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ABSTRACT This paper provides the design and implementation of an L1-optimal control of a quadrotor
unmanned aerial vehicle (UAV). The quadrotor UAV is an underactuated rigid body with four propellers
that generate forces along the rotor axes. These four forces are used to achieve asymptotic tracking of four
outputs, namely the position of the center of mass of the UAV and the heading. With perfect knowledge
of plant parameters and no measurement noise, the magnitudes of the errors are shown to exponentially
converge to zero. In the case of parametric uncertainty and measurement noise, the controller yields an
exponential decrease of the magnitude of the errors in an L1-optimal sense. In other words, the controller is
designed so that it minimizes the L∞-gain of the plant with respect to disturbances. The performance of the
controller is evaluated in experiments and compared with that of a related robust nonlinear controller in the
literature. The experimental data shows that the proposed controller rejects persistent disturbances, which is
quantified by a very small magnitude of the mean error.

INDEX TERMS Robust control, optimal control, quadrotor, feedback linearization, unmanned aerial vehicle.

I. INTRODUCTION
Quadrotors have become increasingly popular in recent years
due to their ability to hover and maneuver in tight spaces.
Stabilizing the quadrotor in its configuration space SE(3) is
an interesting and challenging control problem. The challenge
arises due to the availability of four control inputs to stabi-
lize the system that lives in a six dimensional configuration
space and possesses coupled, nonlinear and unstable open-
loop dynamics.

The goal of most quadrotor control schemes is either to
stabilize the center of mass (CoM) at a desired location or
for the CoM to track a desired trajectory. Practical imple-
mentation of these nonlinear control schemes for robotic
systems requires one to take into consideration the issues of
robustness to parameter uncertainty, external disturbances,
and sensor noise. It is well-known that the equations of
motion of a quadrotor can be partially linearized [1] and
decoupled by appropriate nonlinear feedback. known as the
method of partial feedback linearization. It is very useful
from a control viewpoint, since a part of the complex highly
coupled nonlinear dynamics of the quadrotor are replaced by
a simple set of second-order linear differential equations. The
partial feedback linearization results in a controller that has
the same order of complexity as the model of the system

being controlled. Good control performance requires a high
sampling rate at which the desired control can be computed.
A desire to maximize quadrotor payloads and performance
results in a constraint on computational power available for
autonomous control. It is highly advantageous therefore to
consider nonlinear feedback based upon simplified models
and to quantify the performance of such controllers.
In this paper the partial feedback linearization method

is applied to the nominal model. A linear compensator for
the resulting partial linear model is then designed using the
method of stable factorizations. The advantages of this control
scheme can be summarized as follows.

• Any linear compensator that stabilizes a linear model
can be specified using the method of stable factoriza-
tion. As a consequence, one is able to conclude whether
a compensator designed based on the linear model is
able to stabilize the ‘‘true’’ nonlinear system as well,
provided the deviation between the modeled and the
actual plant satisfies certain bounds.

• If the deviation of the model from the plant does not
exceed themaximum allowable, it is possible to achieve
corresponding reductions in the effects on the closed-
loop performance of the parameter uncertainty, mea-
surement noise, available computational power, etc.
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The simplest control method involves linearization of the
quadrotor dynamics around the hover state and then using
various linear control methods to stabilize the system, such
as standard SISO tools in [2], or PID and LQR methods
in [3]. In [4] the authors use a sliding mode control method
to stabilize the linearized dynamics. The work includes a rate
limited PID for control of the height. Controllers designed
using such linear methods may be used to track slowmotions.
However, nonlinear control methods are needed to achieve
higher performance and to execute more aggressive motions.

The quadrotor dynamics has a cascade structure. The four
motor inputs are mapped to three independent torques acting
on the quadrotor frame and one thrust force. The torque
inputs directly control the orientation dynamics. The orien-
tation then affects the thrust vector direction which drives the
translation dynamics. This cascade structure can be elegantly
exploited by using backstepping control techniques [5], [6] or
inner-loop/outer-loop approaches [2], [3], [7]. Thework in [5]
modifies the backstepping approach by using sliding mode
control for one of the cascaded variables, which introduces
some robustness to disturbances.

While the position of the CoM is almost always expressed
in cartesian coordinates, selection of a representation for the
orientation is an important step. All the papers mentioned so
far use an Euler-angle parametrization, which suffers from
singularities. To address this, the work in [8] represents
the orientation using the rotation matrix itself. This leads
to an orientation tracking controller that is almost globally
attractive. The desired orientation and thrust magnitude are
designed such that the translation dynamics are linear. The
paper gives a good summary of the various representations.
The samemethodwas implemented in the work of [9] in order
to achieve aggressive motions of a quadrotor.

Feedback linearization [10] is often employed in order to
facilitate the use of linear control methods over a large region
of the state space. The choice for the outputs or states to
linearizemay differ. In [11] the position and heading are taken
as the outputs to be linearized whereas in [12] the height and
three Euler angles are linearized. The control inputs to the
linearized dynamics are selected as PD control.

Most nonlinear control methods are highly dependent
on the exact knowledge of the system parameters in
order to achieve asymptotic tracking. Various researchers
have attempted to address this issue using robust control
[13]–[15] or adaptive control [16] and even a combination of
the two [17]. The performance recovery generally trades off
asymptotic stability with uniform ultimate boundedness.

The control method proposed in this paper also uses the
idea of controlling the thrust direction to achieve position
control. However, the control of orientation is prone to per-
sistent disturbances stemming from uncertain inertial param-
eters, misalignment of blade axes, discrepancy between the
measured quadrotor frame and the actual frame. The rejection
of such persistent disturbances is the primary motivation for
our control design. Methods addressing this issue were first
developed in [18]–[21].

The method in [21] elegantly determines the optimal lin-
ear controller that stabilizes a given plant while rejecting
persistent disturbances. The method relies on the stable fac-
torization approach [22] which is applicable only to linear
plants. This precludes the methods used in [8] to stabilize the
quadrotor since the plant remains nonlinear. The key contri-
bution of this work is the parametrization of the orientation
and subsequent partial feedback linearization of the dynamics
which paves the way for applying the L1 optimal robust linear
compensator design for nonlinear robotic systems similar
to [20]. Furthermore, we have implemented this controller on
a quadrotor in LARS1 at the University of Texas at Dallas,
and we have compared the performance of our controller with
that in [15]. The design of the robust controller in [15] is not
best suited for rejecting persistent disturbances, whereas our
controller is. The results show that our controller can handle
the effect of modeling errors such as blade misalignment and
shifted center of mass location better than that in [15].

II. KINEMATICS AND DYNAMICS OF THE QUADROTOR
In the following few paragraphs, we derive the kinematic and
dynamic differential equations of motion of the quadrotor,
culminating in equations (5). The reader who is familiar with
the development may skip to these equations immediately
without losing any generality. The quadrotor is a simple
mechanical system with configuration space Q = SE(3) =
R3 n SO(3), the semidirect product of the three-dimensional
Euclidean space and the special orthogonal group. The first
factor in the semidirect product represents the position of
the center of mass of the quadrotor in the world frame. We
select the center of mass as the origin of the body-fixed frame
6 : {o, x, y, z} and denote the vector from the origin of the
inertial frame 60 : {o0, x0, y0, z0} to o by p ∈ R3. Ideally,
the vectors {x, y} span the plane parallel to the rotor axes and
z is orthogonal to this plane. We denote by R ∈ SO(3), the
orientation of the quadrotor body-fixed frame with respect to
the world frame. The relevant axes and forces are illustrated
on the Quanser Qball [23] in Figure 1. These four forces,
generated by four rotors and propellers, induce a total thrust f ,
and a net torque τ = {τx , τy, τz} around the three body axes
{x, y, z}. In addition to these definitions, we will denote the
linear and angular velocities of the quadrotor by the pair
(v, �) ∈ R3 n so(3). Under the vector space isomorphism
so(3) ' R3, the skew-symmetric matrix � will be identified
with the 3-vectorω. Finally, we denote the (identical) distance
from the center of mass of the quadrotor to the rotor axes by
L, the total mass by m, and the inertia tensor represented in
the body-fixed frame by J = diag(Jp, Jr , Jy).

Since the configuration space of the quadrotor is
Q = SE(3), it can be modeled as an underactuated rigid body.
The velocity of the quadrotor is an element of the tangent
space T(p,R)R3 n SO(3). As a Lie group, the tangent space
of R3 n SO(3) can be identified with the tangent space at the
identity by the left or right translation to the identity. Since the

1(L)aboratory for (A)utonomous (R)obotics and (S)ystems

80 VOLUME 1, 2013



A. C. SATICI et al.: Robust Optimal Control of Quadrotor UAVs

FIGURE 1. Quanser Qball model.

rotational equations of motion are easier when expressed
in the body-fixed frame, we choose to left translate to the
identity, which yields the body-fixed angular velocity

� = RT Ṙ (1)

Since the tangent space of R3 is again R3, the kinematics of
the translational motion is simply v = ṗ.
The unforced translational dynamics of the quadrotor is the

same as the dynamics of a particle (center of mass) under
the action of the gravitational potential field. The total thrust
f =

∑4
i=1 fi acts on the acceleration of this particle in the

direction of the z-axis.
The unforced rotational dynamics of the quadrotor are

given by the Lie-Poisson equations of motion of so(3)∗ rel-
ative to the rigid body bracket. Following [24], we define the
angular momentum in the body frame 5 := J� whence the
kinetic energy function on so(3)∗ becomes

K (5) =
1
2
5T J−15 (2)

Define another set of functionsFi(5) := 5i, i = {1, 2, 3}. Set
F to be the vector-valued function with components Fi and
apply the Lie-Poisson equations,

Ḟ = {F,K } (3a)

5̇ = −5 · (∇F(5)×∇K (5)) (3b)

= 5× J−15 (3c)

Expressing these equations in body angular velocities and
including the body torques applied by the rotors,

J ω̇ = Jω × ω + τ (4)

In summary, we have the following equations of motion for
the quadrotor describing the states at each instant in time.

ṗ = v (5a)

mv̇ = (−mg+ f R)e3 (5b)

Ṙ = R� (5c)

J ω̇ = Jω × ω + τ (5d)

where e3 is the third standard unit vector in the Cartesian
coordinate system and g is the constant gravitational accel-
eration. We have already mentioned that the total thrust is
the sum of the individual forces of the propellers. Since
the front, back and left, right propellers rotate in opposite
directions, they generate a net torque around the z axis. While
the moment arm L and the difference between the forces
f1 and f3 generate a net torque around the y-axis, the difference
between the forces f2 and f4 generate a net torque around the
x-axis. This is summarized with the matrix equation given
below 

f
τx

τy

τz

 =


1 1 1 1
0 −L 0 L
L 0 −L 0
Kτ Kτ −Kτ −Kτ



f1
f2
f3
f4

. (6)

III. CONTROL DESIGN
We parametrize the 12-dimensional state space of the quadro-
tor by selecting six position variables and their time deriva-
tives. The first three position variables (x, y, z) specify the
center of mass, p, of the quadrotor, while the remaining
three position variables

(
r13
r33
,
r23
r33
, arctan2 (−r12, r22)

)
spec-

ify the orientation of the quadrotor with respect to the
inertial frame. The numbers rij are the elements of the
rotation matrix R ∈ SO(3). The parametrization of the ori-
entation is local and restricted to the connected open subset
U = {R ∈ SO(3) : r33 > 0} of SO(3). The first two orien-
tation variables are proportional to the x and y components
of the thrust vector in the world frame determining the linear
horizontal acceleration of the quadrotor in this frame. The last
orientation variable corresponds to the heading of the body
x-axis in the world frame, which can also be interpreted
as the yaw angle in a Body312 Euler angle representa-
tion of the orientation. Unlike the traditional Euler-angle
parametrization, the orientation variables in our parametriza-
tion above enter linearly in the translation dynamics, as
shown below, which facilitates the corresponding controller
development.
In this parametrization of the state space, a point is

specified by the vectors

η = (η1, . . . , η6)
T
= (x, y, z, ẋ, ẏ, ż)T

ξ = (ξ1, . . . , ξ6)
T

where

ξ1 =
r13
r33
, ξ2 =

r13
r33

ξ3 = arctan2 (−r12, r22), ξ4 =
ṙ13r33 − r13ṙ33

r233

ξ5 =
ṙ23r33 − r23ṙ33

r233
, ξ6 =

ṙ22r12 − r22ṙ12
r212 + r

2
22
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whose dynamics can be obtained from the global set of
equations (5d) as

η̇ =


η4
η5
η6
0
0
−mg

+

0
0
0
ξ1
ξ2
1

 r33f + dη (7a)

ξ̇ =


ξ4
ξ5
ξ6

a1x(R)τx + b1x(R)τy + σ1
a2x(R)τx + b2y(R)τy + σ2
a3x(R)τx + b3z(R)τz + σ3

+ dζ (7b)

where a(·), b(·) and σ(·) are given in Appendix A. We have
introduced the terms dη and dζ as additional persistent dis-
turbances on the system that may arise, for example, from
misalignment of the quadrotor blades, as shown below in
Section IV.

The control goal is to asymptotically stabilize the center
of mass position and the heading of the quadrotor. In other
words, if (η1d , η2d , η3d , ξ3d ) denote the desired values for
(η1, η2, η3, ξ3), we would like to have a real number T > 0
such that given any ε > 0

‖
(
η1, η2, η3, ξ3, η̇1, η̇2, η̇3, ξ̇3

)
−
(
η1d , η2d , η3d , ξ3d , η̇1d , η̇2d , η̇3d , ξ̇3d

)
‖ < ε (8)

for all t > T .
The four available control inputs can be viewed as the

thrust along body z-axis and a torque about each body axis.
We use feedback linearization to facilitate later design of
controllers based on L1-optimal control. This is the one of the
main reasons the parametrization mentioned at the beginning
of this section is selected. The L1-optimal controller that is
going to be designed assumes that the nominal dynamics
can be reduced to a double integrator; however, the global
representation of the orientation kinematics (1) cannot be put
in this form.

To begin the feedback linearization procedure, we choose
the thrust f as

f =
1
r33

h(η3, η6) (9a)

h(η3, η6) := mg+ uz(η3, η6) (9b)

where uz is an auxiliary controller to be designed in the sequel.
The torques τ(·) are chosen as the solution to the equationsa1x(R) b1y(R) 0

a2x(R) b2y(R) 0
a3x(R) 0 b3z(R)

τxτy
τz

+
σ1σ2
σ3

 =
vxvy
vz

 (10)

Note that a unique solution exists as long as r33 6= 0. The
right-hand side of these equations are auxiliary control vari-
ables to be designed as L1-optimal controllers that asymptoti-
cally stabilize ξ -dynamics. As a result of these manipulations,

the dynamics (7) become

η̇ = fη(η)+ g(η)ξ + dη (11a)

ξ̇ = fξ (ξ )+ v+ dζ (11b)

where

fη(η) =
[
η4 η5 η6 0 0 uz(η)

]T (12a)

g(η) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
h(η) 0 0 0 0 0
0 h(η) 0 0 0 0
0 0 0 0 0 0

 (12b)

fξ (ξ ) =
[
ξ4 ξ5 ξ6 0 0 0

]T (12c)

v =
[
0 0 0 vx vy vz

]T (12d)

We observe that the selected thrust (9) asymptotically sta-
bilizes the height, z, of the quadrotor. In the remainder of this
section, we are going to choose v in an L1-optimal fashion so
that the orientation is stabilized to its desired trajectory, which
will, in turn, be constructed to asymptotically stabilize (x, y)
and ξ3.

A. BACKSTEPPING CONTROL
Consider the resulting system dynamics, given by (11). Con-
centrating on the first component (11a) of this system of
differential equations, we notice that by setting ξ = φ(η) with
φ chosen appropriately, we can asymptotically stabilize η to
a desired value. With this observation in mind, let

φ(η) =
[ ux
h

uy
h ξ3d 0 0 ξ̇3d

]
(13)

where ux and uy are going to be selected as the output of an
L1-optimal stabilizing linear controller. Consider the change
of variables

ζ = ξ − φ(η) (14)

We substitute this relation into (11) and consider the auxiliary
control v as functions of ζ to obtain

η̇ = Aη + Bu(η)+ g(η)ζ + dη (15a)

ζ̇ = Aζ + Bv(ζ )− g2(η, η̇)+ dζ (15b)

The various other terms are given by

A =
[
0 I
0 0

]
, B =

[
0
I

]
(16a)

g2(η, η̇) =
[
u̇xh−ḣux

h2
u̇yh−ḣuy

h2
0 0 0 0

]T
(16b)

The dynamics in (15b) and (15b) consists of the following
nominal linear system, perturbed by the terms g(η)ζ and g2
respectively.

η̇ = Aη + Bu(η) (17a)

ζ̇ = Aζ + Bv(ζ ) (17b)

Proposition III.1. Assume that the auxiliary controllers
ux , uy, uz and vx , vy, vz in Equation 17b are designed so that
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the origin of (17b) is exponentially stable. Then, when the
disturbance terms dη and dζ are zero, the origin of the full
system 15b is exponentially stable.

Proof: It suffices to show that the perturbation terms in (15)
are locally Lipschitz and vanish at the origin (η, ζ ) ≡ (0, 0).
This is trivially true for the term g(η)ζ as g(η) is bounded and
is continuously differentiable. On the other hand, the second
term g2(η, η̇), is comprised of the time derivative of ux

h and
uy
h . Notice that all of these functions are at least continuously
differentiable functions of (η, η̇) and therefore, are locally
Lipschitz. Moreover, since ux , uy are linear functions and h is
an affine function of η, the functions ux

h and uy
h are identically

zerowhenever η is identically zero. This, in particular, implies
that under these circumstances, the time derivative of these
functions are also identically zero.

From this analysis, we can conclude by [10, p. 341,
Lemma 9.1] that the origin of the perturbed system (15) is
exponentially stable.
Remark 1. In purely model inversion techniques, in order

to feedback linearize equation (15) one would require knowl-
edge of g2. However, the computation of g2 is not feasible
since it requires acceleration level measurements, which are
known to be extremely noisy. In contrast, proposition III-A
means that to achieve exponential stability we do not need to
use this malevolent signal in our control law.

B. L1 OPTIMAL CONTROL
In this section, we present our main result, which is the design
of the control inputs u(η) and v(ζ ) for the system (15) using
the L1-optimal control design procedure from [20] and [21].

We first use the stable factorization approach, given an
exposition in [22], that allows one to parametrize the set of
all controllers that stabilize a given (linear) system as well as
the set of all stable transfer matrices that are achievable.

The first step of the approach is to factor the plant transfer
matrix G into a ‘‘ratio’’ of the form

G(s) = N (s) [D(s)]−1 =
[
D̃(s)

]−1
Ñ (s) (18)

where N , D, Ñ , D̃ are stable rational matrices, i.e., every
element of each matrix is proper and has all of its poles in
the open left half-plane. Next, one solves the so-called Bezout
identities: [

Y (s) X (s)
−Ñ (s) D̃(s)

] [
D(s) −X̃ (s)
N (s) Ỹ (s)

]
= I (19)

where X , X̃ , Y , Ỹ are also stable rational matrices. It can then
be shown that the set of all controllers that stabilize G is given
by [22] {

−

(
Y − RÑ

)−1 (
X + RD̃

)}
(20)

where R is an arbitrary matrix of appropriate dimensions
whose elements are stable rational functions.

We notice that the nominal plant G(s) of equation (18)
given by (17) is a system of double integrators. It is then

routine to determine the various other matrices in (18) and
(19) using the techniques of [25]. This gives

G(s) =
1
s2

[
I
sI

]
(21a)

N (s) = Ñ (s) =
1

(s+ 1)2

[
I
sI

]
(21b)

D(s) =
s2

(s+ 1)2
· I (21c)

D̃(s) =
1

(s+ 1)2

[
(s2 + 2s)I −2I
−sI (s2 + 1)I

]
(21d)

X (s) = X̃ (s) =
1

(s+ 1)2
[
1+ 2s 2+ 4s

]
I (21e)

Y (s) =
s2 + 4s+ 2
(s+ 1)2

· I (21f)

Ỹ (s) =
1

(s+ 1)2

[
(s2 + 2s+ 2)I 2I

sI (s2 + 4s+ 1)I

]
(21g)

It is shown in [20] how to choose the ‘‘free’’ parameter R in
(20) such that the system error rejects ‘‘uncertainties’’ due to
system modeling. Thus, the only error that may remain will
be due to the measurement noise. The procedure involves pro-
ducing a sequence {Rk} and examining the resulting controller

Ck = −
(
Y − Rk Ñ

)−1 (
X + Rk D̃

)
(22)

and the error dynamics

e = P1kζ + P2kw (23)

where ζ stands for all the persistent disturbances exerted on
the system (15), w denotes the measurement error, and the
transfer matrices P1k and P2k are given by

P1k = N (Y − Rk Ñ ) (24a)

P2k = I − D(Y − Rk Ñ ) (24b)

The sequence {Rk} in the linear compensator expression (22)
can be chosen such that as k → ∞, ‖P1k‖Â → 0 and
‖P2k‖Â → 1, with the Â norm denoting the L∞-gain of
the system Pi. As ‖P1k‖Â → 0, the rejection of persistent
disturbances gets better and better. Since minimizing the
L∞-gain of the operator Pi minimizes the L1-gain of the input
signal, this procedure amounts to designing an L1-optimal
controller for the quadrotor. This implies that in the absence
of measurement noise, the mean value of the error over time
will be minimized.

The linear controllers consist of two different transfer
functions that accept position and velocity errors as inputs,
respectively. Each yields control forces/torques that are added
together to form the final linear controller. The forms of the
resulting linear controllers derived using this robust control
framework are given below.

U (s)
Ep(s)

=
2k1s2 + k1k2s+ k21

s2
(25a)

U (s)
Ev(s)

=
2k2s2 + k22 s+ k1k2

s2
(25b)
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where k1 and k2 positive are gains to be tuned. The tuning
process is not so difficult to achieve once it is noted that
k1 acts as the proportional (spring) and k2 as the deriva-
tive (damping) gain of the system. Each of the controllers
{ux , uy, uz, vx , vy, vz} mentioned in the Section III-A are of
this form with appropriately chosen k1, k2 gains. Particular
choices of these gains, suited for our quadrotor, are given in
Section IV.

IV. SIMULATION RESULTS
This section presents simulations of the proposed (LARS)
controller on a model of the Quanser Qball quadrotor [23]
taking into account the various sources of modeling uncer-
tainties. The controller is compared with that presented in [8],
which we refer to as RGTC standing for ‘‘Robust Geometric
Tracking Controller’’. The simulations are required in order
to demonstrate performance for the case when only model
uncertainty is present, whereas in experiment some measure-
ment noise is present. We also present simulations which
include measurement noise in the model. The Quanser Qball
has the following properties as given in its user manual:

J = diag ([0.03, 0.03, 0.03]) kg ·m2 (26a)

m = 1.4 kg, ω = 15
rad
sec

(26b)

where ω is the actuator bandwidth of each propeller. That is,
the force output of each propeller is achieved by passing the
command through a low-pass filter with 15

2πHz. bandwidth.
This, of course, is a huge limitation on the range fast of
motions achievable. Therefore, we design a simple lead con-
troller that moves the pole at ω = 15

2πHz to
37.5
2π Hz. This mini

controller can be expressed in frequency domain as

F(s)
U (s)

= C(s) = 2.5
s+ 15
s+ 37.5

(27)

The quadrotor is subject to several kinds of uncertainties,
the most straightforward of which are its mass and its inertia
tensor. More subtle uncertainties include misalignment of the
rotors with respect to the quadrotor frame. That is, although
the rotors of the blades are supposed to be parallel to the
frame of the quadrotor, in reality, they might be slightly tilted
causing the application of unmodeled forces and moments on
the quadrotor. Such rotor misalignment has been observed
on the quadrotor in our laboratory. Moreover, if the center
of mass of the quadrotor is not located exactly at the center,
the manner in which the torques enter into the rotational
dynamics is no longer given by (6). The visualization of the
‘‘actual’’ quadrotor in Figure 2 sheds light on the derivation of
its ‘‘actual’’ dynamics. In this figure, we see that the plane of
the quadrotor frame, P, has a normal vector N . In the ideal
model, the forces of each of the propellers are along this
normal. The direction of these forces deviate from this normal
in reality, as depicted in Figure 2, giving rise to the dynamical
equations of motion presented in (28)

FIGURE 2. ‘‘Actual’’ Quadrotor Model: The direction of the thrust forces of
each of the propellers deviate from the normal vector to the plane of the
quadrotor frame. The CoM is not exactly situated at the center of the
quadrotor frame.

J ω̇ + ω × Jω =
4∑
i=1

fi
[
Kτσ (i)I + p̂i

]
Ri · e3 (28a)

mp̈ =
4∑
i=4

(−mgI + fiRi) · e3 (28b)

where Ri ∈ SO(3) is the orientation of the ith propeller
with respect to the quadrotor frame, e3 is the third standard
Cartesian unit vector, pi is the position vector, in the quadrotor
frame, from the center of mass C to the center of the ith

propeller. The hat operator ˆ is the usual isomorphism from
R3 to so(3). Lastly, I is the 3 × 3 identity matrix and σ :
{1, 2, 3, 4} → {−1, 1} is defined by

σ (i) =

{
1 if i = 1, 2
−1 if i = 3, 4

The experimentally determined values of Rie3 for the four
rotors are given by

R1e3 =
[
0.03 0.03 0.9991

]T (29a)

R2e3 =
[
0.06 0.03 0.9977

]T (29b)

R3e3 =
[
0.03 0.06 0.9977

]T (29c)

R4e3 =
[
0.09 0.09 0.9919

]T (29d)

Finally, the measurements of the quadrotor pose and veloc-
ity are never perfect. In the simulations, they will be modeled
as a Gaussian noise acting on both the linear and angular
readings additively. In what follows, we are going to present
simulation results of our proposed controller and compare
it with one of the most prominent robust controllers in the
literature provided by [15].
The value of gain parameters used in our controller is

given in Table 1. The value of parameters defined in [8] are
given in Table 2 where the robust control parameters are
unchanged, however the proportional and derivative gains
have been scaled to be comparable to the gains in Table 1.
Finally, the statistics of the additive gaussian white noise used
to corrupt the measurements are given in Table 3.
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TABLE 1. Gains used in our controller.

Loop k1 k2
x 3 3.4293

y 3 2.6944

z 3 2.6944

ξ1 176.2000 26.5481

ξ2 176.2000 26.5481

ξ3 26.4300 10.2820

TABLE 2. Parameters from [8].

Parameter Value

KR 5.3394 I3
K� 0.7

kx 6

kv 5.4

c1 3.6

c2 0.6

εx 0.04

εR 0.04

TABLE 3. Variances of additive zero mean gaussian white noise.

Parameter Value

σ 2p 10−6

σ 2ṗ 0.01

σ 2R 10−4

σ 2ω 0.01

A. SET-POINT CONTROL
We command a constant desired point in the Cartesian space
to which the quadrotor center of mass should converge while
potentially suffering from uncertainties in parameters and
measurement noise. The results of a simulation for the case
when there is no measurement noise but parameter uncer-
tainty exists is given in Figure 3. The steady state error in
position is zero in the case of the LARS controller (Figure 3c).
The orientations errors also have zero steady state values
(Figure 3a). For the RGTC controller, the position errors
reach a steady non-zero value (Figure 3d). The orientation
also does not converge to the desired values (Figure 3b).
Tables 4 and 5 give the errors in steady state for both con-
trollers.

When noise is added, the results follow a similar trend
(Figures 4). As seen in Figures 4a and 4c, the average value
of the errors in orientation and position are nearly zero for the
LARS controller. This is confirmed by the mean values of the
errors in position for the experiment in Tables 4 and 5. In the
case of the RGTC controller, we see that the mean values of
the errors reach a constant value that is slightly offset from
zero (See Figures 4b and 4d, and the mean values given in
Table 4). This shows that the presence of measurement noise

TABLE 4. Mean values of errors obtained in simulations of LARS and
RGTC controllers. S: Set-point regulation, C: Tracking a circular trajectory.

Task Noise Controller µex [m] µey [m] µez [m]

S no LARS 1.4096e-7 9.0064e-8 −1.7917e-7

S yes LARS −7.4749e-4 −7.2466e-4 −7.4496e-4

C no LARS 2.01e-5 9.4342e-6 −1.33e-6

C yes LARS −7.2708e-4 −7.1625e-4 −7.4137e-4

S no RGTC 0.0658 0.0288 0.0697

S yes RGTC 0.0704 0.0358 0.0743

C no RGTC 0.0791 0.0336 0.0754

C yes RGTC 0.0811 0.0356 0.0815

TABLE 5. Standard deviations of errors obtained in simulations of LARS
and RGTC controllers. S: Set-point regulation, C: Tracking a circular
trajectory.

Task Noise Controller σex [m] σey [m] σez [m]

S no LARS 7.05e-7 4.785e-7 6.509e-7

S yes LARS 0.0111 0.0081 0.0085

C no LARS 0.1434 0.1434 0.0001

C yes LARS 0.1430 0.1451 0.0086

S no RGTC 6.404e-4 2.503e-4 1.698e-4

S yes RGTC 0.0082 0.0067 0.0065

C no RGTC 0.1291 0.1183 0.0207

C yes RGTC 0.1249 0.1203 0.0134

does not qualitatively change the relative behaviour of the two
controllers.

B. TRAJECTORY TRACKING
The quadrotor is commanded to follow a trajectory

x(t)
y(t)
z(t)
ξ3(t)

 =

0.5 sin(0.5t)
0.5 cos(0.5t)

1.5
0

 (30)

Simulation results are presented for the case when measure-
ment noise is both absent (Figure 5) and present (Figure 7).
Parameter uncertainty is always assumed to exist. First, we
look at the case where measurement noise is not included
in the simulation. As seen in Figures 5c and 5d, neither
controller tracks the desired trajectory perfectly due to the
actuator limitations and the prevention of using high gains due
to noise. However, the LARS controller rejects the persistent
disturbances due to modeling errors, as seen by the mean of
the errors in position in Table 4. In the case of the RGTC
controller, the mean values of the position errors are not zero.
The resulting trajectories can be seen in Figures 6a and 6b.
The LARS controllers results in a trajectory concentric with
the desired circle, whereas the trajectory acheived by the
RGTC controller has a center different from that of the desired
trajectory. The desired orientation is tracked in the case of the
LARS controller as seen in Figure 5a, whereas this does not
occur for the RGTC controller (Figure 5b). Table 4 supports
this conclusion, as seen from the mean of the errors. The
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(d) Position errors (RGTC)

FIGURE 3. Simulation of set-point regulation with parameter uncertainty
and no measurement noise. The orientation errors in (a) are zero for the
LARS controller while there is a persistent error when using the LARS
controller as seen in (b). A similar trend is observed for the position
errors in (c) and (d).

standard deviations of the RGTC controller are lower. Note
that this does not mean that the mean squared error is lower,
due to the larger mean in the case of the RGTC controller.

When measurement noise is added, we see that the plots
do not change much qualitatively. The effect of measurement
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(b) Orientation errors (RGTC)
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(c) Position errors (LARS)
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FIGURE 4. Simulation of set-point regulation with parameter uncertainty
and measurement noise for the LARS and RGTC controllers. The mean
values of the orientation errors tend to zero for the LARS controller
(a) while they are not zero for the RGTC controller (b). A similar trend is
observed for the position errors in (c) and (d).

noise can easily be seen in Figures 7c and 7d. The statistics
of the obtained trajectory in Tables 4 and 5 show that the
conclusions from the simulations without noise still hold, that
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(b) Orientation errors (RGTC)
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FIGURE 5. Simulation of trajectory tracking with parameter uncertainty
and no measurement noise. The LARS controller rejects persistent
distrubances (parameter uncertainties) yielding a zero-mean steady-state
errors in orientation and position as seen in (a) and (c) respectively. In
comparison, the same errors due to the RGTC controller have a persistent
non-zero mean value as seen in (b) and (d).

is, the mean value of the trajectory for the LARS controller
is still nearly zero, whereas for the RTGC controller it is non
zero. Figures 7a and 7b show that the position errors appear
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(a) Implicit plot (LARS)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x [m]
y
 [
m

]

trajectory

desired

(b) Implicit plot (RGTC)

FIGURE 6. Implicit plot of the trajectory tracking simulation for LARS and
RGTC controllers. No measurement noise is included in the model. The
persistent disturbances causes a deviation in the final path of the
quadrotor when running the RGTC controller, whereas the LARS controller
can reject these disturbances.

to have a zero mean in the case of the LARS controller but not
for the RGTC controller. This is confirmed again in Table 4.
Similar to the simulation with no measurement noise, we
see that the resulting trajectory for the LARS controller is
concentric with the desired one (Figure 8a) whereas that for
the RGTC controller is offset (Figure 8b).

V. EXPERIMENTAL IMPLEMENTATION
The results of the simulation sections are recreated in an
experimental environment with an actual Quanser Qball
quadrotor [23]. We also continue our foregoing comparison
with the RTGC robust controller [8] by implementing this
controller and showing the experimental results with that
controller. The experimental setup is as follows. The Quanser
Qball is assumed to have the same properties as was given
at the start of the Section IV. The linear position feedback is
acquired from an 8-camera Vicon vision system [26] working
at a rate of 100 Hz. The linear velocity feedback is derived
from this position reading by numerical differentiation cou-
pled with a first-order filter with a cut-off frequency of 40 Hz.

H (s) =
40s

s+ 40

Since the motions of this particular quadrotor cannot really
be faster than 20 Hz. primarily due to the restrictions of
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(c) Orientation errors (LARS)

0 5 10 15 20 25 30 35 40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time [sec]

O
ri
e

n
ta

ti
o
n
 e

rr
o
rs

 [
ra

d
]

e
13

e
23

e
ψ

(d) Orientation errors (RGTC)

FIGURE 7. Trajectory tracking with parameter uncertainty and
measurement noise. The LARS controller rejects persistent distrubances
(parameter uncertainties) yielding a zero-mean steady-state errors in
orientation and position as seen in (a) and (c) respectively. In comparison,
the same errors due to the RGTC controller have a persistent non-zero
mean value as seen in (b) and (d).

the actuators, the aforementioned velocity measurement is
justified to work well.

The orientation of the quadrotor is also acquired using
vision data from the Vicon system as follows. We start by
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(a) Implicit plot (LARS)
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FIGURE 8. Implicit plots for the simulation of trajectory tracking task with
parameter uncertainty and measurement noise. Again, The persistent
disturbances causes a deviation in the final path of the quadrotor when
running the RGTC controller, whereas the LARS controller can reject these
disturbances.

placing markers on both ends of the rods. The body x-axis
of the quadrotor is then identified as the vector v1 whose
tail is the marker at the ‘‘back’’ and whose head is at the
‘‘front’’ of the quadrotor. We then form the vector v2 from
the ‘‘back’’ marker to the ‘‘left’’ marker and the vector v3
from the ‘‘back’’ marker to the ‘‘top’’ marker (see Figure 9).
Using the Gram-Schmidt orthonormalization process [27],
we get an orthonormal body-frame for the quadrotor, whose
components when expressed in the inertial frame, form the
rotation matrix R.
The body angular velocity of the quadrotor, on the other

hand, is acquired from the on-board gyroscope. The gyro-
scope data is downsampled to 100Hz to match the data rate
of the Vicon system.
The controller runs on an embedded processor, Gumstix

Verdex, stationed on the quadrotor. Its processing power is
600MHz. The reference commands, control gains and param-
eters are broadcast to the gumstix via a wireless communica-
tion protocol. The software used to prepare the C-code run on
the gumstix and to send the various parameters to the gumstix
is Matlab/Simulink.
Two types of experiments are conducted using each con-

troller:

• Set-point regulation
• Tracking a circular trajectory at 1 rad/s
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TABLE 6. Desired coordinates in the world frame: (i) Set-point (ii) The
moving trajectory is a circle in the horizontal plane. The steady state error
for RGTC requires us to command a higher height for sufficient ground
clearance.

Experiment LARS RGTC
Set-point (0.4,0,0.5) (0.4,0,0.75)
Circle 1 (0.4+ cos(t), sin(t), 0.5) (0.4+ cos(t), sin(t), 0.75)

FIGURE 9. Rotation matrix construction: The vectors v1 from BACK to
FRONT, v2 from BACK to LEFT and v3 from BACK to TOP are
orthonormalized and their components expressed in the inertial frame to
form the rotation matrix R

The performance of the position controller is demonstrated in
two steps. First, the Qball lifts off from the initial position at
the desired height zd . Once the height has settled, the robot is
commanded to the point (0.4, 0, zd ).

This is due to the fact that large step changes in all com-
manded variables will often hit the saturation limits, and in
the closed lab space potentially leads to a crash. In the circle
experiment, the command is switched from this point to the
trajectory given in Table 6.

A. SET-POINT REGULATION RESULTS
The results of the set-point regulation experiments for both
controllers are seen in Figure 10. In Figure 10c we see that the
errors decrease from the initial value and tend to a zero-mean
behaviour in the case of the LARS controller. There appears
to be a disturbance at around t = 53s, which is duly rejected.
In the case of the RGTC control, after the Qball lifts off, the
step position command is applied at around t = 35s. The
errors decrease, however, ey and ez do not have a zero mean
steady state behaviour, as seen in Figure 10d. The x-direction
position error, ex , appears to have a zero mean behaviour. The
orientation error for the LARS controller follows a similar
behaviour (Figure 10a): the orientation errors decrease to a
mean value close to zero, even after the disturbance. The
orientation errors for the RGTC controller are not close to
zero, as seen in Figure 10b, except the e13 error. This is
logical, since in the dynamics (5) the dynamics in x and y are
directly affected by the r13 and r23 components of the rotation
matrix R, and hence errors in those values will result in errors
in x and y even with ideal thrust generation.
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FIGURE 10. Set-point regulation experiment. The LARS controller results
in orientation errors with a small mean value than those due to the RGTC
as seen in (a) and (b). A similar trend is seen in the position errors as
seen in (c) and (d).

B. TRAJECTORY TRACKING RESULTS
The Qball quadrotor is desired to track the trajectory in
Table 6. Figure 12 gives the result of the experiment for
both controllers. In figure 11c the quadrotor is commanded
to hover at the inital position (0.4, 0, 0.5) at t = 31s.
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FIGURE 11. Trajectory tracking experiment with a circular trajectory. The
LARS controller yields nearly zero mean steady state errors in orientation
and position. The RGTC controller yields errors which do not have zero
mean behaviour.

The command is then switched to the circular trajecteory
given in Table 6 at approximately t = 49s. The step command
results in the error shooting up, which reduces to the sinu-
soidal errors with a nearly zero mean, similar to the behaviour
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FIGURE 12. Trajectory tracking experiment with a circular trajectory. The
LARS controller yields a correctly nearly centered circular trajectory,
having a nearly zero mean translational steady state error. The circular
trajectory of the RGTC controller has a shifted center, product of nonzero
steady state errors.

seen in Figure 10c. At t = 105s the desired trajectory is
switched to a set-point along the tangent to the circle at that
instant. At t = 115s the Qball is commanded to return to
(0.4, 0, 0.5), resulting in a jump in errors due to the step com-
mand.We see that, in spite of the step commands in positions,
resulting in step commands in the desired orientations (See
Figure 11a) the height error does not increase, as expected
due to the LARS control design. The orientation errors are
seen to have a nearly zero mean behaviour in Figure 11a. The
resulting trajectory is a distorted circle with a center almost
identical to that of the desired trajectory (See Figure 12a).
Figure 11d shows the errors in position for a similar

experiment using the RGTC controller. The Qball lifts off at
t = 18s, and hovers at a point slightly offset from the desired
point. Due to the steady state error in height always present in
the RGTC controller, the command is higher (zd = 0.75m).
This yields sufficient clearance above the ground so as to
minimize the ground effect. The Qball is then commanded to
follow the circular trajectory in Table 6. The error in x appears
to have a zero mean behaviour, whereas y and z have non-
zero mean errors. This is reflected in the Figure 12b where
the resulting trajectory is circular but shifted in the negative
y direction with respect to the desired circular trajectory. The
orientation plot in Figure 11b shows that there is some error
in e23 at least in the set-point tracking part of the experiment.
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Videos of experiments conducted with the quadrotor are
detailed in Appendix B.

VI. CONCLUSION
We have presented an L1-optimal robust controller for the
quadrotor dynamical system that rejects persistent distur-
bances. Consequently, the only remaining errors in the steady-
state response of the system are due to measurement noise.
We have derived an ‘‘actual’’ model for the quadrotor under
practical modeling uncertainties. We used this model to
conduct simulation studies for both set-point and trajectory
tracking applications and compared the performance of our
controller with one of the more prominent robust controller in
the literature. The same comparison has also been carried out
experimentally and the performance of the system, predicted
in the simulations, were seen to be very closely replicated.

APPENDIX A
EQUATIONS OF MOTION UNDER THE SELECTED
PARAMETRIZATION
We use the quadrotor dynamic equations of motion (5d) to
derive the equations governing the parametrization. We have
η = (x, y, z) and ξ =

(
r13
r33
,
r23
r33
, arctan2 (−r12, r22)

)
. We

differentiate with respect to time once and substitute from
the kinematic equations (1) and differentiate again before
substituting from the equations (5d). For the translational
variables η, this gives

η̈1 = ẍ =
r13
m
f (31a)

η̈2 = ÿ =
r23
m
f (31b)

η̈3 = z̈ = −g+
r33
m
f (31c)

and for the rotational dynamics,

ξ̈1 = a1x(R)τx + b1y(R)τy + σ1(R, ω) (32a)

ξ̈2 = a2x(R)τx + b2y(R)τy + σ2(R, ω) (32b)

ξ̈3 = a3x(R)τx + b3z(R)τz + σ3(R, ω) (32c)

where the functions a1x , a2x , a3x , b1y, b2y, b3z, σ1, σ2, σ3 are
given as follows:

a1x(R) =
r13r32 − r12r33

Jrr233

a2x(R) =
r11r33 − r13r31

Jpr233

a3x(R) =
r12r23 − r13r22
Jr
(
r212 + r

2
22

)
b1y(R) =

−r13r31 + r11r33
Jpr233

b2y(R) =
−r23r31 + r21r33

Jpr233

b3z(R) =
−r12r21 + r11r22
Jy
(
r212 + r

2
22

)

σ1(R, ω) =
1

JpJrr333

(
2JpJrr13r232w

2
x − 4JpJrr13r31r32wxwy

+ 2JpJrr13r231w
2
y

+ 2JpJrr12r33wx(−r32wx + r31wy)

+ Jr (−Jr + Jy)r33(−r13r31 + r11r33)wxwz
+ Jp(Jr + Jy)r12r233wywz + J

2
p r33

× (r13r32 − r12r33)wywz − Jpr13r33
× (Jrr31wx + (Jr + Jy)r32wy)wz + JpJrr11r33

×

(
2r32wxwy − 2r31w2

y + r33wxwz
))

σ2(R, ω) =
1

JpJrr333

(
2JpJrr23r232w

2
x − 4JpJrr23r31r32wxwy

+ 2JpJrr23r231w
2
y + 2JpJrr22r33wx

× (−r32wx + r31wy)

+ Jr (−Jr + Jy)r33(−r23r31 + r21r33)wxwz
+ Jp(Jr + Jy)r22r233wywz + J

2
p r33

× (r23r32 − r22r33)wywz
− Jpr23r33(Jrr31wx + (Jr + Jy)r32wy)wz

+ JpJrr21r33
(
2r32wxwy − 2r31w2

y + r33wxwz
))

σ3(R, ω) =
1

JrJy
(
r212 + r

2
22

)2 (JrJyr312r21wxwy
+JrJyr12r21r222wxwy − Jr (−Jp + Jr )

× (r12r21 − r11r22)
(
r212 + r

2
22

)
wxwy

− (Jp + Jr )Jyr212r13r22wywz − (Jp + Jr )Jy
× r13r322wywz + (Jp + Jr )Jyr312r23wywz

+ (Jp + Jr )Jyr12r222r23wywz − J
2
y

(
r212 + r

2
22

)
× (−r13r22 + r12r23)wywz − 2JrJyr212r13wx
× (r23wx − r21wz)2JrJyr13r222wx
−(−r23wx + r21wz)+ 2JrJyr12r22
× (r13wx − r23wx − r11wz + r21wz)

× ((r13 + r23)wx − (r11 + r21)wz)− JrJyr11r222

×

(
r22wxwy + 2r23wxwz − 2r21w2

z

)
− JrJyr11r212

(
r22wxwy − 2r23wxwz + 2r21w2

z

))
.

APPENDIX B
VIDEOS OF EXPERIMENTS
The results of trajectory tracking experiments were recorded
for some challenging trajectories: (i) Horizontal circle with
sinusoidal height command [28], (ii) Vertical circle [29], and
(iii) Lissajous curve [30].
The experiments consist of three phases. In the first phase,

the quadrotor is commanded to hover at a height above the
starting position, then commanded to move to a starting point
at the same height. The second phase consists of trajectory
tracking. During the third phase the following landing scheme
is implemented. A predicted position is calculated based on
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the quadrotor position and velocity at the end of the second
phase and commanded as a set-point. The desired height is
decreased in steps until the quadrotor can be powered down
safely.

The first trajectory is a horizontal circle with a vary-
ing height command [28]. The varying height creates an
increased demand on quadrotor actuators. This is further
tested when the frequency of the height command is doubled
during the motion of the quadrotor.

The second experiment demonstrates the controller per-
formance when gravity acts as a disturbance non-trivially.
This is achieved by requiring the quadrotor to track a vertical
circle [29].

The third experiment shows the performance of the con-
troller under a significantly aggressive motion: tracking a
three dimensional Lissajous curve. The quadrotor motion is
seen to be both stable and smooth throughout the experi-
ment [30].

The reader is invited to view further videos on the UTD
Robotics channel [31], not all of which use the L1−optimal
controller. It can be observed that the tracking performance is
poorer and more sluggish when the quadrotor uses naive PID
control.
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