IEEE Access

practical innovations : open solutions

Received May 13, 2013, accepted June 26, 2013, date of publication July 25, 2013, date of current version August 6, 2013.

Digital Object Identifier 10.1109/ACCESS.2013.2274896

A Scientifically Experimental Approach to the
Simulation of Designer Activity in the Conceptual
Designing of Software Intensive Systems

PETR SOSNIN (Member, IEEE)

Computer Department, Ulyanovsk State Technical University, Ulyanovsk 432027, Russia (sosnin@ulstu.ru).

ABSTRACT The success of designing software intensive systems (SISs) may be improved by incorporating
experimentation to be part of the design process. This paper presents a scientific approach to experimentation
on objects that are units of designers’ behavior and is aimed at solving project tasks in conceptual design.
The proposed approach is based on specifying the behavior units as precedents and pseudo-code program-
ming of experiments’ plans. Reasoning used by designers in the experiments is registered in a question-
answer form. Experimenting is supported by a specialized toolkit.

INDEX TERMS Conceptual designing, designers’ behavior, experience, question-answering, precedent,

software intensive system.

I. INTRODUCTION

In reality, designing SISs has been associated with a very low
degree of a success (approximately 35%) for years [1]. Such
a state of affairs is caused basically by the insufficiency of
reliable ways-of-working used by a team of designers under
the conditions of a complicated computerized environment.
Insufficient reliability is a consequence of many problems, the
main source of which is the existing experience of software
engineering in the context of its application to the design
of SISs.

A promising attempt at positive re-founding of software
engineering is bound with an SEMAT initiative (Software
Engineering Methods And Theory initiative) in documents
for which a way-of-working used by designers is marked as
a very important essence [2]. There, “way-of-working” is
defined as ‘“‘the tailored set of practices and tools used by a
team to guide and support their work.”

The description above indicates that ways-of-working are
very important objects of scientific investigations aimed at
predicting results. It is our deep belief that investigations of
this type should be fulfilled not only for the subject area
of designing the SISs as a whole but in every project that
involves SISs as well. In the design of a specific SIS, the
research of the used way-of-working should be necessarily
fulfilled by the team of designers.

It is necessary to clarify the proposed position. Way-of-
working, when used in the design of a definitive SIS, should

488 2169-3536 © 2013 IEEE

be created step-by-step, and the steps should include research
conducted by a designer or by a designers’ group in the form
of a scientific experiment. If such experiments are aimed
at simplifying the complexity of the collaborative work of
the designers, then their inclusion to way-of-working will
facilitate achieving success in the design of SIS.

In general, the complexity (or simplicity) of SIS reflects
the degree of difficulty for designers in their interactions with
specific models of SIS (or its components) in solving spe-
cific tasks. The system or its components are complex if the
designer (interacting with the system) does not have sufficient
resources to achieve the necessary level of understanding or
to achieve the other planned aims.

Often, various interpretations of the Kolmogorov mea-
sure [3] are applied for estimations of the degree of the
system’s complexity. This measure is connected with the
minimal length of program P that provides the construction
of system S from its initial description D. Distinctions in
interpretations are usually caused by features of the system
S and formal descriptions to be used for objects P and D.

In accordance with their destinations, for the programs of
P-type, it is more preferable to build them as programmable
systems of designers’ actions while using the specific
methods of meta-programming M. Explicit and/or implicit
methods for managing the designers’ activity are used in the
technology behind SIS design. The reality of such manage-
ment demonstrates that the complexity of a P-program is no

VOLUME 1, 2013

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

IEEE Access

practical innovations : open solutions

less than the complexity of SIS in any of its used states.
Moreover, any M-program that provides the construction of
a P-program should be built on the basis of the same initial
description D of the system S. It can be presented by the
following chain: D(tg) — M(t;) — P(t;) — S(tp).

Named relations between constructions D, M, and P can
be used by designers to divide the process of designing into
stages [D(tp) — Mo — Pp — S(t1)], [D(t;) > M — P —
S(2)], ..., [Dt) > Mi — Py — S(ti+1)], ..., [D(th—1) =
M,_1 — Ph_1 — S(t,)], where a set {S(t;)} reflects the states
of the SIS that are being created.

Dividing the designing process into stages is a typical step
in any modern technology that involves the creation of SISs.
In different technologies, such an approach is used in different
forms for different aims. This approach helps to decrease the
complexity of the interactions with SIS in any of its states
S(ti). However, until now, the viewpoint of programming on
the designer activity has not been supported instrumentally in
the early design stages.

It is necessary to note that the creation of instrumental
means for an explicit work with M- and P-type artifacts
essentially depends on their understanding. In an approach
described in this paper, these artifacts are understood as
models of designers’ behavior that are created for scien-
tific experimentation on the corresponding behavior units
included in the way-of-working. Therefore, the indicated
instruments should have the potential for the creation and
use of the artifacts of M- and P-types in experiments with
behavioral units of designers’ activity. Moreover, the means
of supporting the experimental work should help the design-
ers create solutions for investigating tasks and opening the
possibility for their confirmatory reuse in the designers’
team.

The specificity of the approach is defined by the following
features.

1. The investigated units of behavior are interpreted as
precedents, with which the designers interact, using
accessible experience and its models.

2. Experimenting with the chosen unit of behavior, the
designer creates the corresponding precedent model that
fulfills the function of “experimental setup.”

3. Any such “experimental setup” is built to confirm the
existence of a specific “‘cause-and-effect regularity (or
regularities)” in the “naturally artificial world” of the
SIS that is being created.

4. The existence of any investigated *‘cause-and-effect reg-
ularity” should be confirmed not only by an author of the
experiment but also by other members of the designers’
team.

5. Interactions of designers with the experience and its
models (i.e., the accessible experience) are based on
question-answer reasoning.

6. The approach is aimed at the conceptual stage of design-
ing because a system of SIS regularities should be
formed, checked and confirmed during the design as
early as possible.

VOLUME 1, 2013

7. Artifacts of M- and P-types (which are included in
models of precedents) are programmed in a special-
ized pseudo-code language that is used by designers in

coordination with question-answer reasoning.
In the proposed approach, the achievement of the enumerated

features is provided by a specialized toolkit WIQA (Working
In Questions and Answers) [4], which supports the process of
experimenting during the stages of preparing, conducting and
registering the experiments in their understandable forms.

Il. PRELIMINARY BASES

A. WHY EXPERIMENT WITH ACTIVITY UNITS OF
DESIGNERS

In a general case, a system of the SIS-type involves software
that is combined with peopleware and other different com-
ponents. Any such system can be interpreted as a naturally
artificial world, the processes of which are implemented in
accordance with specific cause-and-effect laws (regularities).
Some of these regularities are laws of nature, while others
have a normative character.

In designing an SIS and its cause-and-effect regularities
(or shortly regularities), the designer must find a reflection of
the design in the software components. In software engineer-
ing, the reflected regularities are bound with requirements and
restrictions that are embodied in the created software. Such
embodiments are implemented when designers formulate
and solve the corresponding project tasks. Embodiments of
requirements and their subsets are distributed between project
tasks. It is necessary to note that this part of way-of-working
is based on the experiences of requirements engineering.

Thus, in a general case, the project task concerns a set
of specific regularities, the coexistence of which should be
confirmed for SIS, which otherwise is not constructed. Under
such conditions, the necessary confirmation can be imple-
mented by the designer who performs the appropriate actions,
with a scheme for the corresponding part of the SIS.

Thus, acting in accordance with the created scheme, the
designer should be convinced that the scheme of actions
leads to the necessary use of cause-and-effect regularities in
the task. Moreover, for mutual understanding and collabora-
tive work, the designer should specify the scheme for reuse
by other members of the team. A similar responsibility is
expected of a scientist who has solved an experimental task.

Therefore, simulating the scientists’ activity in experiment-
ing with activity units of designers is a promising way of
improving the ways-of-working when designing the SISs.
This position focuses on the system of cause-and-effect reg-
ularities, which manages the processes in the naturally arti-
ficial world of SIS; it correlates with the empirical nature of
software engineering.

B. WHY CONCEPTUAL DESIGN

There were several reasons for the choice of conceptual
design as an activity domain for the constructive use of
the analogy between designing and scientific experimental
research. The first reason is connected with the high cost of

489

IEEE Access

practical innovations : open solutions

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

errors that mainly arise from incorrect understanding of the
cases that the designers are working on.

Any conceptual project is aimed at a description of the
system that is being created, to allow for its structure and
behavior to be coordinated with natural laws and normative
rules the system should satisfy. Hence, designers should prove
that the used models of “‘cause-and-effect regularities™ pro-
vide the required coordination. This approach should be put
into practice in the conceptual design of a specific SIS as
early as possible. The aim of any scientific experiment is an
existence of the confirmation of a corresponding cause-and-
effect regularity. The similarity of the obligations of designers
and scientists was the second reason for this choice.

The third reason is the lack of methods that are included,
especially modern technologies for supporting the experi-
mental activity of designers at the conceptual stage of design.
It is necessary to note that, at the conceptual stage of design,
the investigated scheme of the designer’s actions can be a
simplified version of the task solution, demonstrating only
how regularities of the task can be materialized and will be
used.

C. WHY DESIGNERS WORK IN THE FORM OF
PRECEDENT

In the offered approach, this work with regularities is con-
sidered from the viewpoint of the designers’ behavior in
the solution processes of the project tasks. Moreover, the
approach is oriented toward the analogy between projects
completed by designers and scientists. In specific circum-
stances, any designer plays the role of a scientist who pre-
pares and conducts experiments with P-type behavior units.
In such experiments, the designer works in the naturally
artificial world of SIS, which is developed in the technolog-
ical medium used. Any experiment is connected with solv-
ing the corresponding task appointed to the designer on the
team.

When solving the appointed task, the designer must focus
on the causes-and-effects of this task, to prepare an experi-
ment that confirms that the indicated causes-and-effects exist
in the investigated world. In the experiments, the design-
ers should focus on “how to do” but not on ‘“what to
build,” which correlates with the main principles of SEMAT.
In experimenting, the designers acquire units of experience,
which they should register in the form of models that provide
future reuses of the experiments. It is necessary to notice that
typical (reused) units of human behavior are usually called
“precedents.”

According to the Cambridge dictionary, “precedents are
actions or decisions that have already happened in the past
and which can be referred to and justified as an example that
can be followed when the similar situation arises” (http://
dictionary.cambridge.org/dictionary/british/precedent).

Natural precedents are based on conditioned reflexes,
which are intellectually processed and are included as mod-
els of the human experience, as its units. An interpretation
of behavior units as precedents prompts the necessity of

490

intellectual processing them, which is aimed towards their
planned reuse. In the offered approach, the intellectual
processing is based on the logical scheme of precedents pre-
sented in Fig. 1.

Name of precedent P;:
while [logical formulae (F) for motives M ={M,}]
as [F foraims C={C}]
if [F for preconditions U’= {U”}].
then [plan of reaction (program) r],
end so [F for post conditions U” = {U”}]

o6 =0 e

there are alternatives {P;(rp}.

FIGURE 1. Logical scheme of precedents.

The applied logical scheme allows integrating the natural
and normative regularities in the precedent model. Natural
regularities are reflected in pre- and post-conditions, while
normative regularities are specified in the motives and aims
components.

D. WHY INTERACTIONS WITH EXPERIENCE

This work of the designer as a type of an activity is ini-
tially oriented to the use of experiential practices. Any new
SIS project is evolved through the real-time solution of the
technological and subject tasks that are distributed between
members of the team [5]. This distribution accounts for the
personal experience of any member with real-time access to
the collective experience and its models.

It is easy to agree that the contribution of any designer to
the general work depends on an essential measure both from
the accessible experience and from the used means of the
access. With any newly solved task, any designer evolves
their own experience, further enhancing the current state of
the common accessible experience. Such a process is similar
to experiential learning [6] under the conditions of designing
a specific SIS. The most important aspect in experiential
learning is the fact that the learner (in our case, the designer)
should actively participate in purposeful actions and reflect
them when using the accessible experience.

Thus, one can interpret the designing of SISs from the
viewpoint of experiential learning in the team of designers.
This viewpoint indicates an important area for rationalizing
(improving) the real-time actions of designers aimed at inter-
actions with the accessible experience. Rational workflows
of such interactions can increase the degree of success in the
development of SISs. The continuous improvement of the
used practices is recognized as a reliable way of achieving
sustainable success of the team of designers and their project
organization [7].

E. WHY QUESTION-ANSWERING

Intellectual processing of natural precedents is fulfilled by
means of a natural language that also supports the access to
the units of experience. Such effects are caused by processes

VOLUME 1, 2013

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

IEEE Access

practical innovations : open solutions

of consciousness of a dialog nature. Dialogical processes of
consciousness provide a choice of experience units and their
adjustments for corresponding situations.

Accordingly, a question is understood by the author as the
natural phenomenon associated with a specific situation in
which a human interacts with their own experience (models
of precedents). In this case, the ‘“question” is a symbolic
(sign) model of the corresponding question. The associated
understanding helps explain the necessity of fitting the “ques-
tion” to the investigated situation. Implicit questions and
answers exist in actuality, while “questions” and “‘answers’
are presented as symbolic models.

Thus, question-answer reasoning reflects processes in the
consciousnesses of designers when they interact with their
own experience. Explicit question-answer reasoning helps in
controlling interactions with experience. This type of reason-
ing is expedient for the creation and use of experience models
that present the designer’s behavior.

F. WHY PSEUDO-CODE PROGRAMMING

In activity practice, the person usually represents their own
behavior by means of a plan that is written in natural lan-
guage based on its algorithmic usage. Repeatable work that is
fulfilled by people is represented by techniques that are also
written in natural language based on its algorithmic usage.
This approach prompts the designer to use this technique in
planning experiments, which was the reason behind choosing
a pseudo-code language for programming the units of the
designer’s ideas. Interacting with such programmed models
of behavior, the designers will apply their experience in the
use of natural language.

The logical scheme of the precedent specifies two parts
of its model because of their separate pseudo-code pro-
gramming. The first part must define the access to the
precedent model, while the second part must describe
the corresponding reaction that must be implemented by the
designer.

Itis necessary to recall the M- and P-types of programs that
were chosen to describe the designers’ activity in the offered
approach. Let us clarify the difference between these types of
programs. P-programs are destined for simulating the units
of the designer’s behavior in the solutions of the appointed
tasks, while M-programs describe the collaborative work of
the designers. Thus, M-programs are destined for controlling
the activity of the designers, while they work in parallel and
in coordination. This type of program is also suitable for
controlling the pseudo-parallel work of the designer, with
a number of appointed tasks. In general, the M-programs
automate the implementation of the workflows.

Workflows in conceptual designing are formed accord-
ing to the planned schemes; thus, they conform with the
current situation. Workflows of the planned type can be pro-
grammed in advance, but workflows of the second type are
to be programmed by working designers (not professional
programmers) in real time. Hence, the language of pseudo-
code programming, which will be used by designers for

VOLUME 1, 2013

the creation of P-programs, can be used for the creation of
M-programs also.

G. PLACE OF OFFERED MEANS IN THE CREATION OF
WAYS-OF-WORKING

In accordance with its definition, the way-of-working
includes the tailored set of practices chosen for the SIS design.
The presented approach concerns the used practices, and
mechanisms of their tailoring applies to the processes of
conceptual designing. The specificity of the approach will be
clarified by means of roles that provide the constructive work
of designers in technological environments.

Any modern technology that is used for designing the SIS
includes modeling this work of designers with the help of
roles. For example, the current version of Rational Unified
Process (RUP) supports the activities of designers playing
approximately 40 roles. RUP is a “heavy” technology; there-
fore, for small teams, the quantity and specifications of the
used roles are decreased and simplified [8].

In any case, the role is a special version of a designer’s
behavior that satisfies a certain set of rules. Role specifi-
cations depend on the corresponding tasks and tools that
support their initial solution and reuse of solutions. Thus,
for specifications of any role, the corresponding tasks and
necessary tools should be defined by their essential features.

This approach recommends expanding the traditional set
of roles by including into this set the specialized role called
“intellectual processor” (I-processor). This role exists in
addition to any other role that is played by any designer in
this study for the investigated task.

Acting as an I-processor, the designer constructively uses
the accessible experience for different useful purposes. Inter-
actions with experience units are implemented explicitly
and/or implicitly but on the basis of QA-reasoning. The main
purpose of using the explicit forms is the programmable cre-
ation of the necessary precedents and experimentation with
them. Implicit forms are suitable for (pseudo-code) program-
ming of used practices oriented to execution of their programs
by a designer playing the role of I-processor. Thus, the applied
way-of-working can be adjusted to the use of I-processors in
situations where it is planned or estimated as being useful.

Actions of I-processors are supported by the toolkit WIQA,
which provides the collaborative execution of workflows
“Interactions with Experience” by the group of designers
in the client-server medium [9]. The basic features of an
I-processor will be specified below.

We note that a set of practices embedded into the work-
flows “Interactions with Experience”” can be combined with
other practices of the technology used.

Ill. RELATED STUDIES

The idea of the designer model as an I-processor is derived
from publications [10] in which the “Model Human Proces-
sor” (MH-processor) is described as an engineering model
of human performance in solving different tasks in a real-
time regime. It is necessary to emphasize that I-processor is

491

IEEE Access

practical innovations : open solutions

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

similar to MH-processor and includes the cognitive processor.
However, the existence and work of this “‘component” of
I-processor are derived from another technique that is based
on reasoning of the question-answer type.

The EPIC version of MH-processor uses programs that
are written in the specialized command language Keystroke
Level Model (KLM). A set of basic KLM actions includes the
following operators: K — key press and release (keyboard),
P — point the mouse to an object on screen, B — button press
or release (mouse), H — hand from keyboard to mouse, or vice
versa, and other commands. Operators of the KLM-language
and their values are used to estimate temporal characteristics
of human interactions for alternative schemes of interfaces.
KLM-programs do not correspond exactly to the used rea-
soning, and therefore, they do not reflect interactions with the
accessible experience. It is necessary to note that processors
of both indicated types are oriented toward experimenting
with units of human behavior.

The version of experimentation described is coordinated
with basic principles of the SEMAT Kernel, which is
described in [2]. The version is oriented towards ways-of-
working that focus on the real-time activity of designers.
“The process is what the team does. Such processes can
be formed dynamically from appropriate practices in accor-
dance with current situations. The informational cards and
queue mechanisms are being used for managing of ways-of-
working [11].”

It is necessary to note that this version applies units of
task types for structuring the activity of the designers because
solutions of tasks facilitate the enrichment of the accessible
experience by scientific experimentation. By experimenting,
the scientists solve specific tasks creatively.

In the offered approach, the scientific viewpoint corre-
lates with two faces of the software engineering described
in [12], where functional paradigms and scientific paradigms
are discussed. In the context of this paper, the approach means
are oriented towards scientific paradigms used by software
engineers.

Therefore, the important group of related studies includes
publications that present empirical viewpoints on software
engineering. In this group, we note the following works
[13] and [14], which present the domain of empirical software
engineering; papers [15] and [16], which define the Goal-
Question-Metrics method (GQM-method) and Experience
factory, which includes the Experience Base. All of the indi-
cated studies were taken into account in the offered version
of scientifically experimental ways-of-working.

One more group of related publications concerns the use
of question-answering in computerized mediums, for exam-
ple, papers [17] and [18]. In this group, the closest research
presents experience-based methodology “BORE” [19], in
which question-answering is applied as well, but for the other
aims, this methodology does not support programming of the
creative designer activity.

Explicit programmable forms of the designer activity are
not used in any modern technologies of designing the SIS.

492

For example, in technologies that are based on the Rational
Unified Process [20], the conformity to requirements and
understandability are reached with the help of “block and
line” diagrams expressed in the Unified Modeling Language
(UML). The content of the diagrams built by the designers
is clarified by necessary textual descriptions. However, UML
is not a language of the executable type, and therefore, the
associated diagrams are not suitable for experimentation, as
is the case with P-type programs.

For collaborative solution of the tasks, using coordination,
the RUP suggests a means of using normative workflows in
the relations that are regulated by a set of rules. For any task in
a specific normative workflow, the RUP has an interactive dia-
grammatic model using a set of components that can help in
solving the task. Forms of programming are not always used
in these methods. A similar state of affairs with conceptual
designing exists in other known technologies that support the
development of SIS.

It should be noted that formal languages are widely used
in applications that involve workflows. Therefore, a separate
group of related research includes publications that open
solutions that are connected with the use of workflows in
collaborative designing. In this group, we note publications
[21] and [22], which are helpful for gathering and defining a
set of tasks that are used in the workflows ““Interactions with
experience.”

IV. QUESTION-ANSWER INTERACTIONS WITH TASKS

A. OPERATING SPACE OF EXPERIMENTATION

Any experimental research is implemented in an appropriate
medium of experimenting. In the described case, the role of
such a medium fulfills an operating space that is supported
by the toolkit WIQA. The generalized scheme of experimen-
tation in the indicated space is presented in Fig. 2.

// Conceptual project of SIS \WiQa
4 A-protocols for tasks Jg—p
QA-protocols for tasks %_p

NN N W

FIGURE 2. Experiential interactions with tasks.

In solving an appointed task, the designer registers the used
question-answer reasoning (QA-reasoning) in a specialized
protocol (QA-protocol) so that this QA-protocol can be used
as the task model (QA-model). Typical units of QA-reasoning
are questions (Q) and answers (A) of different types. Tasks
are a very important type of question. Below, the tasks will
be designated with the use of the symbol “Z.”

Models of this type can be used by designers for exper-
imenting in real time with all of the tasks being solved.
Units of the experiential behavior that are extracted from the

VOLUME 1, 2013

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

IEEE Access

practical innovations : open solutions

ZD = {ZDx} Z“ - {Zwm} ZG = {ZGp} ZA={Z-'\k} N ={ZNJ} ZW = {Z“:n} ZG Z{ZGS}
— =
I CZB Zys rZJé ¢ Zn 2
(2o [Fon [™
N oy
Workflows Z1g Z5o l [Znol Workflow

d £

Designer 1

Integrated environment of QA-modeling

B . .
Designer
B [)osimes

N and QA-programming
~~ 1 \\/ \
T e L Qo —a
- G, Dy e ! — Qu —~ A:\\n .
Team of Dy, [Tree of tasks | 3 813 _ A%P -
Designers — Dy, = Zim = =
e G D -~ Zs 7 4| QA-protocol [*2- Ay
21 2! e Qn — Ay .
QA-data Bfl %3;’] m A, g~
Gv o, A et
]8\'1 Zpl e 8})1 — A‘S*ul
QA-memory Dli *;f Qi; - 3\;[3

FIGURE 3. Storing of tasks in WIQA-environment.

solution processes are modeled on the basis of QA-models of
tasks.

The scheme also reflects that the investigated behavior
model can be uploaded as the model of the corresponding
precedent in the question-answer database (QA-base) and in
the Experience Base of WIQA. After that, they can be used
by designers as units of the accessible experience. Experi-
ence models from the other sources can be uploaded in the
Experience Base.

B. QUESTION-ANSWER MEMORY
If designers of SIS use the toolkit WIQA, then they have
the opportunity for conceptually modeling tasks of different
types. In this case, the current state of the tasks being solved
collaboratively is registered in the QA-base of the toolkit,
and this state is visually accessible in the forms of a tree of
tasks and QA-models for the corresponding tasks. The named
opportunity is presented figuratively in Fig. 3, where QA-base
is interpreted as a specialized QA-memory in which the cells
are visualized by inquiries of designers.

First, the cells are used for storing the registered units of
QA-reasoning. Any cell has the following basic features.

1. A cell is specified by a set of normative attributes that

reflect, for example, the textual description of the stored
interactive object, its type and unique name, the name of
its creator, the time of the last modification and the other
characteristics.
Any cell has a unique address, which has a function that
is fulfilled by the type name of the stored unit and its
unique index, which is appointed automatically when
creating the unit. Empty cells are absent.

VOLUME 1, 2013

3. The designer has a chance to appoint a number of addi-
tional attributes to the cell if it would be useful for this
work involving the object stored in the cell.

Having chosen the necessary attributes, the designer can
adjust the cell for storing any question or any answer in the
form of an interactive object that is accessible by inquiries of
designers of programs. Thus, any question and its answer are
stored in QA-memory as a pair of related interactive objects,
which is called a QA-unit.

QA-units are stored in QA-memory as data; the abstract
type data will be called QA-data. The use of this type of
data helps to emulate other data types, including descriptions
of operators. First, this capability is necessary for the use
of QA-memory in pseudo-code programming. Thus, cells of
QA-memory that are destined for storing QA-units can be
adjusted to store other types of units, for example, for units
used in solving the tasks.

In Fig. 3, the scheme of QA-memory demonstrates the
store of presentations for “Team of designers,” “Tree of
tasks” and a pseudo-code program with its operators and
data. The program, its operators and used data are designated
as QA-program, QA-operators and QA-data, respectively,
to underline that they inherit the features of QA-memory
cells.

The responsibility for the tasks being solved is being dis-
tributed among designers in accordance with the competence
of each individual. The team competence should be sufficient
for real-time work with the following sets of tasks: subject
tasks 75 = {Zis} of the SIS subject area; normative tasks
ZN = {ZJN} of the technology used by designers; adapta-

tion tasks Z* = {Zﬁ} that provide an adjustment of the

493

IEEE Access

practical innovations : open solutions

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

N : Sy. %
tasks {Zj } for solving the tasks {Z?}; workflow tasks {Z; }

that provide work with the tasks of ZS-type in workflows
{Wmn} in SIS; workflow tasks {an} that provide work with
ZN-type tasks in corresponding workflows {W,} in the used
technology; and workflow tasks {Zg’} and {Z?}, any of which
correspond to the specific group of workflows in SIS or in the
technology.

The indicated diversity of tasks emphasizes that designers
should be very qualified specialists in the technology domain
but that this qualification is not sufficient for successful
designing. Normative tasks are invariant to the SIS domain
and, therefore, designers should gain certain experiences that
are needed for solving the specific tasks in the SIS subject
area. The largest part of the additional experience that must be
acquired by designers is experiential learning when ZS-type
tasks are solved during conceptual designing. The solution of
any task ZiS is similar to expanding it into a series on the basis
of normative tasks.

Objects uploaded to QA-memory are bound in hierarchi-
cal structures. In real-time work, the designers interact with
such objects. They process them with the help of appropriate
operation to find and test the solutions to the tasks.

Objects in QA-memory are accessible to designers in
accordance with the given access rights. In any case, any
QA-model is accessible to the group of designers who interact
with it with different purposes, which include checking the
model. Thus, any QA-model is a product of collaborative
reasoning and coordinated understanding.

C. QUESTION-ANSWER MODELING

One method for the conceptual solution of any task of the
indicated types is based on creating its QA-model as a system
of questions and answers that accompany the solution pro-
cess. The generalized scheme of such a model is presented in
Fig. 4.

Designer

Design process
| gnp >
\

FIGURE 4. Interactions with QA-model of Task.

WIQA /

Question-answer and other models are created to make an
extraction of answers to the questions enclosed in the model.
Moreover, the model is a very important form of the repre-
sentation of the questions, the answers of which are generated
during visual interactions of designers with the model.

The essence of QA-modeling is the interactions of design-
ers with artifacts included in the QA-model in their current

494

state. For this approach to an interaction, the developer can
use the special set of QA-commands, their sequences and a
set of WIQA plug-ins.

The main subset of the positive effects of QA-modeling
includes the following:

« controlling and testing the reasoning of the developer
with the help of “collaborative reasoning” and “inte-
grated understanding* included into the QA-models;

« correcting the understanding of designers with the help
of comparing it with ‘““integrated understanding;”’

« combining the models of the collective experience with
an individual experience for increasing the intellectual
potential of the designer on the specific workplace;

« including the individual experience of the developer in
accordance with the request on the other workplaces in
the corporate network.

As is shown in this scheme, any component of a QA-model
is a source of answers that are accessible for the designer
as a result of the interactions with the QA-model. At the
same time, the potential of the QA-model is not limited
by the questions planned when defining and creating the
QA-model. Another source of useful effects of QA-modeling
is an additional combinatorial “‘visual pressure’ of questions
and answers, which is caused by the influence on brain pro-
cesses in their contact with components of the QA-model.
No difference depends on who created the QA-model.

There are different forms for building answers with the
help of QA-modeling, which are not limited to only linguistic
forms. However, the specificity of QA-modeling is defined
by the inclusion of additional interactions with ‘“‘question-
answer objects” into the dynamics of the integrated con-
sciousness and understanding (into the natural intellectual
activity of designers).

The description of any behavioral unit composed of
designer interactions with the QA-model in accordance with
a specific scenario can fulfill the role of a model of such a
designer activity. To distinguish this type of model from other
types of models that were used in our approach, they can
be named “QA-models of the designer activity.” Any such
scenario as a specific program reflects designer interactions
(actions) aimed at understanding the corresponding task and
its solution. In the discussed case, the scenario is a text that
comprises instructions that indicate the designer’s actions,
which should be executed in the reuse of the behavioral unit
in the WIQA-medium.

Similar scenarios can be created for human actions
that are not limited to the WIQA-medium. Their content,
form and appointment are demonstrated by the following
technique:

//Reset of Outlook Express

Ol. Quit all programs.

02. Start On the menu Run, click.

03. Open In the box regedit, type, and then OK the click.
04. Move to and select the following key:

VOLUME 1, 2013

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

IEEE Access

practical innovations : open solutions

HKEY_CURRENT_USER/Software/Microsoft/Office/9.0/
Outlook

OS5. In the Name list, FirstRunDialog select.

06. If you want to enable only the Welcome to Microsoft
Outlook greeting, on the Edit menu, Modify, click the type
True in the Value Data box, and then the OK click.

O7. If you also want to re-create all of the sample welcome
items, then move to and select the following key:

HKEY_CURRENT_USER/Software/Microsoft/Olffice/9.0/
Outlook/Setup

08. In the Name list, select and delete the following keys:
CreateWelcome First-Run

09. In the Confirm Value Delete dialog box, click Yes for
each entry.

0.10. On the Registry menu, click Exit.

Oll. End.

This technique is chosen to emphasize the following.

1. There are many behavior units that describe human

activity in different computerized mediums.

2. Descriptions of similar typical activities help in the reuse
of these precedents.

3. Descriptions of techniques have forms of programs
(N-programs) that are written in the natural language LN
in its algorithmic usage.

4. Such N-programs are made of operators that are
fulfilled by humans interacting with the specific com-
puterized system. In the example of the N-program,
its operators are marked by the symbol “O” with the
corresponding digital index.

Thus, there are no obstacles for uploading the N-programs
into QA-memory. This method is used for uploading the
techniques that support the designer activity in the WIQA-
medium.

Thus, the other way of coding the designer activity is con-
nected with its programming in the context of the scientific
research on the task. All of the tasks indicated above are
uploaded to QA-memory with the rich system of operations
with interactive objects of the Z-, Q-, and A-types. Design-
ers have the opportunity to program the interactions with
necessary objects. Such programs are similar to the plans
of the experimental activity during the conceptual design
of the SIS. Operators of programs are placed in Q-objects.
Corresponding A-objects are used for registering the facts or
features of the executed operations.

Thus, in experimenting with units of their own behav-
ior, the designer has a flexible means for specifying the
QA-programs, QA-operators and QA-data that are used in
simulating such behavioral units. Experimentation is fulfilled
in the form of QA-modeling for solving tasks in conceptual
design.

D. MEANS OF QA-MODELING

Above the QA-model of the task, there is the aspect of
QA-reasoning that is registered in QA-memory. However,
artifacts of this type are especially useful in cases when they

VOLUME 1, 2013

are being created while solving a project task. Therefore, a
typical structure of QA-models is specified in the framework
form presented in Fig. 5.

Organizationally
intellectual view

Communicative
view Experience view -
P Purpose view
Event view Task view . .
Theoretical view
Ontol] Logically
o /'
nfology view linguistic view Traind -
o
(QA-protocol) raining view
Activity view
Program view Normative
view
Diagramming |
view . .
Documenting view

Problem-oriented view

FIGURE 5. Framework for QA-models of tasks.

The structure and content of the framework were cho-
sen with an orientation towards the set of typical RUP-
tasks, which this technological system gives to designers for
their work in the conceptual design stage. Such a decision can
be explained in that RUP is the richest source of typical tasks
that are confirmed by practice. The conceptual methods of
RUP help to build and express the conceptual solution of any
task that is involved in the development of SIS.

The framework is destined for building examples of
QA-models and adjusting each of them based on the speci-
ficity of the corresponding task. At any time during the con-
cept design process, the system of created QA-models should
reflect the state of this process from a set of useful viewpoints.
For this reason, the framework is specified as the system of
views indicated in Fig. 5.

Destinations of viewpoints and the methods for their
materialization have been described in our publications
[4] and [23]; therefore, in this paper, we shall only empha-
size some of the features of the used architecture of the
QA-models.

1. The central place in the framework is occupied by
the logical linguistic view, which opens a powerful
opportunity for registering and using QA-reasoning
for different useful purposes. This view specifies
QA-memory.

2. Any other view explicitly or implicitly depends on the
logically linguistic view, extending its applications in
conceptual design.

3. Any view corresponds to the specific operating space for
designers, where they solve a set of useful tasks.

4. This work of designers with any view is supported by the
corresponding means included in the toolkit WIQA.

495

IEEE Access

practical innovations : open solutions

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

The use of mechanisms of views opens the possibility of an
interpretation of the WIQA methods as a specialized software
intensive system SISQA that is oriented towards workflows
“Interactions with Experience” in conceptual design. Such
understanding has allowed application of the experience of
the architectural description for SIS to the toolkit SISQA.
The features of WIQA are reflected by its general structure
of components, which is presented in Fig. 6.

Basic components of WIQA

[Web-shell] [Organizational]

structure
P
QA-database
A\

Simulator of

Editors: text
&graphics expert system

- — N -
Visualization Experience
means Base

J \

N
Translators of (
pseudo-codes

[Plug-ins of Applications]

Library of
patterns

Means of evolving (components, data,)
pseudo-code programs, agents)

FIGURE 6. Generalized structure of WIQA.

The toolkit WIQA is implemented as a client-server system
that has been evolved architecturally view by view. The basic
programming language is C#. Each view is supported by
corresponding plug-ins. By analogy with a Word-processor
(for example, Microsoft Word), the toolkit is interpreted as a
Question-Answer processor (QA-processor).

V. PSEUDO-CODE LANGUAGE L'1QA

A. STRUCTURE OF LANGUAGE

QA-reasoning can be used by designers when they create dif-
ferent conceptual models of tasks, for example, in formulating
the task statement or in cognitive analysis of the formulated
statement or in (pseudo-code) programming the solution plan
of the task. The toolkit WIQA supports the creative work of
designers with all indicated conceptual modes and conceptual
models of the other types.

The specialized pseudo-code language has been
developed for the use of QA-reasoning in programming the
solution plans. This language is oriented towards its use in
experiential interactions of designers with accessible expe-
rience when they create programs of their own activity and
investigate them. Step-by-step, LWIQA has been evolved to a
state with the following components.

L WIQA

1. Traditional types of data, such as scalars, lists, records,
sets, stacks, queues and the other data types.

2. Data model of the relational type, describing the struc-
ture of the database.

3. Basic operators, including traditional pseudo-code
operators, for example, Appoint, Input, Output,

496

If-Then-Else, GOTO, Call, Interrupt, Finish and the
others operators.

4. SQL-operators in their simplified subset, including Cre-
ate Database, Create Table, Drop Table, Select, Delete
From, Insert Into, and Update.

5. Operators for managing the workflows oriented towards
collaborative designing (Seize, Interrupt, Wait, Cancel
and Queue).

6. Operators for visualization developed for the creation of
the dynamic view of cards presenting QA-units in the
direct access of the designer to objects of QA-memory.

The important type of basic operators includes an explicit
or implicit command aimed at the execution by the designer of
the specific action. Explicit commands are written as impera-
tive sentences in the natural language in its algorithmic usage.
When designer interactions with descriptions of questions or
answers are used as causes for designer actions, then, such
descriptions can be interpreted as implicit commands written
in LVIQA For example, textual forms of questions are a very
important class of implicit commands.

B. EMULATION OF DATA AND OPERATORS

In the general case, a QA-program can include data and oper-
ators from different enumerated subsets. However, the tradi-
tional meaning of such data and operators is only one aspect
of their content. The other side is bound with attributes of
QA-units in which data and operators are uploaded. As
described above, QA-data and QA-operators inherit the
attributes of corresponding cells of QA-memory. They inherit
not only attributes of QA-units but also their understanding as
“questions” and “‘answers.”

Originally, QA-data had been suggested and developed
for real-time work with such interactive objects as ‘“‘tasks,”
“questions” and “‘answers,” which were stored in the
QA-database and used by designers in the corporate network.
It is necessary to recall that “task” is a type of question and
“decision of the task”™ is an answer to a question.

On the logical level, any QA-data can be interpreted as the
specialized hierarchical model of data emulated by means of
the relational model of the data. Two hierarchical trees of data,
the units of which are connected as questions and answers, is
one of the specificities of QA-data. The general version of
QA-data includes the dynamic tasks tree of the units, which
are united with a system of QA-models for corresponding
tasks.

Let us recall that any unit of such a model is the inter-
active object with a unique name and symbolic expression,
which are visually accessible to designers in the task tree
or in the corresponding QA-protocol. Other characteristics
(for example, such basic attributes as the name of the creator,
time attributes, indicator of changes, and attribute of inher-
itances) have been discovered and used in different planned
actions with the data unit.

One way of broadening the interpretation of QA-data is
connected with the abstract type of data with named attributes
and features, including the accessible set of commands.

VOLUME 1, 2013

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

IEEE Access

practical innovations : open solutions

Such an interpretation allows for the developers to use the
abstract QA-type for the emulation of types of data that are
necessary for pseudo-code programming.

The emulation is based on the use of Q-objects and cor-
responding A-objects for the following presentation of any
normative types:

o ‘“‘question” — “name of the variable for the simple type
of data,” and ‘“‘answer” — ““its value;”

o “definite composition of questions” — ““typical data”
(for example, array, record, set, array of records or
table, stack, queue and others types of composite data)
and “‘corresponding composition of answers” — “its
value.”

There are sufficient reasons for the interpretation of vari-
ables (names of variables) as questions and their values as
corresponding answers. As a result, QA-data can be used for
emulating data of many known types. As told above in WIQA,
there is a special mechanism for assigning the necessary char-
acteristics to a specific unit of QA-data. It is the mechanism
of additional attributes (AA) that provides the possibility of
expanding the set of basic attributes for any Z-, Q- or A-object
stored in the QA-database.

The mechanism of AA implements the function of the
object-relational mapping of QA-data to program objects
with planned characteristics. One version of such objects is
classes in C#. The other version is fitted for pseudo-code
programming. The scheme that is used in WIQA for the
object-relational mapping is presented in Fig. 7.

Basic attributes

1

i Virtual relation \:
- > (additional attributes)!

Relations

of AA-plug-ins server

A set of classes client

(with additional attributes) :

Mechanisms of AA

User or the new function for
automatic use

<>

FIGURE 7. Creation of additional attributes.

The use of the AA is supported by the specialized plug-
ins embedded in WIQA. This plug-in helps the designer
declare the necessary attribute or a group of attributes for spe-
cific QA-units. At any time, the designer can view declared
attributes for the chosen unit. Any necessary actions that have
assigned additional attributes can be programmed in C# or in
the pseudo-code language LWIQA,

Broadening of the abstract type of QA-data by means of
additional attributes helps to emulate any traditional data
types, such as scalars, arrays, records lists, and others.

VOLUME 1, 2013

Moreover, means of additional attributes open the possibil-
ities for assigning to simulated data their semantic features.
An example of specifying the array with elements of the
integer type is presented in Fig. 8, where a set of additional
attributes is used for translating the array declarations to
computer code.

K QA-protocol \

/ Additional attributes \
QL. Array & Name & | Attribute Value
QL.1. Name[0] Type_data Array
All. 12 Measure 1
Q1.1. Name[0] Type element | integer
Al.1.12 Number 5
Q1.1. Name[0] \ j
All. 12
Ql.1. Name[0] The other useful AA; h
All 12
QL.1. Name[0]
Q.l. 12 J

FIGURE 8. Declaration of array.

Attributes that are assigned for the array are visually acces-
sible for the designer at any time and can be used for more
than for translating. The designer can add useful attributes to
the set of array attributes, for example, to describe its semantic
features, which will be checked in creating and executing the
QA-program. Any designer can create any necessary type
of data, for C#-programming as well as for pseudo-code
programming.

C. EMULATION OF OPERATORS

The second type of pseudo-code strings is intended for writ-
ing the commands (operators). Similar to for QA-data, we can
define the next interpretations for operators:

« ‘“‘question” is ““a symbolic presentation of an operator;”

o ‘“answer” is connected with the results of the operator

execution.

In other words, the symbol string of the “question” can be
used for writing (in this place) the operator in the pseudo-code
form. The fact or the result of the operator execution will be
marked or registered in the symbol string of the corresponding
“answer.”

The following remarks
QA-operators and their use.

explain the specificity of

1. Any sentence in any natural language includes the inter-
rogative component, which can be indicated explicitly
or implicitly. In QA-reasoning, this component is used
obviously, while in the pseudo-code operator, the ques-
tion is presented implicitly.

2. Named interpretation opens the possibility of regis-
tering pseudo-code programs in QA-memory in the
form of programmed QA-models of the corresponding
tasks.

3. In this case, any pseudo-code operator presented by
the pair of coordinated interactive objects of Q- and

497

IEEE Access

practical innovations : open solutions

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

A-types is written on the “‘surface” of the corresponding
QA-unit in QA-memory.

4. Thus, the used QA-unit can be interpreted as the “mate-
rial for writing” of the corresponding operator of the
source pseudo-code. This material has useful properties,
which are presented figuratively by attributes of the QA-
unit in Fig. 9.

Interactive QA-unit

—
Basic attributes _ —~ ~Additional attﬂM‘
-
-

Text of pseudo-code operator

FIGURE 9. Writing of the pseudo-code operator.

This “material” comprises visualized forms for writing the
string symbols that were originally intended for registering
the texts in the field ““textual description” of the correspond-
ing QA-unit. The initial applicability and features of such a
type of strings are inherited by data and operators of pseudo-
code programs. It is possible to assume that data and operators
are written on ‘“‘punch-cards,” the features of which (basic
and useful additional attributes of corresponding QA-units)
can be accessible for their processing together with textual
descriptions if it is necessary.

Thus, the traditional grammar of pseudo-code languages
can be extended by the use of indicated attributes of
QA-units and the operations with them. This reason was one
of the principal reasons for qualifying QA-programs as the
new type of pseudo-code programs.

D. EXAMPLES OF QA-PROGRAMS

QA-programs are implemented for the programming of the
condition part and the reaction part of any precedent sepa-
rately. The condition part should help to solve the task of the
precedent choice from the base of precedents. The typical
scheme of QA-programs for the conditioned parts has the
following view:

QA-PROGRAM_I (condition for the access to the prece-
dent):

N1 Variable &V_I1& / Comment_I: symbolic indicator
“N”(Name) is used as a type of “question”

VI Value of V_I1./ “V” indicates value of variable

N2 Variable &V_2& / Comment _2?

V2 Value of V_2.

NM Variable &V_M& / Comment_M?

VM Value of V_M.

ON F =Logical expression (&V_I &, &V_2&,...,&V_M&)

EN Value of Expression.

OP Finish.

It is necessary to notice that the designer can build or
modify or fulfill (step by step) a specific example of similar

498

programs in real-time work with the corresponding precedent,
which the designer creates or reuses. In the presented typical
scheme, the logical expression of the choice is programmed
as the program function (QA-function).

The reaction part of the precedent very often has a tech-
nique type that is a similar technique for Reset of Outlook
Express described above. In other cases, the designer can
program the reaction part in the prototype form.

The next fragment of a QA-program is used in plug-ins
called “System of Interruptions” for the calculation of a
priority of the interrupted QA-programs being executed by
the designer in parallel:

O 1.11 Procedure &DiscardPriority&

01111 &P& := &Pmax&/

O 1.11.2 Label &DP1&/ “O 1.11.2”-unique index name
(Address)

0 1.11.3 &Priority& := &P&

O 1.11.4 CALL &GetTaskByPr&

0 1.11.5 &base& — > &TaskPriority& := &base& — >
&TaskPriority&+1

0 1.11.6 CALL &ChangeTask&

01117 &P& := &P& - 1

0 1.11.8 IF &P&< &base& —> &Pmin& THEN &base&
—> &NewPriority& := &Pmin& ELSE GOTO &DP1&

O 1.11.9 ENDPROC &DiscardPriority&.

This QA-procedure is translated by the compiler (not by the
interpreter) because it is processed by the computer processor
(not by the I-processor). Therefore, A-lines of operators are
excluded from the source code.

It is necessary to mark that a creation and execution of any
QA-program is implemented in an instrumental environment,
which includes two translators (interpreter and compiler),
editor, debugger and a number of specialized utilities for
working with data declarations [2].

E. INSTRUMENTAL ENVIRONMENT OF
QA-PROGRAMMING

The language LWIQA| as in any other applied language,
is not separated from the means of its usage. Methods
of QA-programming have been developed and embedded
into WIQA during its evolution. The creation and use of
QA-programs are fulfilled in the instrumental environment
presented in Fig. 10.

Creation of a specific QA-program involves beginning
from the choice of the point in the tasks tree and the decla-
ration of the new task for this program. The index name of
this task (1) will be used as the initial address for computing
the index names for any line of source code of a QA-program
that is written in the area (2) of the text editor. The indexed
copy of the source code is registered in the editor memory,
and it is visualized in the area (3). After saving the current
state of the source code, its indexed copy transfers (4) to the
QA-database (5). At any time, any QA-program from the
database can be uploaded to the editor.

VOLUME 1, 2013

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

IEEE Access

practical innovations : open solutions

System of interruptions

Queue of interrupted tasks

Task Z, Task Z Task Z,

Designer i

Editor of QA-programs

Source code of
QA-program

Indexation

T I s T T)
121 3 Momosgnomes ecese 3) P
p 1353 18 Pyrumrars VA 412 .
2 1213 YNpace ey 5 . 1.5
5 T R

[S——————Y

FIGURE 10. Environment of QA-programming.

Any QA-program in any of its states can be uploaded (6)
to the interpreter for execution. Any executed operator of a
QA-program is visualized in the special area (7) of the
interpreter, and at any time, the designer can declare a new
synonym for the chosen keyword (8) or variable. There are
other useful possibilities that are accessible for the designer
in the main interface forms presented above in Fig. 10.

The reality of the designer activity is that there is par-
allel work involving many simultaneous tasks. Therefore,
a special system of interruptions is included in WIQA.
This system provides the opportunity to interrupt any exe-
cuted task or QA-program (if it is necessary), to work with
other tasks or QA-programs. The interruption subsystem
supports the return to any interrupted task or QA-program to
the point of the interruption.

VI. SIMULATING THE DESIGNER'S BEHAVIOR

A. PREPARATION OF EXPERIMENTS

The principal feature of the proposed approach is an exper-
imental investigation by the designer into the programmed
behavior, which has led to the conceptual solution of
the appointed task. Any solution of such a type should
demonstrate that its reuse meets the necessary requirements
when any designer of the team will act in accordance with
QA-program of the investigated behavior.

As described above, to achieve the goals, the designer
should work in a way similar to a scientist who prepares and
conducts experiments with the behavior units of the M- or
P-types. In the discussed case, the designer will experiment
in the environment of the toolkit WIQA. In this environment,
to prove that the aim of an experiment has been achieved,

VOLUME 1, 2013

~N Interpreter of QA-programs

N

senen

e ——

| Suraaoime Npepemsmes

= HoTeepnyve nve manrs spensesmen NKY «
0.KY wa fYBA.

Executed operator

T P U P,

L I

Synonyms

1®) =
Main interface form of WIQA

T s e

the designer has the possibility of experimenting with any
QA-operator of an investigated QA-program and/or with any
group of such QA-operators or with the QA-program as a
whole. Describing the experiment for reuse, the designer
should register it in an understandable form for the other
members of the team.

To begin a specific experiment, the initial text of the
QA-program should be built. In the general case, such a
project would include the following steps.

1. Formulation of the initial statement of the task.

2. Cognitive analysis of the initial statement with the use
of QA-reasoning and registering it in QA-memory.

3. Logical description of the ‘‘cause-effect relation”
reflected in the task.

4. Diagrammatic presentation of the analysis results (if it is
necessary or useful).

5. Creation of the initial version of the QA-program.

The indicated steps are fulfilled by the designer with
the use of the accessible experience, including the personal
experience and useful units from the Experience Base of
WIQA.

B. EXPERIMENTING WITH THE QA-PROGRAM

Only afterward can the designer conduct the experiment,
interacting with the QA-program in the context of the accessi-
ble experience. The specificity of interactions can be clarified
on examples of QA-operators of any QA-program or its frag-
ment, for example, the following fragment of QA-program
coding the well-known method of SWOT-analysis (Strengths,
Weaknesses, Opportunities, and Threats):

499

IEEE Access

practical innovations : open solutions

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

Q0 2.5 PROCEDURE &SWOT main&

0 251 &t_str& := QA_GetQAText(&history_branch_
qaid&)

Q 2.5.2 SETHISTORYENTRIES(&t_str&)

0 2.5.3 CALL &ShowHistory&

Q 2.54 IF &LastHistoryFormResult& == —I1 THEN
RETURN

0 2.5.5 IF &LastHistoryFormResult& == 0 THEN &cur-
rent_action_qaid& := QA_CreateNode(¤t_project&,
&history_branch_qaid&, 3, "") ELSE ¤t_ action_
qaid& := &LastHistoryFormResult&

0 2.5.6 &t str& = QA_GetQAText(¤t_action_
qaid&)

0 2.5.7 SWOT_DESERIALIZE(&t_str&)

0 2.5.8 &t_int& := SWOT_SHOWMAINFORM()

Q 2.5.14 FINISH

This source code demonstrates an often-used syntax, but
features of the code are opened in interactions of the designer
with it. Conditions and methods of experimenting are shown
in Fig. 11, where one of the operators (with address name
Q2.5.2) is shown in the context of previous and subsequent
operators.

Toolkit WIQA

Plug-ins: QA-memory

Team model

QA-program i

Editor

operator Q2.5.1
operator 02.5.2 m

operator 02.5.3

Compiler

Interpreter

@

Designer k

FIGURE 11. Experimenting of designer with QA-program.

Any QA-program is executed by the designer step-by-step,
in which each step is aimed at the corresponding QA-operator.
In this study, the designer uses the plug-in “Interpreter”
embedded into the toolkit.

Interpreting the current operator (for example, Q2.5.2),
the designer can fulfill any actions until its activation
(for example, to test existing circumstances) and after its
execution (for example, to estimate the results of the inves-
tigation), using any means in the toolkit WIQA. When the
designer decides to start this work with the QA-operator, this
work can include different interactive actions with it as with
corresponding QA-units or with their elements. The designer
can analyze values of their attributes and make useful deci-
sions.

500

Moreover, the designer can appoint the necessary attributes
for any QA-operator and for any unit of QA-data at any time.
In accordance with appointments, the designer can include
changes in the source code of the QA-program being executed
(investigated). Such work can be fulfilled as in QA-memory,
with the help of the plug-ins “Editor.”

The current QA-program or its fragments can be executed
or used step-by-step by the designer or automatically as a
whole with the help of the plug-in “Compiler.” Therefore,
all of this work described above with the QA-operator can
be used for any of the groups and for any QA-program as a
whole. For this reason, the execution of QA-operator by the
designer is similarly experimentation. Thus, the designer has
a flexible possibility to perform experimental research on any
task that is solved conceptually. This feature is the principal
feature that distinguishes pseudo-code QA-programs from
programs written in pseudo-code languages of different types,
including the class of Domain-Specific Languages [24].

The specificity of the described type of designer activity
is this work controlled by the QA-program and executed
by the designer interacting with the accessible experience.
To underline this specificity, the specialized role of “intel-
lectual processor” was constructively defined and is effec-
tively supported in the use of WIQA [9]. This role is added
to the other types of roles that applied in the concept
design [8].

C. DESCRIPTION OF EXPERIMENTS

As described above, any experiment that is conducted should
be presented by the designer in an understandable and
reusable form. In the offered version of experimentation,
the function with such a form is fulfilled by the typi-
cal integrated model of the precedent, which is shown in
Fig. 12.

Name of precedent P;:

¢| while [logical formulae (F) for motives M ={M,}]
h as [F for aims C = {C}}]
o if [F for preconditions U’= {U’,}],
i then [plan of reaction (program) r,],
c end so [F for post conditions U” = {U”,}]
e
there are alternatives {P;(ry}.

J

O = O @ = O = '

L

v

G

(o}
=1

= 5 >

|

FIGURE 12. Framework of precedent model.

VOLUME 1, 2013

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

IEEE Access

practical innovations : open solutions

The scheme, which satisfies the function of framework
F(P) for models of precedents, allows integrating the very
useful information that accompanies the experiment process
in its actions, as indicated above.

The central position in this model is occupied by the logical
scheme of the precedent. The scheme explicitly formulates
the “cause-effect regularity” of the simulated behavior of
the designer. Framework F(P) includes the following compo-

nents:
« textual model PT of the solved task;

o its model PQA in the form of registered QA-reasoning;

o logical formulae P* of the modeled regularity;

« graphical (diagram) representation PS of the precedent;

« pseudo-code model P! in QA-program form;

« the executable code PE.

Any component or any of their group can be interpreted
as projections of F(P), the use of which allow us to build
the precedent model in accordance with the precedent speci-
ficity. However, in any case, the precedent model should be
understandable to its users.

All of the built models of precedents are divided into two
classes, one of which includes models that are embedded in
the Experience base of WIQA, which is used by the team, not
just in the current project. The second class includes models
that are only for the current project.

VII. INTELLECTUAL PROCESSOR

Any designer playing the role of intellectual processor uses
question-answer reasoning and its models for access to infor-
mation on the prior experience.

The essence of the I-processor is defined by the features

enumerated below.

1. First, the I-processor is a role that is played by any
designer solving the appointed tasks in the conceptual
designing of the SIS. In the life cycle of any SIS, the
conceptual stage is an area of intensive modeling of the
tasks being solved.

2. I-processors are intended for experimenting with tasks
for which finding the solution is problematic without
the explicit real-time access to the personal experience
and/or collective experience and/or models of useful
experience.

3. During its activity, an [-processor interprets tasks as
precedents and interacts with experience units similar to
with models of precedents.

4. The real time work of any I-processor is accompa-
nied by QA-reasoning, and its models are registered in
QA-memory of the toolkit WIQA.

5. QA-reasoning is used by I-processors for creating
QA-models of tasks in different forms, including their
versions as QA-programs.

6. The use of QA-reasoning in interactions of I-processors
with QA-programs is implemented in the pseudo-code
language LWIQA. The knowledge and effective use
of this language by I-processor is a very important
feature.

VOLUME 1, 2013

7. In a general case, the activity of I-processor is similar
to the experimental activity of the designer who creates
the QA-model of the task for experimenting with the
prototype of its solution. In such experimental work
with the tasks, I-processor can use QA-modeling and
QA-programming.

As stated above, the use of QA-programs by I-processor for
experimenting with tasks is the most essential of its features.
For this reason, we created the library of the specialized
QA-programs, which provides some versions of such exper-
imenting. This library includes a number of QA-techniques
for cognitive task analysis, decision-making and typical pro-
cedures of estimation.

In WIQA, fulfilling the role of “I-processor” is automated
with the use of computer methods (K-processor) and a set
of methods that includes rules of behavior and specialized
programs. From this point of view, the WIQA is a special-
ized processor of the question answer type (QA-processor)
that supports experiential interactions between I-processors
and K-processors during the collaborative designing of SISs.
Combining the named processors is schematically presented
in Fig. 13.

Collaborative development environmetr

i human

questions

I-processor

answers

\ J =

computer
K-processor

“questions™

QA- processor

“answers”

FIGURE 13. Interactions of I-processor with QA-processor.

The scheme of the processors allows separating this work
with QA-reasoning in the described versions of their use from
the designer’s activity in playing the other roles supported by
the K-processor.

It is necessary to note that our materialization of
I-processor implements by means of WIQA, but it is our
solution. In principle, the requirements to I-processor can be
implemented on the basis of instrumental methods that are
distinct from the toolkit WIQA.

Vill. COLLABORATIVE ACTIVITY OF DESIGNERS
Conceptual designing of SIS is a collaborative activity of
designers working in coordination. Typical units of such an
activity are the workflows, any of which can be simulated
with the empirical approach. In this case, experiments will be
fulfilled collaboratively by the group of designers, while play-
ing the roles of I-processors. For QA-programming of work-
flows, the specialized subset of operators has been included
in the language LWIQA The generalized scheme of the
collaborative actions of the designers is presented in
Fig. 14.

501

IEEE Access

practical innovations : open solutions P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

Controlling of

assignments
Organizational ~
structure [Kanban
. J X
K* 7% Step 1 Step_2 :
G, Zy |
Lee- Dn Lo Zy Queue Done Queue Done |
—T— Du T Zn T
b———n, L ——z. P F |
| B D21 Lew- ZZI Dl l
Lo Dx Lo Zy :
== DZq ——— Zzn T
Yo Z |
Lﬁ_@ D, ——% 7z, | [D: ,
[-_- DvZ _I|; Zp] |
=D || = i
Team - Tasks '

T
Subsystem of
mterruption

FIGURE 14. Scheme of collaborative activity of designers.

In this scheme, the subsystem ‘““‘Organizational structure”
supports the real-time assigning of tasks to members of
the designer team. The copy of the team model (K*, {Gy},
{Dys}), which specifies groups {Gy} of designers Dy}, can be
uploaded in QA-memory in the form presented in Fig. 3.

The group manager uses the subsystem ‘““Controlling of
assignments” for binding any assignment with the planned
time of its fulfillment by the designer who is responsible for
the assigned task. Subsystem ‘“Kanban’ [25] automatically
reflects the steps of the workflow execution with the help of
visualizing the current state of the queues of the tasks; this
approach helps to control the process of designing.

Pseudo-code programming of workflows is based on using
the library of workflow patterns [22]. Coding the units of
this library illustrates the example of the workflow pattern
“Simple Merge.” This pattern is described by the statement:
The convergence of two or more branches into a single sub-
sequent branch such that each enablement of an incoming
branch results in the thread of control being passed to the
subsequent branch).

For the three tasks Z1, Z2, and Z3, this pattern has the
following view:

0Q.3.5 PROCEDURE &Simple_Merge&// index name are
inherited also but from library of pattern
Q 3.5.1SET &out&k, 4; &ins[0]&, 1; &ins[l]&, 2; &

502

outgroup[0] &, 1; &outgroup[l]&, 2; &cnt&k, O

0352 LABEL &Li1&

0 3.5.3 SEIZE &outs[&cnt& &, &outgroup[¢&]&

0 354 INC &cnt&

Q3.5 5TESTL, &cnt&, &ins&.length &L1&

03.5.6 LABEL &L2_1&

Q 3.5.7 SET &cnt&, 0;

0358 LABEL &I1.2&

Q 3.5.9 TEST E, &ins[¢&]&, &ins[&cnt& [&.state,
DONE &L3&

0 3.5.10 INC &cnt&

0 3.5.11 TEST L, ¢&, &ins&.length &L2_1&

0 3.5.12 TRANSFER &L2&

0 3.5.13 LABEL &L3&

Q 3.5.14 QUEUE &out&, TRUE

0 3.5.15 SET &ins[&cnt&] &.state, WAITING

0 3.5.16 TRANSFER &L2_1&

0 3.5.17 ENDPROC &Edit_Assignment&

In the discussed case, the queues with which the designer
works is expediently interpreted as a special type of program
(M-programs), which manages the activity of the designer.
Any unit of the queue in the corresponding M-program
includes the names of the corresponding task and attributes
that specifying the conditions in which this work with this
task can be begun or interrupted. Any unit of such a queue is

VOLUME 1, 2013

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

IEEE Access

practical innovations : open solutions

interpreted as an operator of an M-program. The interaction
of the I-processor with M-programs is figuratively presented
in Fig. 15.

-processor

I
L

o

Kanban sub-system

>
M!-program M*-program

System of interruption

Means of QA-programming

FIGURE 15. Interactions of I-processor with M-programs.

There is a possibility of using two types of M-programs
in the WIQA-environment. The first type M! provides
the pseudo-parallel solving of tasks (QA-programs) by
I-processor when any of the tasks can be interrupted by
I-processor or by external reasons in the process of obtaining
its solution. Such an opportunity is supported by the plug-in
“System of interruption.”

Any M?-program manages the execution of tasks by the
specific I-processor in the workflows, which are processed
collectively with the use of other means presented in Fig. 14.

IX. CONCLUSION

The approach described in this paper suggests a system of
methods that simplify the complexity of designers’ interac-
tions with project tasks in the conceptual designing of an SIS.
The simplification is caused by using, in the designers’ activ-
ity, useful analogies with this work of scientists when con-
ducting experiments. Emulating scientists is accomplished
by designers while investigating their own behavior in the
processes of obtaining task solutions. Moreover, they sim-
ulate such behavior with the help of pseudo-code programs
that describe the plans for experimentation. Thus, designers
investigate the programmed plans of the experiments that
they prepare, and they conduct and describe the results in
understandable and checkable forms, for later reuse.

In the experiments, the investigated behavioral units are
modeled as precedents. Such a form for a human activity
is natural because the intellectual processing of precedents
comprises the base of the human experience. In experimenta-
tion, the designers evolve accessible experience by using real-
time interactions with the current state. This feature has found
normative specifications in the role of “intellectual proces-
sor,” which is played by designers and is being supported
by the toolkit WIQA. In the collaborative way-of-working,
this aspect can be used in addition to any other aspect
of the technology that is applied in the conceptual design
process.

This toolkit opens the possibility for the separate execution
of any operator by the designer playing the role of the intellec-
tual processor. Before and after the execution of any operator

VOLUME 1, 2013

of any QA-program, the designer can check or investigate its
preconditions and post-conditions. Moreover, the investigated
operator can be changed and evolved syntactically as well
as semantically, for example, with the help of additional
attributes.

Debugged QA-programs are the source of resources of
the M- and P-types, which promotes the simplification of
the complexity that is involved in their reuse. The possibil-
ity of experimenting is supported by the special library of
QA-programs destined for cognitive task analysis, problem-
solving and decision-making included in the named toolkit.
Suggested means are used in one project organization in
creating a family of SISs.

REFERENCES

[1] K. E. Emam and A. G. Koru, “A replicated survey of it software project
failures,” IEEE Softw., vol. 25, no. 5, pp. 84-90, Sep. 2008.

[2] I Jacobson, P.-W. Ng, P. McMahon, I. Spence, and S. Lidman, “The
essence of software engineering: The SEMAT kernel,” ACM Queue,
vol. 10, no. 10, pp. 1-12, Oct. 2012.

[3] M. Li and P. Vitanui, An Introduction to Kolmogorov Complexity and Its
Applications, 3rd ed. New York, NY, USA: Springer-Verlag, 2008.

[4] P. Sosnin, “Conceptual solution of the tasks in designing the software
intensive systems,” in Proc. MELECON, May 2008, pp. 293-298.

[5] J. M. Pattit and D. Wilemon, “Creating high-performing software
development teams,” R&D Manag., vol. 35, no. 4, pp. 375-393,
Sep. 2005.

[6] Y. Cho, “The state of the art of action learning research,” Adv. Develop.
Human Resour., vol. 12, no. 2, pp. 163-180, Apr. 2010.

[71 Managing for the Sustained Success of an Organization—A Quality Man-
agement Approach, Standard ISO 9004-2009, 2009.

[8] P. Borges, R. J. Machado, and P. Ribeiro, ‘“Mapping RUP roles
to small software development teams,” in Proc. ICSSP, Jun. 2012,
pp. 190-199.

[9] P. Sosnin, “Experiential human-computer interaction in collaborative
designing of software intensive systems,” in Proc. 11th Int. Conf. Softw.
Methodol. Tech., Oct. 2012, pp. 180-197.

[10] F. Karray, M. Alemzadeh, J. A. Saleh, and M. N. Arab, ‘“Human-computer

interaction: Overview on state of the art,” Smart Sens. Intell. Syst., vol. 1,

no. 1, pp. 138-159, Jun. 2008.

1. Jacobson, P.-W. Ng, and I. Spence, ‘“Enough of processes-let’s do prac-

tices,” J. Object Technol., vol. 6, no. 6, pp. 41-67, Jul./Aug. 2007.

C. Cares, X. Franch, and E. Mayol, ‘“Perspectives about paradigms in

software engineering,” in Proc. 2nd Int. Workshop Philisophiocal Found.

Inf. Syst. Eng., 2006, pp. 737-744.

[13] D. R. Jeffery and L. Scott, “Has twenty-five years of empirical software
engineering made a difference,” in Proc. 2nd Asia-Pacific Softw. Eng.
Conf., 2002, pp. 539-549.

[14] D.I. K. Sjoberg, T. Dyba, and M. Jorgensen, ““The future of empirical meth-
ods in software engineering research,” in Proc. IEEE Workshop Future
Softw. Eng., May 2007, pp. 358-378.

[15] V. R. Basili, M. Lindvall, and P. Costa, “Implementing the experience
factory concepts as a set of experience bases,” in Proc. SEKE, 2001,
pp. 102-109.

[16] P. H. Southekal and G. Levin, “Formulation and empirical validation of a
gqm based measurement framework,” in Proc. 11th Int. Symp. Empirical
Softw. Eng. Meas., Sep. 2011, pp. 404—413.

[17] S. Xu and V. Rajlich, “Dialog-based protocol: An empirical research
method for cognitive activity in software engineering,” in Proc. ACM/IEEE
Int. Symp. Empirical Softw. Eng., Nov. 2005, pp. 397-406.

[18] B. Webber and N. Webb, “Question answering,” in Handbook of Com-
putational Linguistics and Natural Language Processing. Oxford, U.K.:
Blackwells, Jun. 2010, pp. 630-655.

[19] S. Henninger, “Tool support for experience-based software development
methodologies,” Adv. Comput., vol. 59, no. 1, pp. 29-82, Jan. 2003.

[11

[12

503

IEEE Access

practical innovations : open solutions

P. Sosnin: Scientifically Experimental Approach to the Simulation of Designer Activity

[20]

[21]

[22]

[23]

[24]

[25]

504

(2013). IBM Rational Unified Process (RUP) [Online]. Available:
http://www-01.ibm.com/software/rational/rup/

M. Held and W. Blochinger, “Structured collaborative workflow
design,” Future Generat. Comput. Syst., vol. 25 no. 6, pp. 638-653,
Jun. 2009.

W. M. P. Van der Aalst and A. H. M. Hofstede, ‘““Workflow patterns put
into context,” Softw. Syst. Model, vol. 11, no. 3, pp. 319-323, Jul. 2012.
P. Sosnin, “Pseudo-code Programming of designer activity in development
of software intensive systems,” in Proc. 25th Int. Conf. Ind. Eng. Other
Appl. Appl. Intell. Syst., Jun. 2012, pp. 457-466.

G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schneider, and
S. Volkel, “Design guidelines for domain specific language,” in
Proc. 9th OOPSLA Workshop Domain-Specific Model., Oct. 2009,
pp. 7-13.

J. X. Wang, “Kanban: Align manufacturing flow with demand
pull,” in Chapter in the Book, Lean Manufacturing Business
Bottom-Line Based. Cleveland, OH, USA: CRC Press, 2010,
pp. 185-204.

PETR SOSNIN (M’04) was born in Ulyanovsk,
Russia, in 1945. He graduated from Ulyanovsk
State Technical University, Ulyanovsk, in 1968,
and the Doctoral degree from the Moscow Avia-
tion University, Moscow, Russia, in 2004. He is
the Head of the Computer Department, Ulyanovsk
State Technical University, since 1990. He is a
member of ACM and the Russian Association of
Artificial Intelligence.

He has more than 30 years of experience in the
domain of artificial intelligence in its applications to the computer aided
design of software intensive systems. He is the author of 11 books and more
than 250 scientific publications in Russian and English languages. He was a
Scientific Advisor in 20 Ph.D.-dissertations. His current research interests
include collaborative activity of designers in computerized technological
environments, modeling of professional experience, and human-computer
interactions in problem-solving. He is the Honored Specialist of High Edu-
cation in Russian Federation.

VOLUME 1, 2013

