random variable transforma-
tions for which the joint probability densities p1/0

(
ε
)
may

be computed using traditional density stretching techniques.
Because of difficulty in identifying specific documentation
elsewhere, Appendix A provides the general form of density
stretching for random vectors, i.e., evaluating the density
function of an M x 1 multivariate random variable y arising
from the general, non-linear transformation of an N x 1 mul-
tivariate random variable x (M ≤ N ).

This result immediately forces the question of ‘‘GSNR
preservation’’ to the forefront, a natural outgrowth of which
is the introduction of the same LLR statistic that is normally
developed in the context of optimal detection theory.

Corollary 1 (Information Preservation Corollary): A well-
defined function F preserves the original mean information,
i.e., GSNR

(
ε
)
= GSNR

(
δ
)
, if and only if

ln

(
p1 ε

(
ε
)

p0 ε
(
ε
)) ≡ ln

(
p1 δ

(
δ
)

p0 δ
(
δ
)) . (9)

Proof: The second part of the proof of Theorem 4.1
[18] provides the necessary and sufficient requirements for
preservation of GSNR.

Taking this result all the way to a simple scalar form leads
directly to the LLR.

Definition 1 (LLR Definition): For an observation vector
δ, with densities p1/0

(
δ
)
, the LLR associated with δ is

λ = L
(
δ
)
= ln

(
p1
(
δ
)

p0
(
δ
)) . (10)

Throughout this paper, use of the form L
(
δ
)
is restricted to

cases where it is useful to make the functional dependence on
δ explicit.

Lemma 1: The associated LLR preserves the mean infor-
mation available in the original observation vector δ.

Proof: It suffices to demonstrate that (10) also guaran-
tees that

ln
(
p1 λ (λ)
p0 λ (λ)

)
≡ ln

(
p1 δ

(
δ
)

p0 δ
(
δ
)) (11)

so that information preservation is guaranteed. Considering
the scalar transformation of random variables

L
(
δ
)
= ln

(
p1 δ

(
δ
)

p0 δ
(
δ
)) . (12)

the scalar form from Appendix A yields

p1/0 λ (λ) =
∫

{δ|λ=F(δ) }

dδ
p1/0 δ

(
δ
)∣∣∣−→∇ δL (δ)∣∣∣ . (13)

Noting that (10) implies that p1 δ
(
δ
)
= eλp0 δ

(
δ
)

ln
(
p1 λ (λ)
p0 λ (λ)

)
= ln


∫

{δ|λ=F(δ) }

dδ
p1 δ(δ)∣∣∣−→∇ δL(δ)∣∣∣∫

{δ|λ=F(δ) }

dδ
p0 δ(δ)∣∣∣−→∇ δL(δ)∣∣∣



= ln


∫

{δ|λ=F(δ) }

dδ eλ
p0 δ(δ)∣∣∣−→∇ δL(δ)∣∣∣∫

{δ|λ=F(δ) }

dδ
p0 δ(δ)∣∣∣−→∇ δL(δ)∣∣∣


= λ = ln

(
p1 δ

(
δ
)

p0 δ
(
δ
)) (14)

where eλ is constant over the region of integration.
Since this result is true for all possible values of λ, it
confirms (11).
Implied in the above result is a powerful but often over-

looked characteristic, the self-scaling property, differentiating
LLRs from all other statistics, and ultimately casting the LLR
as the instantaneous analog of GSNR. That is, while GSNR
measures differential information in an average sense over
the statistical ensemble of observations, the LLR provides an
absolute measure of the information contained in any specific
exemplar.
Theorem 2 (Self-Scaling Property): A scalar statistic λ,

with densities p1/0 (λ), is an LLR if and only if

λ ≡ ln
(
p1 (λ)
p0 (λ)

)
. (15)

Proof: If λ is the LLR of some other random variable δ,
then (14) must hold. Conversely, if (15) holds, then λ is, at a
minimum, the LLR of itself.
Corollary 2 (Mean LLRProperty): For any LLR statistic λ,

〈λ〉1 ≥ 0, 〈λ〉0 ≤ 0, and GSNR (λ) = 〈λ〉1 − 〈λ〉0 ≥ 0.

(16)

Proof: The asymmetric forms of the KL divergence
are [19]

I1:0
(
δ
)
=

∫
dδ ln

(
p1 δ

(
δ
)

p0 δ
(
δ
)) p1 δ (δ)=∫ dλ λ p1 λ (λ)=〈λ〉1

(17)
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and

I0:1
(
δ
)
=

∫
dδ ln

(
p0 δ

(
δ
)

p1 δ
(
δ
)) p0 δ (δ)

= −

∫
dλ λ p0 λ (λ) = −〈λ〉0 (18)

with GSNR being the sum. Gibb’s Inequality then applies to
both components.

A specific benefit of the LLR is that, although it is an
instantaneous measure, it remains quantitatively comparable.

Theorem 3 (LLR Ordering Theorem): Let F be any well-
defined function transforming observation vector δ to vector
ε = F

(
δ
)
, with respective LLRs

λδ = Lδ
(
δ
)
= ln

(
p1 δ

(
δ
)

p0 δ
(
δ
)) and

λε = Lε
(
ε
)
= ln

(
p1 ε

(
ε
)

p0 ε
(
ε
)) . (19)

Then, for any choice of ε in the range of F

min
{δ|λε=Lε(F(δ)) }

λδ ≤
〈
λδ
〉
q0
≤ λε ≤

〈
λδ
〉
q1

≤ max
{δ|λε=Lε(F(δ)) }

λδ (20)

where the densities q1/0
(
δ
∣∣λε ) are defined only over the

limited support space
{
δ
∣∣λε = Lε

(
F
(
δ
))}

(which is the pre-
image region of λε in δ) as

q1/0
(
δ
∣∣λε )= p1/0 δ

(
δ
)∫

{δ|λε=Lε(F(δ)) }

dδ p1/0 δ
(
δ
) . (21)

Proof:As they are non-negative across the support space
and integrate to unity, the functions defined in (21) are clearly
probability densities. Consider the expectation of the LLR
computed over q1

(
δ
∣∣λε )〈

λδ
〉
q1
=

∫
dδ Lδ

(
δ
)
q1
(
δ
∣∣λε ) (22)

where the functional form has been used to denote the LLR.
Using (21)

Lδ
(
δ
)
= ln

(
p1 δ

(
δ
)

p0 δ
(
δ
)) = ln


∫

{δ|λε=Lε(F(δ)) }

dδ p1 δ
(
δ
)

∫
{δ|λε=Lε(F(δ)) }

dδ p0 δ
(
δ
)


+ ln

(
q1
(
δ
∣∣λε )

q0
(
δ
∣∣λε )

)
. (23)

From Appendix A (Equation (80)), the integral may be writ-
ten in terms of ε as∫
{δ|λε=Lε(F(δ)) }

dδ p1/0 δ
(
δ
)

=

∫
{ε|λε=Lε(ε) }

dε
∫

{δ|ε=F(δ) }

dδ
p1/0 δ

(
δ
)√

det
((

∂F
∂δ

) (
∂F
∂δ

)T)
=

∫
{ε|λε=Lε(ε) }

dε p1/0 ε
(
ε
)

(24)

so that

Lδ
(
δ
)
= ln


∫

{ε|λε=Lε(ε) }

dε p1 ε
(
ε
)

∫
{ε|λε=Lε(ε) }

dε p0 ε
(
ε
)


+ ln

(
q1
(
δ
∣∣λε )

q0
(
δ
∣∣λε )

)
. (25)

However, p1 ε
(
ε
)
= eλεp0 ε

(
ε
)
, with eλε constant over the

range of integration; hence,

Lδ
(
δ
)
= λε + ln

(
q1
(
δ
∣∣λε )

q0
(
δ
∣∣λε )

)
(26)

and 〈
λδ
〉
q1
= λε +

∫
dδ ln

(
q1
(
δ
∣∣λε )

q0
(
δ
∣∣λε )

)
q1
(
δ
∣∣λε ). (27)

The last term is non-negative by Gibbs’ Inequality, providing
the upper bounds in (20). Analogous consideration of

〈
λδ
〉
q0

demonstrates the lower bounds.
The central insight provided by the LLROrdering Theorem

is that, subject to multi-valued branching effects, instanta-
neous information (as measured by LLRs) may be mean-
ingfully compared in a direct manner, without consideration
of the statistical expectations inherent in average informa-
tion measures such as entropy and GSNR. As might then
be expected, LLR may be clearly differentiated from other
scalar statistics as a direct quantitative distillation of such
instantaneous information.
Corollary 3 (LLR Uniqueness): Any scalar statistic ζ of

δ is information-preserving (but possibly not self-scaling) if
and only if it maps one-to-one with the LLR.

Proof: Consider the scalar-to-scalar transformation

λζ = Lζ (ζ ) = ln
(
p1 ζ (ζ )
p0 ζ (ζ )

)
. (28)

From Appendix A,

p1/0 λζ
(
λζ
)
=

∑
i

p1/0 ζ (ζi)∣∣dLζ/dζ ∣∣∣∣ζi (29)

so that the Self-Scaling Property requires

λζ ≡ ln

(
p1 λζ

(
λζ
)

p0 λζ
(
λζ
)) ≡ ln


∑
i

p1 ζ (ζi)
|dLζ

/
dζ ||ζi∑

i

p0 ζ (ζi)
|dLζ

/
dζ ||ζi


≡ ln

(
p1 ζ (ζ )
p0 ζ (ζ )

)
. (30)
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which can only be true if, at all points, i never exceeds
one, i.e., the mapping between ζ and λζ must be
one-to-one.

If ζ maps one-to-one with λδ , clearly λζ must also. The
LLR Ordering Theorem then requires that λζ ≡ λδ , implying

GSNR (ζ ) = GSNR
(
λζ
)
= GSNR

(
λδ
)
= GSNR

(
δ
)

(31)

so that ζ must be information-preserving.
Conversely, if ζ is an information-preserving transforma-

tion, then by Corollary 1

λζ ≡ ln
(
p1 ζ (ζ )
p0 ζ (ζ )

)
≡ ln

(
p1 δ

(
δ
)

p0 δ
(
δ
)) ≡ λδ (32)

so that ζ must map one-to-one with λδ .
However, in either case, ζ itself cannot be self-scaling

unless ζ ≡ λδ .
Closely related to the issue of LLR uniqueness is the con-

cept of the null LLR.
Corollary 4: An LLR statistic λ∅ possesses GSNR = 0 if

and only if
p1 (λ∅) ≡ p0 (λ∅) ≡ δ (λ∅) (33)

where δ (·) is a Dirac delta function.
Proof: If GSNR = 0, the KL divergence must be zero,

so that p1 λ∅ (λ∅) ≡ p0 λ∅ (λ∅). Self-scaling then implies
λ∅ ≡ 0, so the conditional densities can only have support
at the origin. Proof of the converse is a trivial application of
self-scaling and Corollary 2.

In summary, the above results paint the following concep-
tual picture:
• There is a finite amount of information available in any
set of observations.

• GSNR quantifies the average information avail-
able, in a Shannon sense, so that it is univer-
sally comparable across the spectrum of potential
observations.

• Any transformation of the observations (i.e., processing)
either preserves or generates average information loss,
but can never increase average information.

• The most compact (i.e., single number) informational
compression of the observations in a lossless manner is
the LLR.

• As GSNR quantifies average information in scalar form,
the LLR distills the Shannon information contained in
any specific exemplar of the observations.

• An authentic LLR may be differentiated from any other
arbitrary statistic by recourse to the self-scaling property.

• As it is permissible to universally compare aver-
age information content using GSNR, it is also
permissible to compare instantaneous information
content using LLR (subject to multi-valued branching
effects).

• Any other method for lossless compression of the obser-
vations to a scalar value must possess a one-to-one map-
ping to the LLR.

FIGURE 2. Block diagram of processing algorithm with performance
characterization.

IV. PRACTICAL CHARACTERIZATIONS OF PROCESSING
PERFORMANCE USING SNR
The essential methodology of using GSNR for real-world
performance characterization is introduced here by consid-
ering the canonical problem of attaching a performance
value to an arbitrary signal processing algorithm. Such an
algorithm is illustrated as a block diagram in Figure 2.
The algorithmic description may be cast mathematically as
a multi-dimensional (presumably non-linear) transformation
Falg from an N x 1 vector of inputs δ to an M x 1 vector of
outputs ε,

ε = Falg
(
δ
)
. (34)

Some assumptions implicit in this statement are worth stating
explicitly. First, the probability densities p1/0 δ

(
δ
)
must be

fully defined. An inability or unwillingness to do so in an
unconditional manner (for anything other than the hypothet-
ical outcomes) must yield an ill-posed problem, as the orig-
inal amount of exploitable information cannot be quantified.
Second, the output ε must be describable as a vector of joint
random variables; that is, p1/0 ε

(
ε
)
must also exist, which, in

turn, constrains both Falg and ε. While choices of Falg in this
paper are intentionally limited in this regard to avoid mathe-
matical digression, the limitation on ε is more easily stated;
namely, individual random variables which are duplicative (in
the sense of being strictly linearly dependent on the remaining
entries) cannot be included. Here, the prototypical example is
the random vector

y =
[
x
x

]
. (35)

which, for a Gaussian random variable x, implies a singular
covariance matrix. However, this is clearly only a matter of
the specific definition of ε, since any removed entries may
always be subsequently recreated (implying that they can
carry no additional information); an obvious implication of
this constraint is that M cannot exceed N .
Performance characterization of Falg is then straightfor-

ward. Given p1/0 δ
(
δ
)
, the input LLR may be computed and

GSNR then evaluated from the Mean LLR Property. Then,
based upon p1/0 δ

(
δ
)
, p1/0 ε

(
ε
)
may be evaluated. This may

be accomplished using any convenient method ranging from
fully analytic approaches (per Appendix A) to fully numeri-
cal approaches employing Monte-Carlo techniques. Once in
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FIGURE 3. LLRs used as performance probes for a processing algorithm.

possession of p1/0 ε
(
ε
)
, the output LLR and GSNR may be

computed in analogous fashion. Both LLRs and GSNRs may
be meaningfully compared; differences provide a direct mea-
sure of the amount of information lost due to the construction
of the algorithm; if equal, the algorithm provides lossless
conversion and may be considered ‘‘optimal.’’ While it is not
absolutely necessary to compute LLRs as an intermediate step
in obtaining the GSNRs, doing so adds significant value by
allowing instantaneous, single input comparisons to be made.
If properly measured, output LLR/GSNR cannot exceed input
LLR/GSNR, since the LLR Ordering and Information Limit
Theorems apply.

As shown in Figure 3, formulation of the LLR statistic
may be used diagnostically to provide a fully calibrated
‘‘performance probe’’ at any selected point in a processing
string, with the assurance that equality of LLRs at different
taps guarantees that optimal performance is being obtained
between those taps.

Because of the self-scaling property, LLRs serve a
unique dual role as both algorithm and statistic, resulting
in two derivative implications: (1) LLR statistics are self-
calibrating/self-repairing; and (2) information loss can only
occur at points in a processing stream where irreversible
transformation occurs. To illustrate this, consider the block
diagram in Figure 4, where the LLR of the original observa-
tions is now the first part of the algorithm under consideration.
By the self-scaling property, the LLR at the middle tap point
must be λδ . Then, if Halg

(
λδ
)
is information preserving,

λε ≡ λδ ⇒ Lε
(
Halg

(
λδ
))
≡ λδ ⇒ Lε (ε) = H−1alg (ε)

(36)

so that the LLR operation at the final tap point simply undoes
the final algorithmic transformation. Conversely, the only
way that Halg

(
λδ
)
cannot be information preserving is for it

to be irreversible (such as a square or absolute value opera-
tor), so λδ cannot be recovered. While the specific example
involves a scalar tap point, the train of logic readily general-
izes multi-dimensional situations.

A similar approach permits the more challenging issue
of ‘‘density mismatch’’ to be addressed. Suppose an LLR
operator is formulated based upon one set of observa-
tional densities (the ‘‘presumed’’ densities p1/0p

(
δ
)
), but then

employed on observations generated by random draw from a

FIGURE 4. LLRs used as performance probes on the original observation
LLR algorithm.

FIGURE 5. Performance measurement of a statistically mismatched LLR
detector.

potentially different set of densities (differentiated by labeling
them as the ‘‘actual’’ densities p1/0a

(
δ
)
). This situation is

shown in Figure 5. Here, the output of the presumed LLR
operator is labeled as ε, since it is not a true LLR (i.e.,
self-scaling does not hold – if it does, then the presumed
and actual densities must match, and there is no perfor-
mance loss). Any differences between the LLRs (GSNRs)
are direct instantaneous (average) measures of the infor-
mation lost due to the mismatch in statistical assumptions.
This approach can be daisy-chained as many times as nec-
essary; any sequence of such operations will cease changing
only when a true LLR is reached, a very useful form of
idempotence.
Because LLR and GSNR are inherent characteristics of the

observations/outputs on which they are based, they must be
universally meaningful within the context of the hypothesis
under consideration. This is illustrated in Figure 6. Consider
first the simpler case where the algorithms being compared
operate on the same observations, so δ1 = δ2 = δ.
Since both output LLRs/GSNRs are comparable to the equiv-
alent input values, they may then be meaningfully com-
pared among themselves, with the larger providing better
preservation of available information. Note, however, that this
requires a single set of statistical assumptions on the inputs
that are then self-consistently carried through to both sets
of outputs. For algorithms processing different observations
(such as comparing a sonar sensor with a radar sensor), the
LLR/GSNR of a composite set of observations is readily
calculable; for statistically independent observations, it is just
the sum of the LLRs/GSNRs of the components. Thus, all true
LLRs/GSNRs must be universally comparable.
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FIGURE 6. Comparing the performance of different processing algorithms.

V. SOME SPECIFIC EXAMPLES
Several examples of specific results are now provided to
demonstrate both the immediacy and the breadth of utility of
these insights. First, the results for the very classic problem of
a known signal in additive Gaussian noise are provided; these
results are well understood, but requoting them permits vali-
dation that they fit within this more general framework. The
data model for the known signal in Gaussian noise detector is

H1 : δ = s+ n s known

H0 : δ = n n ∼ N
(
0, Rn

)
(37)

where it is assumed that the observations are complex num-
bers. For this data model,

λ = s+R
−1
n δ + δ+R

−1
n s− s+R

−1
n s

⇒ 〈λ〉1/0 = ± s
+R
−1
n s

⇒ GSNR = 2 s+R
−1
n s. (38)

As mentioned earlier, for cases where a composite observa-
tionmay be divided into statistically independent components
for which the data model applies individually, all of these
results may be simply summed over the components.

Next, the results for the equally classic problem of Gaus-
sian signal in additive Gaussian noise are provided, primarily
because most traditional methods of evaluating the perfor-
mance of the underlying energy (or quadratic) operation are
laced with approximations, generated primarily by a pre-
sumed need to refer performance to the detector input (i.e., the
input of the non-linear squaring operation). By contrast, the
GSNR performancemeasurement is fully capable of handling
the effect of non-linear operations exactly. The data model for
the Gaussian signal in Gaussian noise detector is

H1 : δ = αe+ n α ∼ N
(
0, σ 2

s

)
, e known

H0 : δ = n n ∼ N
(
0, Rn

)
. (39)

with the further proviso that α and n be statistically indepen-
dent. Again assuming complex observations,

λ=

(
σ 2
s e
+R
−1
n e

1+ σ 2
s e+R

−1
n e

)
∣∣∣e+R−1n δ

∣∣∣2
e+R

−1
n e

− ln
(
1+σ 2

s e
+R
−1
n e
)

⇒ 〈λ〉1 = σ
2
s e
+R
−1
n e− ln

(
1+ σ 2

s e
+R
−1
n e

)
〈λ〉0 =

(
σ 2
s e
+R
−1
n e

1+ σ 2
s e+R

−1
n e

)
− ln

(
1+ σ 2

s e
+R
−1
n e

)

⇒ GSNR =

(
σ 2
s e
+R
−1
n e

)2
1+ σ 2

s e+R
−1
n e

(40)

with independent components again summable. This exact
result reduces to

GSNRLS = lim
σ 2s→∞

GSNR ∼ σ 2
s e
+R
−1
n e and

GSNRSS = lim
σ 2s→0

GSNR ∼
(
σ 2
s e
+R
−1
n e

)2
(41)

in the large and small signal limits, respectively.
Classical performance measurement approaches struggle

when applied to more challenging densities, such as those
with ill-conditioned means and variances. As an example of
the true generality of this approach, theGSNR associatedwith
scalar Cauchy statistics (for which neithermean, variance, nor
any higher order moment exists) [20], is evaluated. Here, the
data model is

H1 : δ = κ1 p (κ1) =
1
π

(
γ1

(κ1 − x1)2 + γ 2
1

)

H0 : δ = κ0 p (κ0) =
1
π

(
γ0

(κ0 − x0)2 + γ 2
0

)
(42)

where x1/0 and γ1/0 are, respectively, the H1/0 location and
scale parameters, so [21]

λ = 7 ln

(
(δ − x0)2 + γ 2

0

(δ − x1)2 + γ 2
1

)
+ ln

(
γ1

γ0

)

⇒〈λ〉1/0 = ± ln

(
(x1 − x0)2 + (γ1 + γ0)2

4γ1γ0

)

⇒GSNR = 2 ln

(
(x1 − x0)2 + (γ1 + γ0)2

4γ1γ0

)
. (43)

The above examples demonstrate the use of the theory in
Section 2 and 3 to evaluate specific GSNRs. The next
two examples demonstrate its use in characterizing informa-
tion loss caused by suboptimal processing algorithms. The
first considers a Generalized Likelihood Ratio Test (GLRT)
processing formulation; GLRTs are regularly used for con-
venience but often lack meaningful performance character-
ization, a situation easily rectified using information theory
constructs.

516 VOLUME 1, 2013



J. Polcari: Information Theoretic Basis For SNR and LLR

FIGURE 7. LLR reductions generated by unknown signal amplitude GLRT formulation (linear [left] and logarithmic [right] vertical scales).

Consider one of the simplest GLRT formulations, involv-
ing unknown signal amplitude. The underlying data model is
the same as that presented in (37), with the exception that the
signal vector (still presumed to be fully known) is written in
terms of a shape vector and a complex scalar amplitude, or
equivalently, a real scalar amplitude and a scalar phase, i.e.,

s = A e = |A| ejφ e (44)

where, to make the decomposition unique, it is required that
e+e = 1. Then, for any actual complex amplitude Aa, the
information available within the observations is that of (38)

GSNR
(
δ
)
= 2 |Aa|2 e+R

−1
n e (45)

However, the appropriate LLR formulation (also from (38))
is

λ = A∗e+R
−1
n δ + A δ+R

−1
n e− |A|2 e+R

−1
n e. (46)

In the all too common situation where the underlying data
model is chosen for convenience rather than realism, this
formulation inconveniently requires prior knowledge of sig-
nal amplitude and phase that is, in reality, unknown. The
unknown amplitude GLRT attempts to repair the situation by
using the amplitude which maximizes the target present like-
lihood of the observations (which is identical to maximizing
the LLR in (46)) so that

Â =
e+R

−1
n δ

e+R
−1
n e

⇒ εGLRT = λmax

= Â∗e+R
−1
n δ + Â δ+R

−1
n e−

∣∣∣Â∣∣∣2 e+R−1n e

=

∣∣∣e+R−1n δ

∣∣∣2
e+R

−1
n e

(47)

The notation εGLRT is used to emphasize that the GLRT does
not yield a true LLR, since

〈εGLRT 〉1 = 1+ |Aa|2 e+R
−1
n e and 〈εGLRT 〉0 = 1, (48)

which violates the mean LLR property (see (16)). The
resulting information loss may be quantified by evaluating
GSNR (εGLRT ) and comparing it to that available in the obser-
vations. By inspection of (47), all the elements of δ combine
linearly, so εGLRT is a chi-square random variable with one
complex degree of freedom

H1 : p1 (εGLRT )=
(

1
〈εGLRT 〉1

)
e−εGLRT /〈εGLRT 〉1u (εGLRT )

H0 : p0 (εGLRT )= e−εGLRT u (εGLRT ) . (49)

Hence

λε =

(
|Aa|2 e+R

−1
n e

1+ |Aa|2 e+R
−1
n e

)
εGLRT−ln

(
1+ |Aa|2 e+R

−1
n e

)

⇒ GSNR (εGLRT ) =

(
|Aa|2 e+R

−1
n e

)2
1+ |Aa|2 e+R

−1
n e

. (50)

To exemplify the LLR ordering theorem, λε is compared with
the original LLR from (46) in Figure 7, for specific cases
with signal present and signal absent, using both linear and
logarithmic (dB) scales. Note that the bottom right panel of
Figure 7 depicts negative values on a logarithmic scale. In
Figure 8, the GLRT GSNR is compared with the originally
available GSNR from (45).
It is interesting to note that, if one accepts the conceptual

equivalence of σ 2
s and |Aa|2, the information retained by the

unknown amplitude GLRT exactly matches that available in
the Gauss-Gauss problem (Equation (40)). This is suggestive
of the ability of these constructs to adjudicate both the value
provided and the accuracies required when attempting to
exploit prior information in signal processing applications.
As a final example, consider the following question: What

is the performance loss caused by errors in the knowledge
of the covariance matrix? To the author, this appears to be
a critical question that has been addressed at best peripher-
ally in the mass of adaptive processing analysis conducted
to date. Adopting the Gauss-Gauss data model of (39),
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FIGURE 8. GSNR loss generated by unknown signal amplitude GLRT
formulation.

the information available in the original observations is, given
actual noise covariance matrix Rn a,

GSNR
(
δ
)
=

(
σ 2
s e
+R
−1
n a e

)2
1+ σ 2

s e+R
−1
n a e

. (51)

However, the mismatched Gauss-Gauss LLR formulation for
an estimated or otherwise mismatched (i.e., presumed) noise
covariance matrix Rn p is

εmm =

 σ 2
s e
+R
−1
n p e

1+ σ 2
s e+R

−1
n p e



∣∣∣e+R−1n p δ∣∣∣2
e+R

−1
n p e


− ln

(
1+ σ 2

s e
+R
−1
n p e

)
(52)

where the notation εmm is again used to avoid confusion with
a true LLR. As a practical matter, it is convenient to introduce
the modified statistic

γmm =

1+ σ 2
s e
+R
−1
n p e

σ 2
s e+R

−1
n p e

(εmm + ln
(
1+ σ 2

s e
+R
−1
n p e

))

=


∣∣∣e+R−1n p δ∣∣∣2
e+R

−1
n p e

 . (53)

Since the transformation is linear, and thus reversible, the
information contained in the two statistics is guaranteed to be
the same. Now γmm is oncemore a chi-square randomvariable
with one complex degree of freedom, with means

〈γmm〉1 =
e+R

−1
n pRn aR

−1
n p e+ σ

2
s

(
e+R

−1
n p e

)2
e+R

−1
n p e

and

〈γmm〉0 =
e+R

−1
n pRn aR

−1
n p e

e+R
−1
n p e

, (54)

implying densities

H1 : p1 (γmm)=
(

1
〈γmm〉1

)
e−γmm/〈γmm〉1u (γmm)

H0 : p0 (γmm)=
(

1
〈γmm〉0

)
e−γmm

/
〈γmm〉0u (γmm) (55)

LLR

λγ =

(
1

〈γmm〉0
−

1
〈γmm〉1

)
γmm+ln

(
〈γmm〉1

)
−ln

(
〈γmm〉0

)
(56)

and GSNR

GSNR (εmm) =

(
〈γmm〉1 − 〈γmm〉0

)2
〈γmm〉1 〈γmm〉0

=

(
σ 2
s

(
e+R

−1
n p e

)2/
e+R

−1
n pRn aR

−1
n p e

)2

1+ σ 2
s

(
e+R

−1
n p e

)2/
e+R

−1
n pRn aR

−1
n p e

.

(57)

This exact result reduces to

GSNRLS (εmm) = lim
σ 2s→∞

GSNR (εmm)

∼ σ 2
s

(
e+R

−1
n p e

)2/
e+R

−1
n pRn aR

−1
n p e

and

GSNRSS (εmm) = lim
σ 2s→0

GSNR (εmm)

∼

(
σ 2
s

(
e+R

−1
n p e

)2/
e+R

−1
n pRn aR

−1
n p e

)2

(58)

in the large and small signal limits, respectively. Since the
mismatched information must be smaller than the original
information, this implies(

e+R
−1
n p e

)2/[(
e+R

−1
n pRn aR

−1
n p e

) (
e+R

−1
n a e

)]
≤ 1. (59)

which is easily demonstrable from the properties of positive
definite matrices [22]. The critical observation is that, in the
small signal limit, GSNR drops as the square of the fractional
mismatch in (59). This makes the effectiveness of small sig-
nal incoherent integration extremely sensitive to covariance
errors, an effect elsewhere given the name Incoherent Gain
Limit (IGL).

VI. SOME CONCEPTUAL CONSEQUENCES
A firm understanding of the information measurement role
that GSNR and LLR play leads to a few more fundamen-
tal observations (perhaps bordering on the philosophic) that
deserve some discussion.
GSNR measures the average information available from

the probabilistic ensemble in a relative sense, that is, as a
difference which is guaranteed to be positive. LLR measures
the instantaneous information provided by any specific draw
from the probabilistic ensemble in a manner that captures
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both information strength (magnitude) and information con-
tent (sign). Retention of a signed scale by LLR suggests much
greater import to knowing the ‘‘zero point’’ of that scale than
might be traditionally perceived. Indeed, although individual
mean LLRs provide a more precise alternative to describing
average information content, they (for the most part) are
unused in current practice.

In retrospect, the whole of information accounting in the
signal processing context hinges upon the specification of
the data model; that is, the pair of joint probability densities
for the original observations. Since both GSNR and LLR
depend upon this specification, the implication is that the
very concept of information is inherently probabilistic; unless
one can and does properly specify the statistical situation, the
amount of information available as well as the rules for its
proper extraction remain indeterminate, and it is exceedingly
difficult to consider any resulting methodology as fundamen-
tally well posed.

This proscription extends to any form of ‘‘loose’’ con-
stant, such as the ‘‘deterministic but unknown’’ parameters
that ultimately lurk at the bottom of GLRT formulations.
The available information is only fully specified for specific
densities with known parameters. To make this idea explicit,
consider a density on x possessing parameter µ (be it mean,
covariance, higher moment, or other arbitrary parameter). It
is always acceptable to write this density as conditional on
µ, i.e., px

(
x
∣∣µ); however, computation of the unconditional

density needed to specify information content requires that
µ then be treated as a random variable with a specified

secondary density pµ
(
µ
)
, so that the unconditional density

may then be computed by marginalizing over µ

px
(
x
)
=

∫
dµ px

(
x
∣∣µ) pµ (µ) . (60)

Under the special case that the value of µ is known to have
value µ

0
, it may be assigned a delta function density located

at µ
0
, in which case (60) reduces to

px
(
x
)
= px

(
x
∣∣µ)∣∣∣

µ=µ
0

. (61)

However, an inability or unwillingness to specify µ
0
still

yields an incomplete definition of px
(
x
)
, and, ultimately,

indeterminate specification of the available information. This
is why GLRT formulations cannot, in general, lead to true
LLR statistics. The author believes that the precept of com-
plete prior specification of the available information is closely
related to many of the deeper existential issues that compli-
cate the procedural landscapes of detection and estimation
theory.

It is obvious that the use of the LLR statistic is completely
justifiable solely as an information and performancemeasure-
ment tool, independent of any other role it might play. This
observation turns out to be the justification of the author’s
long-held belief that any optimal processing technique is
inherently ‘‘aware’’ of its own performance (expected and

actual). The LLR plays a unique, dual role in the exploitation
of information; it provides the rules for the precise distillation
of that information into a single value as well as measuring
the amount of information so distilled. In this light, the self-
scaling property is simply a statement that these two items are
really just one and the same. This elegant arrangement then
yields a universal capability for comparative performance
measurement, even to the point of addressing mismatch
effects through recursive self-calibration and self-correction.

VII. SUMMARY AND FUTURE EXTENSIONS
In this paper, a quantitative, universal information account-
ing methodology built around GSNR and the LLR has been
developed. This methodology has the advantage of providing
performance metrics that are scalar in nature, simplifying
evaluation, comparison, and optimization. The validity of the
methodology has been proven theoretically, and its practi-
cal application to issues of signal processing algorithm per-
formance prediction, measurement, and comparison demon-
strated.
In toto, these results raise the question of why any algorith-

mic approaches other than true LLR formulation and evalua-
tion should even be contemplated, at least for binary detection
applications. It is the considered opinion of the author that if,
across the signal processing arena, the performance measure-
ment methodology presented here were well understood and
careful quantitative performance assessment and comparison
of processing techniques were routinely mandated, then the
use of algorithms other than those formally defensible as
true LLR statistics would largely dry up, simply to minimize
associated performance characterization effort. Among other
benefits, this would force a much stronger emphasis on the
explicit identification and validation of the underlying data
models, which appears to be precisely the correct point of
technical focus. That this state of affairs is not currently the
case is, perhaps, the best empirical evidence that the author
can provide for the importance of this material.
It is anticipated that future extensions of this work will
• Expand the application of information-based scalar
performance measurements through completion of the
decision-making step, demonstrating how the traditional
precepts of optimal detection theory may then be cast as
optimizations of such measurements; and

• Delineate in much greater depth the wealth of useful
mathematical properties possessed by LLRs when con-
sidered as a specific class of scalar statistics.

APPENDIX A
In this appendix, the general form for the density function
of an M x 1 multivariate random variable y arising as the
multi-dimensional transformation F of an N x 1 multivariate
random variable x (M ≤ N ) is developed. This specific
development assumes that the Jacobian of F exists; situations
where the Jacobian may not exist are beyond the scope of this
paper. Development is cast in terms of real random variables,
with the implication that it may also be applied to complex
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forms by explicit separation into real and imaginary compo-
nents.

Theorem (Densities of Generalized Functions of Random
Variables): For the N x 1 real multivariate random variable

x =

 x1
...

xN

 (62)

with joint density function p
(
x
)
, and the transformation

y =

 y1
...

yM

 =
 f1

(
x
)

...

fM
(
x
)
 = F

(
x
)

(63)

mapping x to an M x 1 real multivariate random variable y
(M ≤ N ), with all components of y linearly independent, the
probability density function of y is

p
(
y
)
=

∫
{
x
∣∣∣F(x)=y}

dx
p
(
x
)√

det
((
∂y
/
∂x
) (
∂y
/
∂x
)T) (64)

where ∂y/∂x is theM x N Jacobian matrix of the transforma-
tion F

(
x
)
, i.e.,

∂y
/
∂x =

 ∂f1
/
∂x1 · · · ∂f1

/
∂xN

...
. . .

...

∂fM
/
∂x1 · · · ∂fM

/
∂xN

 . (65)

Proof: One seeks to extend the transformation to full
rank by appending the (N −M) x 1 vector y

∗
to y so that

y
ex
=

[
y
y
∗

]
=



y1
...

yM
y∗M+1
...

y∗N


=



f1
(
x
)

...

fM
(
x
)

f∗M+1
(
x
)

...

f∗N
(
x
)


=

[
F
(
x
)

F∗
(
x
) ] = Fex

(
x
)
. (66)

Then the determinant of the Jacobian of the transformation
det

(
∂y

ex
/∂x

)
is well defined, and the density of y

ex
is [23]

p
(
y
ex

)
=

∫
{
x
∣∣∣Fex(x)=yex }

dx
p
(
x
)∣∣∣det (∂yex/∂x)∣∣∣ . (67)

The desired density may be recovered by integrating out the
extended random variables

p
(
y
)
=

∫
dy
∗
p
(
y, y
∗

)
=

∫
dy
∗
p
(
y
ex

)
=

∫
dy
∗

∫
{
x
∣∣∣Fex(x)=yex }

dx
p
(
x
)∣∣∣det (∂yex/∂x)∣∣∣ . (68)

To this end, the Jacobian of F may WLOG be rewritten in
terms of its SVD

∂y
/
∂x = U 3V

T
p (69)

where U is an M x M orthogonal matrix, 3 is an M x M
non-negative diagonal matrix, and Vp is an N x M partial
orthogonal matrix, the columns of which represent the first
M components of a full N x N orthogonal basis set. Now,
from (69){(

∂y
/
∂x
) (
∂y
/
∂x
)T}1/2

=

{(
U 3V

T
p

)(
Vp3U

T
)}1/2

=

{
U 3

2
U
T
}1/2
=U 3U

T
(70)

where the matrix square root is unique if the symmetric form
is (WLOG) used. Hence,

U 3 =
{(
∂y
/
∂x
) (
∂y
/
∂x
)T}1/2

U . (71)

and (69) may be conveniently rewritten as

∂y
/
∂x =

{(
∂y
/
∂x
) (
∂y
/
∂x
)T}1/2

U V
T
p

=

{(
∂y
/
∂x
) (
∂y
/
∂x
)T}1/2

W
T
p (72)

whereWp is now amodifiedN x M partial orthogonal matrix.
While subject to the orthogonality requirements, the

y∗i = f∗i
(
x
)
may otherwise be chosen arbitrarily. Here, they

are not defined explicitly, but rather implicitly through their
Jacobian, with the understanding that specification of the
gradient vector

−→
∇ xf∗i

(
x
)
=

N∑
k=1

∂f∗i
∂xk
−→uk (73)

is sufficient to fully define f∗i
(
x
)
to within an integration

constant (which may WLOG then be chosen arbitrarily).
Thus, y

∗
is defined by requiring

∂y
∗

/
∂x = W

T
res (74)

where W res is an N x (N −M) partial orthogonal matrix
completing Wp; that is, the composite N x N matrix W =[
Wp W res

]
is orthogonal. Then the Jacobian of the extended

transformation may be written as

∂y
ex

/
∂x=

 ∂y
/
∂x

∂y
∗

/
∂x


=

{(∂y/∂x) (∂y/∂x)T}1/2 0

0 IN−M

[ W
T
p

W
T
res

]

=

{(∂y/∂x) (∂y/∂x)T}1/2 0

0 IN−M

WT
(75)
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so that the determinant of that Jacobian must be

det
(
∂y

ex

/
∂x
)
= det

({(
∂y
/
∂x
) (
∂y
/
∂x
)T}1/2)

=

√
det

((
∂y
/
∂x
) (
∂y
/
∂x
)T)

. (76)

Inserting this result into (68) yields

p
(
y
)
=

∫
dy
∗

∫
{
x
∣∣∣Fex(x)=yex }

dx
p
(
x
)√

det
((
∂y/∂x

)(
∂y/∂x

)T) .
(77)

Now, since{
x
∣∣∣Fex (x) = y

ex

}
=

{
x
∣∣∣F (x) = y andF∗

(
x
)
= y
∗

}
,

(78)
the order of integration may be reversed, and the integration
over y

∗
evaluated by inspection (since the integrand does not

depend upon y
∗
)

p
(
y
)
=

∫
{
x
∣∣∣F(x)=y}

dx
p
(
x
)√

det
((
∂y
/
∂x
) (
∂y
/
∂x
)T) (79)

leading to the desired result.
Note that since

1 =
∫
dy p

(
y
)

=

∫
dy

∫
{
x
∣∣∣F(x)=y}

dx
p
(
x
)√

det
((
∂y
/
∂x
) (
∂y
/
∂x
)T)

=

∫
dx p

(
x
)
, (80)

the double integral must be equivalent to integrating over the
full range of x values.

In the case that y is a scalar, the result takes on a particularly
simple form, as shown in the following corollary.

Corollary: For x as defined in (62) and the scalar transfor-
mation y = F

(
x
)
, the probability density of y is

p (y) =
∫

{x|F(x)=y }

dx
p
(
x
)∣∣∣−→∇ xF
(
x
)∣∣∣ (81)

for a gradient vector (written in physical vector notation rather
than linear algebra vector notation) of

−→
∇ xF

(
x
)
=

N∑
k=1

∂F
∂xk
−→u k . (82)

Proof: For scalar y,

∂y
/
∂x =

[
∂F
/
∂x1 · · · ∂F

/
∂xN

]
(83)

so that√
det

((
∂y
/
∂x
) (
∂y
/
∂x
)T)

=

√√√√( N∑
k=1

(
∂F
/
∂xk

)2)
=

∣∣∣−→∇ xF
(
x
)∣∣∣ . (84)

For scalar transformations of a scalar statistic, the integrals
over the ambiguous regions of the inverse transformation
typically reduce to a summation over discrete points [24].
That is, for y = f (x),

p (y) =
∑
i

p (xi)∣∣df /dx∣∣∣∣xi (85)

where, for any particular value y0, the sum is taken over
all points xi that yield f (xi) = y0. However, should con-
tinuous regions of the domain all map to the same y0, the
summation must be augmented by integrals covering those
regions.
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