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ABSTRACT This paper suggests a real-valued sparse representation method using a unitary transformation
that can convert complex-valuedmanifoldmatrices from uniform circular array into real ones. Because of this
transformation, the computational complexity is modified. Simulation results confirmed the effectiveness of
the proposed method with a circular array radar.

INDEX TERMS Angle of arrival (AOA), array signal processing, uniform circular array (UCA).

I. INTRODUCTION
Source localization has been an active research field due to
its fundamental role in many signal processing areas ranging
from radar and sonar to acoustic tracking. In array signal pro-
cessing, where arrays of sensors are typically employed for
the sampling of the spatial field, the problem of source local-
ization is usually referred to as direction-of-arrival (DOA) or
angle-of-arrival (AOA) estimation. The classical array pro-
cessing methods can be divided into two main categories,
the parametric methods which are based on the maximum
likelihood paradigm and the spectral based approaches often
referred to as non-parametric approaches [1]. Among them
the subspace-based method of multiple signal classification
(MUSIC) stands as a powerful technique to the problem of
spectral analysis and system identification. However, MUSIC
results in decreased performance when the incoming sources
are correlated or coherent [1].

Recently, a number of sparse representation methods have
emerged [2]–[5], which not only greatly improve the AOA
resolution performance, but also can be applied to small
number of samples and highly correlated (or coherent) sig-
nals. The concept of spatial sparsity for DOA estimation
was first introduced in [2], where it was shown that the
source localization problem can be cast as a sparse recov-
ery problem in a redundant dictionary using the `1-SVD
method. Under certain assumptions `1-SVD can achieve
super-resolution even in the coherent sources scenario. Both
the subspace-type methods and the sparse representation
methods generally require complex computations: subspace-
type methods need complex computations when performing

the eigen-decomposition and DOA searching, while sparse
representation methods require complex linear programming.
Many studies have been made to reduce the computational
complexity of the calculations in this manner [5]–[10].
To make the subspace-based algorithm real-valued, Huarng
and Yeh [6] proposed a unitary transformation method
which, however, only applies to uniform linear array (ULA).
It is known that UCA has several advantages over ULA, for
example, using UCA the elevation angle and azimuth over
360◦ can be obtained. To abtain real-valued DOA estimation
algorithms in the circular array scenario [7] developed this
method for the case of UCA.
In this paper, we will present a real-valued sparse repre-

sentation AOA estimation method, which will significantly
reduce the computational complexity at least by a factor of
four without sacrificing its accuracy.
This paper is organized as follows: First, the UCA signal

model is presented. Next, we introduced Real-valued trans-
formation with UCA in Section III. Our real-valued sparse
representation method for DOA estimation is developed in
Section IV. In Section V, our modified results of simulation
for circular array are demonstrated. Eventually, Section VI
concludes these findings.

II. SIGNAL MODEL
Consider a pulse Doppler radar consists of uniform circular
array (UCA) situated on an airborne platform as shown in
figure 1. The circular array consists of M antenna elements,
is used to transmit and receive at any one time. The antennas
are distributed uniformly over a circle with radius r .
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FIGURE 1. Geometry of airborne radar with uniform circular array.

Suppose the airborne radar transmits a burst of pulses in
a coherent process interval. The N (N < M) narrow band
far field signals impinging on the UCA of M elements from
directions (θ1, φ1), . . . , (θN , φN ), the received signal at the
antenna array can be described as

x(t) =
N∑
n=1

a(θn, φn)sn(t)+ n(t) = As(t)+ n(t) (1)

where x(t) is the element space data matrix, s(t) is the source
matrix and n(t) is the noise matrix. The noise is modeled
as a stationary second-order ergodic, zero-mean spatially
and temporally white circular complex Gaussian process. A
is the array manifold matrix of size M × N , a(θn, φn) =
[a1(θn, φn), a2(θn, φn), . . . , aM (θn, φn)]T is the complex
array response for a source impinging from direction (θn φn),
with

am(θnφn) = exp((j2πr/λ)cos(φn − γm)sin(θn)) (2)

for n = 1, 2, . . . ,N . Here γm = 2πm/M , m = 0, 1, . . . ,
M−1 is the sensor location, the elevation angle θ is measured
down from the z-axis and φ is the azimuth angle measured
counterclockwise from the x-axis. Since θ = 90◦ is fixed
here, the UCA array manifold depends on the azimuth angle
φ only, namely am(φn).
The covariance matrix of the array response is

Rx = E[x(t)xH (t)] = ARsAH + σ 2IM (3)

where Rs = E[s(t)sH (t)] is the covariance matrix of the
incident signals, I is aM×M identity matrix and (·)H denotes
conjugate transpose.

III. REAL-VALUED TRANSFORMATION WITH UCA
In this section, we will introduce real-valued transformation.
Without loss of generality, let us assume that M is even. Let
Ũ be an M ×M matrix defined by

Ũ =
1
√
2

[
I J
jJ −jI

]

where I is a M/2 × M/2 identity matrix, J is a M/2 ×
M/2 permutation matrix with all its anti-diagonal elements
equaling l. With the unitary matrix Ũ we have the following
theorem.
Theorem 1: For any M × M centro-Hermitian matrix

H , ŨHŨ
H
is real and symmetric.

Proof: See [6].
To obtain a centro-Hermitian matrix Rx , [7] proposed a

unitary transformation method in element space.
Let unitary matrix

Û =
[
I 0
0 J

]
Then we have

J (ÛRxÛH )
∗
J = ÛRxÛH (4)

where (·)∗ represents complex conjugation and ÛRxÛH is a
centro-Hermitian matrix. Let unitary matrix

U = ŨÛ =
1
√
2

[
I I
jJ −jJ

]
(5)

and left multiply matrix U to both sides of (1), we have

y(t) = As(t)+ n(t) (6)

where n(t) is a noise vector like n(t).
Since the sensors are centrosymmetric, we have γM/2+m =

γm + π and then

am(φn) = Ja∗M/2+m(φn) m = 1, 2, . . . ,M/2 (7)

Reorder these sensors as [1, 2, . . . ,M/2M , . . . ,M/2 +
2,M/2+ 1], the direction vector a(φn) can be rewritten as

a(φn) = [ a1(φn), a2(φn), . . . , aM/2(φn),

aM (φn), . . . , aM/2+2(φn), aM/2+1(φn)]T (8)

and a(φn) = Ua(φn) is a real vector given by

a(φn) =
√
2[cos(2πr/λ)cosφn),

cos((2πr/λ)cos(2π (1
/
M )−φn)), . . . ,

cos((2πr/λ)cos(2π (M
/
2)− 1)

/
M−φn)),

−sin((2πr
/
λ)cos(2π (M

/
2)− 1)

/
M−φn)), . . . ,

−sin((2πr
/
λ)cos(2π (1

/
M )−φn)),

−sin(2πr
/
λ)cosφn)]

T (9)

The covariance matrix of the Eq. 6 is

Ry = E[y(t)yH (t)] = Ũ (ÛRxÛH )ŨH (10)

Practically, the covariance matrix is, computed from finite
samples. Then

R̂y =
1
K

K∑
k=1

y(k)yH (k) =Ũ (Û R̂xÛH )ŨH (11)
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With Theorem 1 and Eq. 5, we are able to form areal symmet-
ric transformed covariance matrix R̂y as

R̂y =
1
2
Ũ [Û R̂xÛH

+ J (Û R̂xÛH )
∗
J ]ŨH (12)

where FB averaging [11] is used to guarantee the validity of
the unitary transformation in practice.

Then, R̂y could be summarized to

R̂y = AS + σ 2IM . (13)

IV. REAL-VALUED SPARSE REPRESENTATION DOA
ESTIMATION
In the literature, the existing sparse representation DOA esti-
mation methods generally require a complex linear program-
ming. For example the computational complexity of `1-SVD
is O((N × Nθ )3). It is higher than the cost of MUSIC, where
the main complexity is in the subspace decomposition of
the covariance matrix, which is O(M3) [2]. It was realized
that complex multiplication costs four times as much as that
of real multiplication [5], [6], and therefore a considerable
amount of computations can be saved if we transform the
complex-valued into a real-valued one. This motivates us to
propose a simple real valued sparse representation method in
the following part of the section. This sparse representation
method is exactly the same as the `1-SVD method proposed
in [2]. However, since we use the real manifold a(φ) instead
of a(φ), the computational complexity will be decreased by a
factor of at least four.

The eigen-decomposition of R̂y can be written in the form
of

R̂y = Q̂s3̂sQ̂Hs + Q̂n3̂nQ̂Hn (14)

Where Q̂sεRM×N is a real matrix whose columns are the
eigenvectors corresponding to the N largest eigenvalues,
while the columns of Q̂nεRM×(M−N ) are the eigenvectors
corresponding to the M − N smallest eigenvalues.

To derive a reduced M × N dimensional signal space, we
introduce a new matrix R̂

EV
y = R̂yQs. In addition, let SEV =

SQs and NEV
= σ 2Qs to obtain

R̂
EV
y = ASEV + NEV (15)

In order to cast the AOA estimation problem as a sparse
representation one, let � denote the set of possible locations,
and let θ be a generic location parameter. Also, let {θi}

N
θ̂

i=1
denote a grid that covers �. If the grid is fine enough such
that the true AOAs lie on (or, practically, close to) the grid,
we can use the following nonparametric model for R̂

EV
y :

R̂
EV
y = A

θ̂
S
θ̂
+ NEV (16)

where S
θ̂
is an N

θ̂
× N matrix, whose the ith row is nonzero

and corresponds to the signal impinging on the array from a
possible source at θ̂i.

In order to impose sparsity in S
θ̂
spatially (in term of the

rows, rather than the columns), we try to find the spatial

spectrum of S
θ̂
by minimizing the following optimization

problem:

minS
θ̂

∥∥∥R̂EVy − Aθ̂Sθ̂∥∥∥2F + µ ∥∥Sθ̂∥∥2,1 (17)

Where µ is a regularization parameter [2]. Moreover, it is
convenient to consider the constrained optimization problem
instead:

minS
θ̂

∥∥S
θ̂

∥∥
2,1 , subject to

∥∥∥R̂EVy − Aθ̂Sθ̂∥∥∥2F ≤ ε (18)

Note that the way to choose ε has been described in [2].
In particular, if the noise n is i.i.d Gaussian, ‖nQs‖22 has
approximately a χ2 distribution with M degrees of freedom
upon normalization by variance σ 2. Then, the upper value of
‖nQs‖2 with a 99% confidence interval is used as a choice
for ε.

V. SIMULATION RESULTS
The simulation results in this section illustrate the perfor-
mance of our proposed method using UCA. Since the com-
putation reduction is obvious due to the real-valued transfor-
mation, we only represent the accuracy evaluation of AOA
estimation in this section.
We compared our method with UCA to `1-SVD with ULA

[2] and `1-SVD with UCA. For comparison of the method
we suggested with UCA to `1-SVD with ULA [2] and that
with UCA, we showed our system model for UCA and ULA
in Fig. 2. In this figure r and d represent radius and distance
(spacing between the linear array elements) respectively, and
both are equivalent to λ/2.

FIGURE 2. System model for the UCA and ULA assumed in this letter.

In this experiment we considered two zero mean narrow-
band far-field sources with equal power levels arriving on the
arrays from directions 68.2◦ and 87.5◦. Initially, the number
of time snapshots was K = 50. The additive noise at the
sensors was white gaussian and the noise level varied from
0 dB to 30 dB with a step size of 5 dB.
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Fig. 3 illustrates the average RMSE (root mean-squared
error) of the DOA estimation problem against the noise level
for the K= 5 snapshots. The results have been averaged over
200 trials.

Fig. 4 shows the RMSE of DOA estimate against the
number of snapshots computed via 200 runs for each snapshot
and SNR = 10 dB for each run.

Evidently, our real-valued method with UCA performs
better than the original `1-SVD method with ULA and UCA.

FIGURE 3. Average RMSE of AOA estimation against SNR(dB) with 200
runs for K = 50.

FIGURE 4. Average RMSE of AOA estimation against the number of
snapshots with 200 runs for SNR = 10(dB).

VI. CONCLUSION
In this paper, we proposed a real-valued sparse representation
method for AOA estimation with UCA. We converted the
complex optimization problem into a real one by applying a
unitary transformation and subsequently reduced the compu-
tational complexity at a considerable rate.

Simulations validate the effectiveness of our algorithm
with UCA and suggest that the performance of the AOA

estimation is more modified than the original `1-SVDmethod
with ULA.
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