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ABSTRACT The multilevel generalized assignment problem (MGAP) consists of minimizing the assign-
ment cost of a set of jobs to machines, each having associated therewith a capacity constraint. Each
machine can perform a job with different efficiency levels that entail different costs and amount of resources
required. The MGAP was introduced in the context of large manufacturing systems as a more general
variant of the well-known generalized assignment problem, where a single efficiency level is associated
with each machine. In this paper, we propose a branch-and-cut algorithm whose core is an exact separation
procedure for the multiple-choice knapsack polytope induced by the capacity constraints and single-level
execution constraints. A computational experience on a set of benchmark instances is reported, showing the
effectiveness of the proposed approach.

INDEX TERMS Generalized assignement problem, branch-and-cut, exact separation.

I. INTRODUCTION
Let M = {1, . . . ,m} be a set of machines and let N =
{1, . . . , n} be a set of jobs to be assigned to the machines
in M . Each machine i ∈ M can perform a job j ∈ N
with different efficiency levelswhich entail different costs and
different amount of resources required. Let K = {1, . . . , k}
be the set of the possible efficiency levels for each machine.
Let dijk be the amount of resource required by the machine i
to perform the job j at the efficiency level k and let cijk be the
cost of assigning the job j to the machine i with the efficiency
level k . Let ui be the capacity of the machine i ∈ M .
The MGAP is to find a minimum assignment cost of the

jobs N to the machines M satisfying the constraints that the
total amount of resources required by each machine i ∈ M
does not exceed its capacity ui and that an execution level
k ∈ K must be selected.

MGAP is a more general variant of the the well-known
Generalized Assignment Problem (GAP). In particular, a
GAP instance can be seen as aMGAP instance where |K | = 1
(just one possible execution level for each machine).

Because of its computational difficulty, GAP is a challeng-
ing integer programming problem, which stimulated a wide
interest among researchers. Different heuristic approaches
are presented in [2], [10], [20], [21], [23], [30]–[32]. The
best known solution for the large-scale instances are found
by the parallel ejection chain heuristic [2] and the path

relinking approach [31]. The polyhedral structure of the prob-
lem is studied in [12], [16], [17]. The most successfull exact
approaches are the Stabilized Branch-and-Price algorithm of
Pigatti et al. [26], where almost all the test instances with
up to 200 tasks were solved, the Cutting Plane algorithm of
Avella et al. [5] and the lagrangean-based Branch and Bound
algorithm of Posta et al. [28] solving to optimality several
previously unsolved instances.
The approach proposed in [5] is based on an exact sep-

aration procedure for the knapsack polytopes induced by
the capacity constraint defined for each machine, i.e. a sep-
aration procedure which either returns a separating hyper-
plane between a knapsack polytope and a given fractional
solution or concludes that the fractional solution is an inter-
nal point of the knapsack polytope. In our work we try to
generalize this approach by using an exact separation pro-
cedure for the multiple choice knapsack polytopes induced
by capacity and single-level constraints defined for each
machine.
Also the more general MGAP has been widely addressed

in literature.
Heuristic approaches for MGAP were proposed by

Laguna et al. [20], who reported on results for instances up
to 40 jobs, 4 machines and 4 efficiency levels, and French
and Wilson [13] who report on a computational experi-
ence on larger instances up to 200 jobs, 30 machines and
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5 efficiency levels. Both of these heuristics are are developed
from solution methods used for the GAP.

A Branch-and-Cut algorithm for the exact solution of the
MGAP was proposed by Osorio and Laguna [24] who solved
to optimality instances with up to 60 jobs, 30 machines and
2 levels. More recently, these results were outperformed by
the Branch-and-Price algorithm of Ceselli and Righini [9]
which was able to solve instances up to 400 jobs, 80 machines
and 5 levels.

The Ceselli and Righini branch-and-price algorithm is
based on a decomposition of theMGAP into amaster problem
and a pricing subproblem. The master is a set partitioning
problem, while the pricing is a multiple-choice knapsack
problem. Moreover it uses a branching strategy that is both
effective at improving the dual bound and compatible with
the combinatorial structure of the pricing subproblem. In this
way they solve instances up to 400 jobs, 80 machines and
4 levels. In our computational experience we also compared
our results with those returned by the Branch-and-Price algo-
rithm of Ceselli and Righini showing that our approach is
higly competitive.

In this paper we propose a reformulation of MGAP based
on an exact separation procedure for the multiple-choice
knapsack polytopes defined by the capacity and by the
single-level execution constraints. The separation procedure
is embedded in a Branch-and-Cut scheme and tested on
benchmark instances.

The remainder of the paper is organized as follows. In
Section II we report two examples of real-life application of
the MGAP in the context of large and medium size man-
ufacturing sistems. In Section III MGAP formulations are
described. In Section IV the exact knapsack separation pro-
cedure is outlined. In Section V we report on computational
experiments on benchmark instances.

II. REAL-LIFE APPLICATIONS
In this section we report two examples of real-life application
of the MGAP in the context of large and medium size man-
ufacturing sistems. The former was described in [15] where
firstly was introduced theMultilevel Generalized Assignment
problem; the latter is an application of MGAP in the clothing
industry described in [18].

Glover et al. [15] introduced MGAP in the context of
large manufacturing systems as an optimal lot sizing and
machine loading problem for multiple products. The lot sizing
and machine loading problem problem can be described as
follows:

- a set of products has to bemade in a single-stage process;
- each product can be made in a finite set of possible lot
sizes;

- all lots of any single product must be produced on the
same machine;

- the machines work in parallel and each machine can
produce only one product at a time;

- some machines may be able to product several (ar all) of
the products while others may be more specialized;

- each machine has a limited production capacity over the
planning horizon;

- the demand of each product is assumed to occur contun-
uously at a known constant rate.

The objective of the problem is to determine the optimal
product lot sizing and the optimal assignment of production
to machines with the aim of minimize the production and
inventory holding costs.
The second example is described in [18]. It is a task-

operator-machine assignment problem in clothing industry
where human operators, with a set of available machines,
perform tasks consisting of stitching various pieces of a cloth-
ing item. Execution times vary from one operator to another.
Each task requires a specific machine and must be assigned
to one and only one operator. Each machine can perform
several tasks although it is allotted at most one operator. An
operator is assigned to, at most, one machine. The aim is to
find a task-operator-machine assignment that minimizes the
total execution time. Secondary objectives, are to minimize
the deviation from perfect load balance among the operators,
to limit the inter-operator communication cost, the number of
machines and the number of operators. The author formulated
this problem as a MGAP and solved it by a fuzzy genetic
multiobjective optimization algorithm.
For a comprehensive survey on the real-life applications in

scheduling, timetabling, telecommunication, transportation,
product planning etc. of the GAP and its variants we refer
the reader to [22].

III. PROBLEM FORMULATION
Let xijk be a binary variable which is 1 if the job j ∈ N is
assigned to the machine i ∈ M at level k ∈ K , 0 otherwise.
Let K ′ = {0, 1, . . . , k} be the extended set of possible levels,
where 0 is a dummy level with zero resource consumption.
The Multilevel Generalized Assignment problem (MGAP)
can be formulated as:

min
∑
i∈M

∑
j∈N

∑
k∈K

cijkxijk (1)

∑
i∈M

∑
k∈K

xijk = 1, j ∈ N (2)∑
j∈N

∑
k∈K

dijkxijk ≤ ui, i ∈ M (3)

∑
k∈K ′

xijk = 1 i ∈ M , j ∈ N

xijk ∈ {0, 1} i ∈ M , j ∈ N , k ∈ K ′ (4)

where the assignment constraints (2) require that each job
j ∈ N is assigned to a machine i ∈ M with an efficiency level
k ∈ K . The capacity constraints (3) enforce the condition that
the amount of resources required by the jobs assigned to the
machine i ∈ M does not exceed its capacity ui. For each pair
(i, j) with i ∈ M and j ∈ N , the single-level constraints (4)
imposes that a single execution level can be selected (xij0 = 1
if job j is not assigned to the machine i).
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The single-level constraints (4) are redundant, as they are
implied by the Set Partitioning constraints (2). We use them
to tighten the formulation (1)-(4) by generating cutting planes
which are valid for the multiple-choice knapsack polytopes
PMKN (i) defined by the capacity and by the single-level con-
straints:

PMKN (i) = conv
({

x ∈ Bm×n×(k+1) :∑
j∈N

∑
k∈K ′

dijkxijk ≤ ui;

∑
k∈K ′

xijk = 1 j ∈ N
})

Using the multiple-choice knapsack polytopes PMKN (i),
MGAP can be reformulated as:

min
∑
i∈M

∑
j∈N

∑
k∈K

cijkxijk∑
i∈M

∑
k∈K

xijk = 1 j ∈ N (5)

x ∈ PMKN (i) i ∈ M (6)

xijk ∈ {0, 1} i ∈ M , j ∈ N , k ∈ K ′.

IV. EXACT MULTIPLE-CHOICE KNAPSACK SEPARATION
Given a polyhedron P ⊂ Rn and a point ȳ ∈ Rn, an exact
separation procedure for the polyhedron P is able to find
a separating hyperplane between P and ȳ, or to show that
ȳ ∈ P.

Following the research stream started by [1] with the
‘‘local cuts’’ for the TSP the rationale of the proposed tech-
nique is that spending more computation time in separa-
tion can lead to better results for the lower bound with a
positive gain in terms of computation time of Branch-and-
Cut algorithms. The approach based on ‘‘local cuts’’ has
been extended also to other IP problems. In particular in [4]
this approach has been successfully used to solve hard Set
Covering instances while in [14] and [6] local cuts based on
an exact separation procedure for the knapsack set with a
single continuous variable are proposed to solve general MIP
problems.

The exact separation problem for the knapsack poly-
tope was first studied by Boyd [8] and addressed also
in the more recent paper of Kaparis and Letchford
[19] on binary knapsack sets. Exact separation proce-
dures for the binary knapsack polytope were effectively
used in cutting plane algorithms for the Capacitated p-
median problem [7], for the Capacitated Facility Loca-
tion problem [3] and for the Generalized Assignment
problem [5].

In the following we describe an exact separation procedure
for the multiple-choice knapsack problem to compute the
lower bound given by the tighten formulation (5)-(6). Let i ∈
M and consider the corresponding multiple-choice knapsack

problem. Let

XMKN =
{
y ∈ Bn×(k+1) :∑
j∈N

∑
k∈K ′

ajkyjk ≤ u;

∑
k∈K ′

yjk = 1 j ∈ N
}

be the set of its feasible solutions and let PMKN =

conv(XMKN ) be the convex hull of XMKN .
Given a point ȳ ∈ [0, 1]n×(k+1), the separation problem to

find a separating hyperplane betweenPMKN and ȳ, or showing
that ȳ ∈ PMKN , amounts to solve the following LP problem:

θ = max
(α,β)

[
ȳTα − β

]
vTα ≤ β ∀v ∈ XMKN (7)

|α| = 1 (8)

α ≥ 0 (9)

where (8)-(9) are normalization constraints inbtroduced to
avoid unboundedness. Using the L1 norm we maximize the
ratio between the violation and the size of the support.

The separation LP (7)-(9) includes a huge number of con-
straints. A way to reduce it is to consider the polytope defined
by the fractional support of ȳ. In other words we consider the
reduced polytope

PMKN (ȳ) = {y ∈ PMKN : yi = 0 if ȳi = 0,

yi = 1 if ȳi = 1}

It is known that a separation hyperplane for PMKN exists
iff it exists for PMKN (ȳ). Obviously a lifting procedure (e.g.
Padberg [25] and Wolsey [29]) has to be used to convert the
valid inequalities of PMKN (ȳ) into valid inequalities of PMKN .
The reduced problem still contains an intractable number

of constraints and has to be solved by a row generation
approach.

A. ROW GENERATION PROCEDURE
A row generation procedure is an iterative procedure where,
at each iteration, a relaxed separation problem including only
a subset of the constraints (7) (i.e. the partial separation
problem) is considered. Let (ᾱ, β̄) be an optimal solution of
the partial separation problem:

- if all solutions h ∈ XMKN satisfy the inequality hT ᾱ ≤
β̄, then (ᾱ, β̄) is the optimal solution of the complete
separation problem too;

- otherwise a new inequality is added to the partial sepa-
ration problem and the procedure itarates.

The main steps of the row generation procedure are sum-
marized below.

1) ROW GENERATION PROCEDURE
Step1 Let U ⊂ XMKN be a subset of the feasible solutions

of the multiple-choice knapsack problem.

VOLUME 1, 2013 477



P. Avella et al.: Branch-and-Cut Algorithm for MGAP

Step2 Solve the partial separation LP over U :

θ = max
(α,β)

[ȳTα − β]

vTα ≤ β ∀v ∈ U

|α| = 1

α ≥ 0

Let (ᾱ, β̄) be its optimal solution.
Step 3 Solve the multiple-choice knapsack problem:

ζ = max
v
ᾱT v

v ∈ XMKN

Let v̄ be its optimal solution.
Step 4 If v̄T ᾱ > β̄ then set U = U ∪ {v̄} and go to Step 2.
Step 5 If v̄T ᾱ ≤ β̄ then (ᾱ, β̄) is the optimal solution of the

separation LP and the inequality ᾱT y ≤ β̄ is valid
for PMKN .

TABLE 1. Comparison with the Branch and Price.

TABLE 2. Comparison with the EKS lower bound.

The row generation procedure requires to solve a large
number of multiple-choice knapsack problems and using an
efficient algorithm at each iteration is crucial to the success
of the approach. In our computational experience we used a
modification of Pisinger’s MCKNAP algorithm [27] which
combines dynamic programming with bounding and reduc-
tion techniques.

V. COMPUTATIONAL EXPERIMENTS
The exact separation procedure has been embedded into
the Branch-and-Cut framework provided by ILOG CPLEX
Callable Library 12.2 ([11]) to evaluate its effectiveness in
reformulatingMGAP.All the experiments were carried out on
a Personal Computer with a Pentium(R)M processor 1.2 GHz
and 504 MB of RAM. We compared our results with those
returned by the Branch-and-Price algorithm of Ceselli and
Righini [9]. In addition, we implemented for the MGAP also
the exact knapsack separation proposed in [5] for the GAP
and we compared the lower bounds provided by an exact
separation procedure for the binary knapsackwith those given
by the multiple-choice knapsack exact separation.
The Branch-and-Price algorithm was tested on randomly

generated instances of three types (C, D, E). The instances of
type Cwere easily solved by CPLEX in a few seconds. On the
other hand the instances of type D turned out to be too hard
for our approach, so we focused on the instances of type E.
In Table 1 we report, for each group of instances with the

same dimensions (m: number of machines; n: number of jobs;
k: number of levels) the average time required by the the
Branch-and-Price of Ceselli and Righini and by our Branch-
and-Cut algorithm, respectively. The table clearly shows that
our approach is highly competitive with Branch-and-Price.
Finally, in Table 2 we report on the percentage of closed

gap by exact knapsack separation (column %CGAPEKN )
and by exact multiple-choice knapsack separation (column
%CGAPEMCKN ), respectively. The percentage of closed gap
is computed as LB−LBLP

OPT−LBLP
·100 where LBLP is the value of the

LP relaxation, LB is the lower bound and OPT is the value
of the optimal solution. The values reported in Table 2 are
the average values for each group of instances with the same
dimensions.
It can be easily seen that the lower bounds returned by

knapsack separation are very close to those provided by
multiple-choice knapsack separation, so replacing multiple-
choice knapsack with knapsack separation can be a viable
approach, worth to be further investigated.
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