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ABSTRACT A team of robots are deployed to accomplish a task while maintaining a viable ad-hoc network
capable of supporting data transmissions necessary for task fulfillment. Solving this problem necessitates:
1) estimation of the wireless propagation environment to identify viable point-to-point communication links;
2) determination of end-to-end routes to support data traffic; and 3) motion control algorithms to navigate
through spatial configurations that guarantee required minimum levels of service. Therefore, we present
methods for: 1) estimation of point-to-point channels using pathloss and spatial Gaussian process models;
2) data routing so as to determine suitable end-to-end communication routes given estimates of point-to-point
channel rates; and 3) motion planning to determine robot trajectories restricted to configurations that ensure
survival of the communication network. Because of the inherent uncertainty of wireless channels, the model
of links and routes is stochastic. The criteria for route selection is to maximize the probability of network
survival—defined as the ability to support target communication rates—given achievable rates on local point-
to-point links. Maximum survival probability routes for present and future positions are input into a mobility
control module that determines robot trajectories restricted to configurations that ensure the probability of
network survival stays above a minimum reliability level. Local trajectory planning is proposed for simple
environments and global planning is proposed for complex surroundings. The three proposed components are
integrated and tested in experiments run in two different environments. Experimental results show successful
navigation with continuous end-to-end connectivity.

INDEX TERMS Routing protocols, path planning, wireless networks, autonomous agents.

I. INTRODUCTION
Autonomousof a group of agents that collaborate to accom-
plish an assigned task. As an example situation, consider a
building exploration mission in which a team of robots is
sent to explore a plant before the entrance of human rescuers.
Some members of the team are designated as leaders and
move to specified locations while some other agents provide
mission support. Instrumental to task accomplishment is the
availability of wireless communications which is required
to exchange information between robots as well as to relay
information to and from human operators. Since availability
of existing wireless communication infrastructure is unlikely
in the harsh environments in which autonomous robot teams
are to be deployed, we want the robots to self organize into

a wireless network capable of supporting the necessary infor-
mation exchanges.
Note that there are two high-level challenges in this exam-

ple. First, the robots must autonomously decompose the
exploration task, plan trajectories to satisfy pieces of that
task, and finally determine controls to execute the desired
trajectories, possibly in a coordinated fashion. Second, the
robots must act as nodes in a wireless network in order to
estimate wireless channels and relay information accordingly
to support communication that would not be possible via a
direct connection. Indeed, both of these challenges have been
widely studied independently by the robotics and wireless
networking communities respectively. The goal of this paper
is to jointly design controllers that determine trajectories
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for the robots while ensuring availability of communication
resources.

Communication-aware deployment of robot teams has
recently received considerable attention. Substantial contri-
butions have been made on algorithms that either constrain
or modify trajectories to preserve links, or recover from
disconnected topologies [3]–[8]. Related contributions take
a global view and design control algorithms that optimize
network-wide indicators of connectivity such as the sec-
ond smallest eigenvalue or k−connectivity of the network’s
graph. All of these papers rely on disc or simple topological
models that identify proximity with connectedness. While
early approaches to wireless networking do rely on disc
models [9], [10], it has long been recognized that proximity
does not necessarily indicate reliable communication due to
shadowing and fading [11], [12]. A more accurate model
used in this paper is to consider link rate functions that map
pairs of terminal positions to achievable communication rates.
These functions can be as simple as measuring packet error
probabilities [13], [14] or may involve more complex models
accounting for fading and power adaptation [15], [16]. These
more nuancedmodels of wireless connectivity have been used
in [17], [18] to design communication-aware robot planning
algorithms.

All of the works mentioned so far use indirect indicators
of network connectivity and do not determine whether the
network formed by robots is able to support desired commu-
nication rates. Recent contributions consider rates explicitly
and define network integrity as the ability to support desired
communication rates [19]–[21]. While this represents a sig-
nificant improvement over indirect indicators of connectivity,
maintaining network integrity is challenging because chan-
nel uncertainty is inherent to robot deployment. Indeed, due
to shadowing and small scale fading, even small variations
in robots’ positions lead to significant changes in channel
strength [11], [12]. Precise channel state information can
be acquired through measurements, but planning algorithms
necessitate access to channel quality indicators at future posi-
tions to which the robots are yet to be deployed. Channel
variability translates into large changes in achievable point-
to-point communication rates between pairs of nearby robots,
which in turn may result in significant uncertainty about
desired end-to-end communication rates are achievable or
not. This paper builds from the basic idea that spatial redun-
dancy can minimize the effect of point-to-point uncertainty in
end-to-end communication rates. Realizing this idea requires
a stochastic model of connectivity integrated into mobility
control and motion planning algorithms as we explain next.

A. CONTRIBUTIONS AND PREVIEW
We deviate from related approaches in two fundamental
ways. First, network integrity is defined by the probability
of maintaining achievable end-to-end communication rates
above desired basal rates. This implies more than just the
optimization of stochastic models of wireless channels as
we formulate our problem statement to constrain actions of

the system such that probabilistic guarantees are maintained.
Second, we incorporate packet routing decisions that deter-
mine the effective network topology into the control space
with the explicit purpose of mitigating rapid channel fluctua-
tions that result from node movement in rich multipath envi-
ronments. These contributions were first introduced in [1], [2]
where [2] provides an initial high-level view of our approach
and [1] focuses on global motion planning under this archi-
tecture. This paper additionally presents a survey and analysis
of methods for communication link modeling (Section III),
details on the optimization problem used to solve for robust
network routing (Section IV), new theoretical results on
gradient-based control (Section V), extensive experimenta-
tion (Section VII) including discussion and analysis of our
method in comparison to recent literature (Section VIII).
We begin the paper by discussing how end-to-end commu-

nication rates depend on the values of point-to-point rates and
the manner in which packets are routed through the network.
A desirable goal is to find trajectories and position-dependent
routing variables that accomplish the given task while ensur-
ing that end-to-end rates exceed basal requirements at all
points in time. However, this goal cannot be guaranteed deter-
ministically because of channel uncertainty motivating the
introduction of probabilistic channel models and a probabilis-
tic redefinition of the primary goal (Section II).
We cover probabilistic models of point-to-point channels in

Section III and stochastic routing algorithms that determine
(stochastic) end-to-end rates in Section IV. While proba-
bilistic channel models are well known and beginning to
have extensive adoption in communication-aware robotic
deployments, we take an alternate view focusing less on the
overall accuracy of the prediction—which usually incurs a
large sampling overhead—and more on pragmatic concerns
that allow for deployment in realistic scenarios with mod-
els that are good enough to support probabilistic guarantees
when utilized with the proposed stochastic routing methods.
We discuss pathloss models (Section III-A), Gaussian process
models (Section III-B) and present experimental measure-
ments (Section III-C). Using these stochastic channel models
as input, we follow up with the study of the probability of
network survival defined as the ability to maintain end-to-end
rates above basal requirements. Packet routing variables are
determined in order tomaximize this probability (Section IV).
By splitting traffic flows between various neighboring robots,
we ensure that while failure of a particular link may reduce
end-to-end communication rates, it does not interrupt them
completely. Note that our approach seeks to optimize the
probability of maintaining the desired network connectivity
rather than explicitly optimizing the network performance in
terms of bandwidth, latency, or other traditional metrics.
We finally design trajectory planning algorithms to find

feasible trajectories for which these probabilities satisfy a
minimum reliability constraint. We first develop local plan-
ning algorithms for simple environments and present simula-
tion and experimental results for three and four robot teams
(Section V). We then propose global planning algorithms
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to handle complex environments and the local minima that
plague local controllers (Section VI). These global motion
planners are tested in experiments conducted in two different
environments. Experimental results show successful naviga-
tion with continuous end-to-end connectivity (Section VII).
We finish with a discussion and numerical analysis that
compares and places our method in the context of existing
approaches (Section VIII).

II. PROBLEM STATEMENT
We begin by restating the problem statement from [1], [2].
Consider a team of N robots and denote their positions as
xi, for i = 1, . . . ,N . We assume the robots are kinematic
and fully controllable which allows us to consider simple
models of the form ẋi(t) = ui(t), where ui(t) is the input.
A human operator is located at the fixed operation center
that we index as i = 0 at position x0. Further define vectors
x := (x0, . . . , xN ) ∈ R2(N+1) and ẋ = (ẋ0, . . . , ẋN ) ∈
R2(N+1). The team’s task is specified through a generic scalar
convex potential function 9 : R2(N+1)

→ R. If the potential
minimum 9min is attained at x∗, i.e., if 9(x∗) = 9min, the
configuration x∗ satisfies task completion. E.g., if a desig-
nated leader agent `must visit a target location x`,g ∈ R2, we
can define 9(x) = ‖x` − x`,g‖2. The minimum 9min = 0 is
attained by any configuration x∗ = (x0, . . . , x`, . . . , xN ) for
which x` = x`,g, or equivalently by any member of the set
x∗ ∈ {x = (x0, . . . , x`, . . . , xN ) : x` = x`,g}. Irrespective
of the particular form of 9(x), the control problem is to find
velocities ẋ(t) such that at some time tf the team configuration
x(tf ) = x(0) +

∫ tf
0 ẋ(t)dt satisfies task completion in that

we have 9(x(tf )) = 9min. Mathematically, we can write this
mobility control formulation as

min
ẋ(t),t∈[0,tf ]

9(x(tf ))

subject to x(t) = x(0)+
∫ t

0
ẋ(u) du. (1)

As robots move to accomplish their task, they maintain end-
to-end data flows between members of the team and/or mem-
bers of the team and the operation center. Information flows
are indexed as k = 1, . . . ,K . Flows may have multiple
sources and multiple destinations. The set of destinations of
the k-th information flow is denoted as dest(k). For agent i and
flow k , the variable aki,min represents the required communi-
cation rate between agent i and any of the agents in the set
of destinations dest(k). E.g., if the only communication of
interest is from the lead robot ` to the operation center, we
have K = 1. Since the flow k = 1 is intended to the operating
center, dest(1) = 0 and a1`min denotes the minimum level of
service for this communication. All other variables akimin = 0
are null.

We model point-to-point connectivity through a rate func-
tion Rij(x) = Rij(xi, xj) that determines the amount of infor-
mation that agent i at position xi can send to agent j at
position xj. Since direct communication between the source
and the destination of an information flow is not always

FIGURE 1. Data flows. We want to support end-to-end rate ak
i from node

i to destination k . The rate ak
i depends on the point-to-point rates Rij and

the routing variables αk
ij that determine the fraction of time node i sends

packets to node j for flow k . We use stochastic models of both, ak
i and Rij .

possible, terminals self-organize into a multihop network to
relay packets for each other. Packet relaying is determined
by routing variables αkij which describe the fraction of time
node i spends transmitting data for flow k to node j; see
Fig. 1. Thus, the product αkijRij(x) determines the rate of
point-to-point information transmission from i to j. If we
consider the transmission to all neighboring terminals for
which Rij(x) > 0, the total rate at which packets leave agent i
is
∑N

j=0 α
k
ijRij(x). Likewise, the total rate at which i receives

packets from other terminals is
∑N

j=0,j/∈dest(k) α
k
jiRji(x). The

information rate aki (α, x) available for flow k at source i is
the difference between outgoing and incoming rates

aki (α, x) =
N∑
j=0

αkijRij(x)−
N∑

j=0,j/∈dest(k)

αkjiRji(x), (2)

where we defined the vector α grouping all routing variables
αkij. Notice that the variables α

k
ij represent time slot shares and

must therefore satisfy 0 ≤ αkij ≤ 1 for all i, j, and k . It must
also be that

∑
j,k α

k
ij ≤ 1 for all i to ensure that the sum of all

time shares at terminal i does note exceed 1.
Routing variables α and configuration-dependent rates

Rij(x) determine the set aki (α, x) of end-to-end communi-
cation rates from each node i and flow k as per (2). The
task specification requires that end-to-end rates exceed the
minimum threshold aki,min. Therefore, integrity of the com-
munication network necessitates that for all i and k

aki (α, x) ≥ a
k
i,min for all i, k. (3)

Rates aki (α, x) depend on positions x and routing variables α.
To control end-to-end connectivity, i.e., to satisfy (3), we can
resort to control of positions x, routes α, or both.

Since communication is necessary for task completion, the
mobility control problem as summarized in (1) is redefined.
The new goal is to find algorithms and control policies that
govern robot motions in order to satisfy the task specifications
in (1) and (3). Reducing9(x) as per (1) and ensuring network
integrity as per (3) may be conflicting requirements. We
therefore replace (1) by a concurrent search of trajectories x(t)
and routes α(t) so that the task potential is minimized without
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ever breaking communication connectivity,

min
α(t),ẋ(t),t∈[0,tf ]

9(x(tf ))

subject to aki (α(t), x(t)) ≥ a
k
i,min

x(t) = x(0)+
∫ t

0
ẋ(u) du (4)

where rates aki (α(t), x(t)) are given by the expression in (2)
with α = α(t) and x = x(t). While continuous maintenance
of communication connectivity significantly constrains our
problem, there are manymotivating mission scenarios includ-
ing teleoperation of robotic assets or transport of latency-
intolerant information such as voice or video communication.

A drawback of the formulation in (4) is the difficulty of
ensuring that the constraints in (3) are satisfied. As per (2)
rates aki (α, x) depend on the link rates Rij(x), which are diffi-
cult to estimate; see e.g., [22] and Section III. Indeed, say that
accurate channel estimates R̄ij(x(t)) have been acquired for
the current spatial configuration x(t). The challenge here is
that rate estimates R̄ij(x) are needed not only for configuration
x(t), but for nearby configurations to which the robots are to
move. The high variability of wireless channels makes current
channel estimates R̄ij(x(t)) poor predictors of rates Rij(x) even
if x is close to x(t).

In order to redefine (4) in a manner that takes into account
this significant uncertainty, we introduce a probabilistic for-
mulation of channel rates. The important observation here
is that if point-to-point link rates Rij(x) become random, so
do the rates aki (α, x) of end-to-end communication flows
[cf. (2)]. Consequently, it is not possible to guarantee satisfac-
tion of the constraints in (3). Rather, we introduce a reliability
tolerance ε and require that for all i and k

P
[
aki (α, x) ≥ a

k
i,min

]
≥ ε. (5)

I.e., we require that the end-to-end link between all sources
i and the destinations of all corresponding flows k exceed
their minimum required level of service with probability
larger than ε. Correspondingly, we reformulate the concurrent
routing and mobility problem in (4) as

min
α(t),ẋ(t),t∈[0,tf ]

9(x(tf ))

subject to P
[
aki (α, x) ≥ a

k
i,min

]
≥ ε

x(t) = x(0)+
∫ t

0
ẋ(u) du. (6)

The focus of this work is the solution of (6).
The problem formulation in (6) inherits some standard

complications from the control formulation in (1). The con-
current search in (6) is further complicated by the entangle-
ment of the routing and mobility problems. We deal with this
entanglement by fixing x and selecting α in a manner that
optimizes the reliability P

[
aki (α, x) ≥ a

k
i,min

]
(Section IV).

We follow up with local (Section V) and global (Section VI)
searches on positions x to minimize 9(x) while keeping

reliabilities above the ε threshold. Before studying these
problems, we introduce probabilistic models of point-to-point
rates Rij(x) in the following section.

III. POINT-TO-POINT RATES
With robots i and j located at positions xi and xj we seek
a probabilistic model for the supported communication rate
Rij(x) = Rij(xi, xj). More specifically, we wish to model the
expected value R̄ij(x) = R̄ij(xi, xj) and variance R̃ij(x) =
R̃ij(xi, xj). We use simple radios that do not perform rate
or power adaptation—we use 2.4 GHz Zigbee radios in our
experiments; see Section III-C. In that case the communi-
cation rate Rij(xi, xj) is a function of the packet error rate
of the channel pe(PR(xi, xj)), which in turn is a function of
the received signal strength (RSSI) PR(xi, xj) and the noise
power PN0 [23]. Translation of RSSI PR(xi, xj) into packet
error rates pe(PR(xi, xj)) depends on the type of modulation
and the choice of error correcting codes. A generally good
approximation to the packet error rate is

pe(PR(xi, xj)) = erfc

(√
k
PR(xi, xj)
PN0

)
, (7)

where erfc(x) is the complementary error function, and k is
a constant that depends on modulation and coding [23]. To
determine communication rates Rij(xi, xj) we simply multiply
the information rate of transmitted packetsR0 by the probabil-
ity of successful decoding,Rij(xi, xj) = R0

[
1−pe(PR(xi, xj))

]
.

We can then focus on models of RSSI PR(xi, xj) that we
cascade into models of packet error rate and supported com-
munication rate Rij(xi, xj) by means of (7).

We assume that robots perform exploratory observations
of the radio frequency environment that they use to char-
acterize the mean P̄R(xi, xj) and variance P̃R(xi, xj) of RSSI
values. Consider then a set of N RSSI measurements zi
corresponding to transmissions from a source located at xi,s
towards a receiver located at xi,r . Group in yi := (xi,s, xi,r )
the coordinates of the source-receiver pair and denote as
Y = {y1, . . . , yN } and z = {z1, . . . , zN } the set of all
measurements. We consider regression techniques based on
a physical pathloss model in Section III-A and a modified
technique that captures spatial correlation through the use of
spatial Gaussian process in Section III-B. In both cases the
goal is to estimate PR(xi, xj) using observations Y and z.
It is important to note at this point that our goal in analyzing

predictive models of point-to-point signal strength, and thus
rates, is not to propose new models that more accurately
predict or fit the channels our systemwill experience. Instead,
our goal in this section is to explore the tradeoffs inherent
in choice of channel model with respect to factors such as
number of training samples, conservative representation of
uncertainty, and avoidance of computational complexity.

A. PATHLOSS MODELS
Received signal power PR(xi, xj) is determined by three
phenomena: path–loss due to the distance from the source,
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shadowing due to obstacles in the propagation path, and mul-
tipath fading that arises as a result of reflections and refrac-
tions. Of these three phenomena, path–loss and shadowing
can be incorporated into a predictive model with relative ease.
Fading, however, is difficult to predetermine [15], [22], [24].
Given this difficulty, we adopt the following standard model
for the received power PR,dBm(xi, xj) = 10 log(PR(xi, xj))
measured in dBm

PR,dBm(xi, xj)

= L0 − 10n · log(‖xi − xj‖)︸ ︷︷ ︸
Path–loss

−W (xi, xj)︸ ︷︷ ︸
Shadowing

− F︸︷︷︸
Fading

, (8)

where the term F is a zero-mean Gaussian random variable
with variance σ 2

F modeling fading effects. The term L0 is
the measured power at a reference distance 1 m from the
source, n is a path–loss exponent, and W (xi, xj) is a non-
smooth step function to model shadowing as a function of
the number of obstacles between source and destination. The
function W (xi, xj) is set to W (xi, xj) = 0 if there is line
of sight between xi and xj and to W (xi, xj) = w if there
are obstacles between this point. This model of shadowing
requires knowledge of the environment’s geometry. If this is
not available, we neglect shadowing bymakingW (xi, xj) = 0.
In either case, the problem of determining the mean P̄R(xi, xj)
and variance P̃R(xi, xj) of the RSSI reduces to the determi-
nation of the parameters L0, n,w, σF . Curve fitting to the
experimental data Y and z is used for this purpose though it
has been shown that these values can also be learned through
online measurements [16], [18].

B. SPATIAL GAUSSIAN PROCESS MODEL
While distance-based models provide a physics-based dimen-
sionality reduction that is reasonably effective for model-
ing point-to-point signal strength, radio signal propagation
is environmentally dependent and may warrant a spatially
correlated estimation. We investigate here the use of a Gaus-
sian process (GP) which is a generalization of a typical
Gaussian distribution that describes a distribution over func-
tions [25]. This allows us to generate probabilistic predictions
of received point-to-point signal strength based on a data-
driven model.

Gaussian process regression relies on a prior on the
expected value of the process, µ(y), and a prior on the covari-
ance of the process, k(y, y′). Measurements of the actual
process combined with the prior functions, (µ(y), k(y, y′))
and their so–called hyper–parameters govern the behavior
of Gaussian process regression. Using a GP to model signal
strength is not new. Indeed, methods have been proposed to
use GP-based models of signal strength for localization [24]
or to support transfer learning of wireless channel capabil-
ities [26]. We begin by extending prior work that employs
GP-based regression to map received signal strength from a
fixed source, i.e. inR2 [22], in order to consider the full point-
to-point signal-strength mapping problem in R4.

(a)

(b) (c)

FIGURE 2. RSSI data collection in Levine building. (a) Projection of
measurement dataset Y onto R2 for the Levine building environment.
Measurements are taken between pairs of robots in a 6 robot team but
we display the measurement locations by projecting onto R2 and only
displaying the location of the receiving node for each measurement.
The uniform training set Y is determined by choosing 1,000 of the
measurements (black points). (b) and (c) depict environment snapshots.

We temporarily suspend any prior knowledge of radio
signal propagation and set µ(y) = −90 dBm to coincide
with the minimum threshold of the radios in our experimental
testbed—making the prior assumption that communication
is not possible between two arbitrary points. We choose a
covariance function that is the sum of two squared exponen-
tials

k(y, y′) = σ 2
k,1 exp

−d(y, y′)2

2`21
+ σ 2

k,2 exp
−d(y, y′)2

2`22
. (9)

The intent is that one length scale `1 is longer and represents
path–loss components of the process while the other length
scale `2 relates to shadowing due to obstacles in the envi-
ronment. We rely on a non-Euclidian distance function d(·, ·)
to model our assumption that channels are symmetric. While
it may turn out that this assumption is incorrect, it serves
to significantly reduce the sampling burden in the training
phase. Thus, we define the distance function between points
y = (xs, xr ) and y′ = (x ′s, x

′
r ) as

d(y, y′)= min
{∥∥∥∥(xsxr

)
−

(
x ′s
x ′r

)∥∥∥∥, ∥∥∥∥(xsxr
)
−

(
x ′r
x ′s

)∥∥∥∥}. (10)

Given our choice of µ(y) and k(y, y′), the parameters of the
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(a)

(b) (c)

FIGURE 3. RSSI data collection in Towne building. (a) Projection of
dataset Y onto R2 for the Towne building environment. Though
measurements are made between pairs of robots in a 6 robot team, i.e.,
R2 ×R2 we display the measurement locations by projecting onto R2 and
only displaying the location of the receiving node for each measurement.
The uniform training set YT is determined by choosing 1,000 of the
measurements—displayed here as black points. (b) and (c) depict
snapshots from the environment.

GP are (σ 2
F , σ

2
k,1, `1, σ

2
k,2, `2) and the resulting model is

PR,dBm(xs, xr )

∼ GP
(
µ(y)+Ky,T

[
KT + σ

2
F I
]−1

(zT − µ(YT )) ,

Ky −Ky,T

[
KT + σ

2
F I
]−1

KT ,y + σ
2
F I
)
. (11)

Complete details on the derivation of (11) are available in
[22]. While it is feasible to consider a dense sampling of R2

as a single robot explores the environment, it is impractical
to make this assumption for the R2

× R2 space of all point–
to–point links that we are interested in. As a result, large
quantities of training data are necessary before this model
can make useful predictions. We address this difficulty by
incorporating the basic path–loss model used in (8) into the
mean function prior. Then,

µ(y) = L0 − 10n log10(‖xs − xr‖). (12)

Consequently, the covariance function can be simplified to be

k(y, y′) = σ 2
k,1 exp

−d(y, y′)2

2`21
(13)

since it only needs to take into account shadowing due
to obstacles in the environment. With the introduction of
a parameterized prior, the hyperparameters of the GP are
(σ 2

F , σ
2
k,1, `1,L0, n). The posterior for this Gaussian process

has the same form as (11) where µ(y) and k(y, y′) are rede-
fined in (12), (13). The idea of this model is that once a
coarse model for path–loss and small–scale fading has been
determined, reasonable predictions can be made anywhere

(a)

(b)

FIGURE 4. Local training locations. The local training set YT is determined
for (a) Levine and (b) Towne buildings by choosing 2% of the
measurements in a subset of the environment—displayed here as
black points.

in the space and local deviations are incorporated into the
posterior GP by the covariance function.

C. EXPERIMENTAL RESULTS
In order to compare the basic representations or models we
have proposed above, we analyze each model’s ability to
incorporate measurements and then make predictions in a
real environment. To demonstrate the generalization of each
model, we perform this comparison in two indoor environ-
ments of different design and materials on the University of
Pennsylvania campus. With construction occurring in 1996
and 2003, the Levine building, depicted in Fig. 2, offers
modern construction—interior walls are primarily made up
of wood or metal framing with drywall. The Towne building,
built in 1903–1906 and depicted in Fig. 3, offers drastically
different construction materials including brick and concrete
walls.
We collect data about the point–to–point links within a

team of nmobile robots as they execute a pre-planned deploy-
ment within the desired workspaces as depicted in Figs. 2
and 3. Each robot is capable of self–localization in the envi-
ronment and communication with its neighbors via a 2.4 GHz
Zigbee radio. This means that at each measurement round,
the system can collect on the order of n2 measurements in
the desired R2

× R2 input space. Each robot embeds its
current pose xs in the world–frame into a message packet and
broadcasts to its neighbors at a rate of 5 Hz. On arrival, the
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TABLE 1. Comparison of average log-likelihoods L̄(M).

Path–Loss GP GP With Path–Loss Prior

Levine uniform XT –3.25 –3.14 –3.08
Towne uniform XT –3.27 –3.21 –3.21

receiving robot includes its current pose xr and the received
signal strength z and logs the measurement. After an experi-
mental trial, signal strengthmeasurements are aggregated into
a single dataset of all measurements {Y, z}. We use a subset of
the data {YT , zT } to train each model. Training entails least–
squares parameter estimation for the distance-based methods
(8) and normal Gaussian process regression with ad hoc
selection of maximum likelihood hyperparameters for (11).

The log-likelihood of each model with parameters based
on training measurements {YT , zT } is then computed for the
full dataset {Y, z}. To make this a fair comparison between
the Gaussian process and parametric models, we make the
following standardizations. First, we assume that each mea-
surement is independently distributed. For all models, we note
that the received power at a single point can be represented as
a normally distributed random variable

PR,i(xs, xr ) ∼ N (P̄R,i(xs, xr ), P̃R,i(xs, xr )) (14)

with mean P̄R,i(xs, xr ) and variance P̃R,i(xs, xr ). Then, we
define the likelihood for each model i based on N measure-
ments {Y, z}, training {YT , zT }, and estimated parameters θ̂i
to be

L(Mi) = log P
[
z |Y,YT , zT ,Mi, θ̂i

]
= −

N
2
log 2π −

N∑
j=1

log P̃R,i(xs,j, xr,j)
2

−

N∑
j=1

(
yj − P̄R,i(xs,j, xr,j)

)2
P̃R,i(xs,j, xr,j)

(15)

where M1 indicates the path–loss model with parameters
θ̂1 = (L0, n,w, σF ), M2 indicates the GP model with param-
eters θ̂2 = (σ 2

F , σ
2
k,1, `1, σ

2
k,2, `2) and M3 indicates the

GP model with parameters θ̂3 = (σ 2
F , σ

2
k,1, `1,L0, n). To

normalize over the number of measurements, we consider
the average likelihood L̄(Mi) = (1/N )L(Mi). Models with
larger likelihood do a better job of explaining the captured
measurements. By training on a subset of the data and then
computing the likelihood over the entire set of measurements
in a given environment, we test for each model’s ability to
provide predictions throughout the environment.

We perform two sets of analysis on the data. In the first, we
choose a uniform subset of data {YT , zT } to train each of the
candidate models in order to provide a best case comparison.
Next, we go on to train each model based on a more realistic
local training subset that could be collected in the beginning
of a deployment into a new environment as depicted in Fig. 4.
In depth results on this analysis are beyond the scope of

(a)
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FIGURE 5. Uncertainty increases in unexplored regions for GP estimation
[cf. (11)]. (a) Shows sample source location xs, training measurements
(gray dots), measurements used to validate model (black dots), and the
line along which predictions are made. (b) Shows predicted output of the
GP with the darker dashed line and envelope depicting the prediction
from (8) while the solid line with lighter envelope depicts the prediction
from the GP in (11). (c) Depicts the evolution of the likelihood of both
models (8) and (11) as we consider points increasingly far away from the
source and training data.

this paper [27, Chapter 4] but we will report several key
conclusions.
As expected, increases in model complexity as we move

from M1–M3 result in increased model likelihood L̄ as
indicated in Table 1. Since we train the models on a subset
of the data used for likelihood comparisons, it is unlikely that
this improvement is the result of over-fitting. Furthermore,
we note that the σ 2

F parameter representing fading variance
decreases as we increase model complexity. This implies that
as the model becomes more expressive, deviations in the
underlying process can be explicitly modeled and are not
subsumed into the randomness used to model small–scale
fading.

A key feature of the GP model in M3 is its representation
of increased predictive uncertainty away from measurements
used for training. The local training set illustrates this as
depicted in Fig. 5 where we train the prior on short range line
of sight measurements and then make a series of predictions.
Since each prediction is given by a normal distribution, the
mean of that distribution matches the performance of (8) but
increased variance indicates decreased certainty about the
RSSI.

Further note that as we average performance across large
regions of each environment the model parameters end up
having similar values. Most RSSI variations are subsumed in
the noise term used to capture small scale fading. This leads
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us to conclude that prediction of RSSI across large operating
domains are inherently limited by the inability to model and
predict the behavior of scatterers that result in fading. The
robust routing methods we introduce in the following section
yield probabilistic guarantees despite this uncertainty.

IV. ROBUST ROUTING
Themajor difficulty in solving (4) is the uncertainty in achiev-
able transmission rates between nearby agents. Assuming that
actual channelsRij(x) coincide with their estimates R̄ij(x) may
result in a drastic difference between presumed and actual
end-to-end rates. A simple way to account for the uncertainty
inRij(x) is to discount R̄ij(x) to reduce the likelihood of having
actual rates smaller than the assumed value. A better way
to account for this uncertainty is to recall that end-to-end
not point-to-point failures are relevant. It is then possible to
exploit spatial redundancy to devise robust routes that guaran-
tee small changes in end-to-end rates despite large variability
in Rij(x) [28].

To develop robust routing algorithms, start by noticing that
computing the probability in (5), which is part of the prob-
lem formulation in (6), necessitates modeling the probability
distribution of aki (α, x). This is difficult in general. However,
if we explicitly consider the stochastic model of point-to-
point links via their means and variances, we can compute
the mean āki (α, x) := E

[
aki (α, x)

]
and variance ãki (α, x) :=

var
[
aki (α, x)

]
of end-to-end rates aki (α, x) as

āki (α, x) =
∑
j

αkijR̄ij(x)−
∑

j/∈dest(k)

αkjiR̄ji(x), (16)

ãki (α, x) =
∑
j

(αkij)
2R̃ij(x)+

∑
j/∈dest(k)

(αkji)
2R̃ji(x). (17)

A reasonable substitution for the probability in (5) is the dif-
ference between aki (α, x) and its mean āki (α, x) normalized by

its standard deviation
√
ãki (α, x). Indeed, for any probability

distribution, Chebyshev’s inequality implies that having

āki (α, x)− a
k
i,min√

ãki (α, x)
≥

√
1
ε

(18)

is a sufficient condition for satisfying (5). Using specific
assumptions on the distribution of Rij(x), tighter bounds can
be obtained. If, e.g., we assume that Rij(x) has a Gaussian
distribution, then (5) is equivalent to

āki (α, x)− a
k
i,min√

ãki (α, x)
≥ 8−1(ε) (19)

where 8−1(ε) is the inverse of the normal distribution’s
cumulative distribution function.

For given positions x, we want to find routing variables α
that satisfy (19) or (18)—which are respectively equivalent to
(5) or sufficient conditions to satisfy (5). In either case there
is some indeterminacy because there may be a non-unique set
of variables α that satisfy the corresponding inequality. This

indeterminacy provides a degree of freedom that we use to
increase reliability beyond the required level. For doing so
we introduce a slack variable a1 and write an optimization
problem that seeks to maximize the minimum aki,min + a1
threshold that can be maintained with probability ε.

α(x) = argmax
α, a1

a1

subject to
āki (α, x)− (aki,min + a1)√

ãki (α, x)
≥ 8−1(ε). (20)

In (20), āki (α, x) and ã
k
i (α, x) are given as in (16) and (17),

the routing variables α are further constrained to 0 ≤ αkij ≤ 1
and

∑
j,k α

k
ij ≤ 1, and the probability constraints are required

for all i and k .
The original goal as stated in (19) is to find routing vari-

ables that make aki (α, x) ≥ aki,min with probability ε. The
formulation in (20) seeks the best margin a1 for which we can
have aki (α, x) ≥ a

k
i,min+ a1 with probability ε. A large value

of a1 implies that the constraints in (19) are satisfied with
significant slack and that there is significant liberty to change
the physical configuration without violating communication
constraints. By maximizing a1 we find routing variables that
maximize the flexibility to change the configuration for which
α was chosen. This flexibility is instrumental for the mobility
control algorithms developed in Sections V and VI.
The optimization problem in (20) can be reformulated as a

second order cone program (SOCP) as long as ε > 0.5 so that
8−1(ε) > 0. The route allocation constraints 0 ≤ αkij ≤ 1 and∑

j,k α
k
ij ≤ 1 are linear in α. Further note that the probability

constraints in (20) can be rewritten as√
ãki (α, x) ≤

āki (α, x)
8−1(ε)

−
a1

8−1(ε)
−

aki,min

8−1(ε)
. (21)

Define the N × N matrix Ak = (αkij) and α =

(vec(A1), . . . , vec(AK )). Likewise, define the rate matrix R =
(Rij) which yields vectors r̄ = vec(R̄) and r̃ = vec(R̃)
that represent the aggregate rate means and variances respec-
tively. Then, define the matrix B = diag

(
(
√
r̃, . . . ,

√
r̃, 0)

)
with K instances of

√
r̃ and the variable y = (α, a1). For

each node, define the vector ci = (vec(R̄ · S), . . . , vec(R̄ ·
S),−1)/8−1(ε) with K instances of vec(R̄ · S) where R̄ · S
is the component wise multiplication of R̄ with a sign matrix
such that āki (α, x) = 8

−1(ε)cTi y. Finally, define the constant
di = − ai,min/8−1(ε) and rewrite (21) as

‖Ay‖ ≤ cTi y+ di. (22)

The constraint in (22) defines a second order cone because
it constrains the norm of a vector with a linear function.
A problem with conic and linear constraints and a linear
objective is, by definition, a SOCP. SOCPs are a particular
class of convex optimization problems that can be efficiently
solved with primal-dual potential reduction or interior point
methods [29]. The computational complexity of solving (20)
is of order O

(
(K · N 2)3.5

)
where the product K · N 2 of the
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number of flows K and the square of the number of agents N
represents the total number of variables in (20). In practical
implementations, the N 2 term can be reduced by eliminating
links where Rij is below a certain threshold.
Remark 1: The intuitive backing of robust routing algo-

rithms is to reduce end-to-end uncertainty by exploiting
spatial redundancy through traffic splitting among various
different routes. We expect to obtain this type of solution
from (20). Indeed, increases in a1 can be brought about by
either increasing the mean āki (α, x) or decreasing the variance
ãki (α, x). Since the mean is a linear function of α, traffic
splitting has a minor effect on āki (α, x). Since the variance is a
quadratic function of α, traffic splitting reduces ãki (α, x) by a
factor proportional to the splitting—recall that αij ≤ 1. Thus,
traffic splitting tends to increase a1 because it keeps āki (α, x)
more or less constant but reduces ãki (α, x) significantly.

V. LOCAL CONTROL
As per (6), the objective of mobility control is to decrease
9(x) while satisfying the probability constraints in (19)—
which are equivalent to P

[
aki (α, x) ≥ a

k
i,min

]
≥ ε. To check

for the feasibility of a configuration (α, x), we define the
probability margin as the minimum slack in probability con-
straints across all flows and sources,

ν(α, x) := min
i,k

 āki (α, x)− aki,min√
ãki (α, x

′)
−8−1(ε)

 . (23)

Notice that a necessary and sufficient condition for feasibility
of the physical configuration x is to have ν(α(x), x) ≥ 0,
with routing variables α(x) as given by the solution of the
optimization problem in (20). A sufficient condition for feasi-
bility of physical configuration x′ is the existence of a network
configuration α for which ν(α, x′) ≥ 0. In particular, for x′

close to xwe expect to have ν(α(x), x′) ≥ 0 since the channel
statistics at x and x′ are close.
In general, local controllers define velocities ẋ(t) propor-

tional to the negative gradients −∇9(x(t)) of the task poten-
tial. Since the problem in (6) is subject to communication
constraints, a local controller shall be based on potential
gradients projected onto the feasibile set ν(α, x) ≥ 0. The
complex description of the feasible set, however, precludes
computation of projected gradients. Instead, we consider the
probability margin ν(α(x), x) and modify the potential 9(x)
by adding the probability margin constraint into the objective
through a barrier function,

�(x) := 9(x)− log
(
ν(α(x), x)

)
. (24)

Since non-negativity is necessary and sufficient for feasibility
of physical configuration x, the potential �(x) in (24) is
defined if and only if physical configuration x is feasible.

The local control law is defined to implement gradient
descent on the modified potential �(x) introduced in (24)

u(t) = −∇9(x(t))+ µ
∇xν

[
α(x(t)), x(t)

]
ν
[
α(x(t)), x(t)

] . (25)

The term ∇9(x(t)) in (25) drives the system to satisfy the
task potential. The term ∇xν

[
α(x(t)), x(t)

]
/ν
[
α(x(t)), x(t)

]
serves as a barrier that drives robots away from configurations
for which there is a low probability of exceeding the desired
reliability in end-to-end rates. Robots are driven so that
ẋ(t) = u(t) from (25) until we reach a stationary point for
which u(x(t)) = 0. By considering the fact that we must have
u(t) = 0 at the fixed points of the local controller in (25) we
can prove that they satisfy one of the two conditions stated in
the following proposition.
Proposition 1: Solving (6) by application of (25) and (20)

represents a family of algorithms that are parameterized byµ.
Each instance will converge to a stationary point x∞(µ) :=
limt→∞ x(t) such that u(x∞(µ)) = 0. The limit configuration
x∞(µ) satisfies one of the following two statements
(i) The task is accomplished, i.e., 9(x∞(µ)) = 9min.
(ii) For all configurations x ∈ Bx∞(µ) in the ball

Bx∞(µ) :=

{
x : ν(α, x) ≥ µ

∇xν
(
α(x), x

)
∇x9(x)

}
(26)

it holds 9(x∞(µ)) ≤ 9(x).
Proof: The stationary point of the controller,

u(x∞(µ)) = 0, occurs when

∇x9(x∞(µ)) = µ
∇xν

(
α(x∞(µ)), x∞(µ)

)
ν
(
α(x∞(µ)), x∞(µ)

) (27)

for all components of x. Case (1) occurs when the system
globally minimizes the task potential function and locally
maximizes the probability margin so that ∇x9(x) = 0,
i.e., 9(x∞(µ)) = 9min and ∇xν(α(x), x) = 0.
Case (2) represents a local minima. Since∇x9(x) = 0 only

at the global minima of the task potential function, i.e. case
(1) above, the condition of local optimality occurs when (27)
is true and ∇x9(x∞(µ)) > 0. We can rearrange (27) to be

ν
(
α(x∞(µ)), x∞(µ)

)
= µ
∇xν

(
α(x∞(µ)), x∞(µ)

)
∇x9(x∞(µ))

for all components of x. Given the definition of α(x) as the
unique argument that maximizes the SOCP in (20), it is true
that

ν
(
α(x∞(µ)), x∞(µ)

)
= µ
∇xν

(
α(x∞(µ)), x∞(µ)

)
∇x9(x∞(µ))

≥ ν
(
α, x∞(µ)

)
for allα and all components of x. This is a necessary condition
for x∞(µ) to be a stationary point. Therefore a sufficient
condition for x to be a non-stationary point is that

ν
(
α, x

)
≥ µ
∇xν

(
α(x), x

)
∇x9(x)

. (28)

Thus, gradient-based optimization with (25) will converge to
a point where (28) doesn’t hold true. As a consequence we
must have that 9(x∞(µ)) ≤ 9(x) for all the x around x∞(µ)
for which (28) holds as we wanted to prove.
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Algorithm 1 Search for feasible node velocities
Require: Routing solution at x(t), α(x). Prediction function for

link rates, R(xi, xj). Desired velocity for each node ẋdesi . Initial
position of nodes at time t , x(t). Increment to use when scaling
velocities, 1v

1: vj = 0 for all j ∈ J {Initialize all node velocities to zero}
2: for k = 0, . . . ,K do {each flow k}
3: Q = Empty queue
4: M = Empty set {To store scaled nodes}
5: Enqueue(Q, k)
6: while Q not empty do
7: j = Dequeue(Q)
8: uj = ẋdesj /‖ẋdesj ‖

9: vj = ‖ẋdesj ‖

10: while vj ≥ 0 and ν (α(x(t)), x(t)+ v(t)T ) < 0 do
11: vj = vj −1v {Scale velocity of node j}
12: Add(M , j) {Mark node j as done}
13: end while
14: for i ∈ {J : αkij > 0} do {each child of j}
15: if i 6∈ M then
16: Enqueue(Q, i)
17: end if
18: end for
19: end while
20: end for

The typical stopping point is case (ii) in Proposition 1.
This case corresponds to a condition of local optimality for
(24). As µ → 0, the condition in (26) represents a network
configuration that cannot move closer to the goal configu-
ration without violating the network survivability constraint
ν(α, x) ≥ 0.

In implementation, the proposed local controller operates
in discrete time intervals of duration T . At times t = kT
for k = 1, 2, . . . optimal routes α(x(kT )) are computed as
per (20) and control inputs u(kT ) are computed as per (25).
Routing variables α(x(kT )) are used to route packets through
the network of robots and the physical positions of the robots
are updated as

xi((k + 1)T ) = xi(kT )+ βiTui(kT ) (29)

where constants βi scale control inputs ui(kT ) to ensure
ν(α(x(kT )), x((k + 1)T )) ≥ 0. I.e., constants βi guarantee
that routing variables α(x(kT )), optimized for configuration
x(kT ), are feasible operating point for configuration x((k +
1)T ). The algorithm in Sec. V-A describes a method for
finding βi. Robots are driven as per (29) until we reach a
stationary point for which u(kT ) = 0.
Remark 2: Computing ∇9(x(t)) is simple. Computing
∇xν(α(x), x) is difficult because: (i) Values of ν(α(x), x)
depend on rates Rij(x) that are not known in analytic form but
queried from the channel estimators discussed in Section III.
(ii) The margin ν(α(x), x) depends on α(x) that is com-
puted as the solution of the SOCP in (20). To approximate
∇xν(α(x), x) we consider a finite set of perturbations X′ of
the position x and define ∇̂xν(α(x), x) as the average of the
finite difference ratios,

∇̂xν(α(x), x) =
∑
x′∈X′

ν(α(x), x)− ν(α(x′), x′)
‖x− x′‖

(x− x′). (30)

To compute ∇̂xν(α(x), x) in (30) it is necessary to solve
the SOCP in (20) for all positions x′ ∈ X′. To reduce
computational cost we define a simplified gradient estimate
∇̂

(s)
x ν(α(x), x) as

∇̂
(s)
x ν(α(x), x) =

∑
x′∈X′

ν(α(x), x)− ν(α(x), x′)
‖x− x′‖

(x− x′),

(31)
where the routing solution α(x) is used as an approxima-
tion to α(x′). Though the lower compuatational cost of
∇̂

(s)
x ν(α(x), x) facilitates real-time implementation, use of the

gradient approximation ∇̂xν(α(x), x) will yield final config-
urations with lower task potential.

A. VELOCITY SEARCH
Constants βi in (29) are chosen so that the predicted proba-
bility margin ν(α(x(kT )), x((k + 1)T )) after time horizon T
remains positive. A simple solution is to uniformly chose all
βi = β such that

ν(α(x(kT )), x(kT )+ T (βu̇(t))) ≥ 0. (32)

A suitable value for β can be found through line search
algorithms. However, values of β tend to be prohibitively
conservative. To see this consider the case where one link in
the communication network is utilized such that any decrease
in its reliability will invalidate ν(α(x(kT )), x(kT ) + δ) ≥ 0.
Uniform scaling would force β = 0 and stop the motion of
all nodes.

A method to select βi separately is shown in Algorithm 1.
We consider the nodes participating in each flow k according
to the tree induced by the routing solution α(x(t)) in the
following breadth-first fashion. Starting at dest(k) for the first
flow, we set βdest(k) = 1 and then scale βi for all nodes
i ∈ {j : αkj,dest(k) > 0}, i.e. those sending data directly to
dest(k), so that

ν(α(x(kT )), xi(kT )+ βiui(kT )) ≥ 0. (33)

As above, the search for each βi is a line search. How-
ever, after scaling βi for immediate neighbors of dest(k), the
algorithm procedes with the 2-hop neighbors and so forth in a
breadth-first search facilitated with a first in, first out queue.

B. SIMULATION & EXPERIMENTAL RESULTS
We implement the local controller with position updates as in
(29), mobility control inputs given by (25), communication
variables obtained from (20), and using the backtracking
search in Algorithm 1. Computing controls based on local
optimization of the network-level end-to-end rates allows for
a method of realizing team deployment while maintaining
the necessary level of network connectivity. Fig. 6 depicts an
example deployment with three robots for a time-varying task
potential

9(x(t)) =

 x2,goal = (4, 0) t < 40
x2,goal = (8, 0) t < 60
x2,goal = (6, 5) t ≥ 60.

(34)
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FIGURE 6. Deployment via local control law (25) for a system with a fixed
access point, relay node x1 and lead node x2 which is controlled by a
time-varying task potential 9(x(t)).

0 20 40 60 80 100 120
Time s0

1

2

3

4

5

x

t 30s t 60s t 115s

(a)

0 20 40 60 80 100 120
Time s0.0

0.2

0.4

0.6

0.8

1.0
a2

t 30s t 60s t 115s

(b)

0 20 40 60 80 100 120
Time s0.0

0.2

0.4

0.6

0.8

1.0

1.2

P ai ai,min

t 30s t 60s t 115s

a1

a2

(c)

FIGURE 7. Performance of the local control law (25) demonstrating
convergence of 9(x(t)) in (a), the maintenance of expected end-to-end
rate greater than the threshold of a2,min = 0.1 in (b), and the
P(ai ≥ ai,min) > 0.6. The envelope surrounding E [a2] in (b) depicts the
60% confidence interval for realizations of the end-to-end rate with
stochastic Rij (x).

However, it is also interesting to observe that when task poten-
tial is minimized, e.g. t ≤ 30 s, the local control law (25)
maximizes the probability of each end-to-end rate exceeding
its minimum threshold. When the task potential switches so
that 9(x) is no longer minimized, the probability margin is
reduced so that the primary objective, minimization of 9(x),
is prioritized. Finally, Fig. 7(b) depicts the end-to-end rate of

the node x2 that must remain above a2,min = 0.1. Remember
that Rij(x) is a stochastic rate that affects the end-to-end rate.
The envelope around ā2 in Fig. 7(b) depict the effect that
different realizations of communication channels Rij(x) will
have on the end-to-end rate. Since the pursuit of minimiza-
tion on 9(x) is constrained to have a probability margin
ν(α(x), x) > 0, the end-to-end rate exceeds its threshold in
the presence of deviations to Rij(x).
Most importantly, this example demonstrates convergence

of the task potential 9(x) while maintaining P(ai ≥
ai,min) > ε as depicted in Fig. 7(a) and (c).
As shown through simulation in [1], the addition of a

second relay robot introduces local maxima to the poten-
tial function (24). Fig. 8 depicts a similar experimental trial
now with physical robots and real radio measurements—see
Section VII for a description of the experimental platform. In
this trial, the task potential function is 9(x) = ‖x3 − (4, 0)‖.
The scaling of velocities through selection of βi values is as
described above with an additional requirement that inter-
robot collisions be avoided, i.e. Algorithm 1 must ensure that
‖xi − xj‖ < R for all i, j of x(t + T ) = x(t)+ v(t)T .
At t = 80 s, the control law (25) has reached a stationary

point that does not allow the task potential function to be
globally minimized as depicted in Fig 9(a). This is due in
part because of the inter-robot collision avoidance as well as
the local maxima that are introduced to the potential function
(24) as in [1]. Throughout the trial, the controller maintains
the probabilistic guarantee for end-to-end communication of
the lead robot as depicted in Fig. 9(b). This is further reflected
in the measurements of actual achievable end-to-end rates as
depicted in Fig. 9(c).

In general, as the number of agents increases, the frequency
of local minima in −ν(α(x), x) becomes more and more of
an issue for local control. The addition of obstacles into
the environment and considerations for robots of physical
size add further difficulties as they not only affect feasible
x due to collision constraints, but also introduce non-smooth
components in the underlying point-to-point communication
links Rij(x).

VI. GLOBAL PLANNING
Local control drives the system towards local minima of (24).
With larger teams and more complex network topologies and
environments, local minima become inefficient. To succeed
in high-level situational awareness tasks, a global search of
(6) is necessary. To implement this global search we recast
(6) in terms amenable to application of motion planning
algorithms.

Let X be a bounded connected open subset of R2N rep-
resenting the joint state space for the team of robots with
xinit ∈ X denoting the initial configuration of the team.
The team’s goal is to reach the configuration space region
Xg = {x : 9(x) < 9min + δ} ⊂ X . In a telepresence
application where a lead agent must visit x`,g, we set Xg =
{x : ‖x` − x`,g‖ < δ} which is the set of configurations
that minimizes the potential 9(x) = ‖x` − x`,g‖2 within δ
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FIGURE 8. Deployment via local control law (25) for a system with a fixed
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a task potential 9(x(t)) = ‖x3 − (4,0)‖.
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FIGURE 9. The (a) convergence of 9(x), (b) expected end-to-end rate of
the leader, and (c) actual rates of all agents for the four robot trial
depicted in Fig. 8. Note that in (c), a1 and a2 must remain above 0 while
a3 must remain above 0.4 with probability 0.8.

tolerance. We further define the physical obstacle region Xobs
consisting of those configurations that place any given robot
on a physical obstacle and the communication infeasibility
region Xinf as those configurations for which it is impossible
to satisfy the network survivability constraint in (19),

Xinf =
{
x :

āki (α, x)− a
k
i,min√

ãki (α, x)
≥ 8−1(ε),

∀ α ∈
{
αkij : 0 ≤ α

k
ij ≤ 1,

∑
j,k

αkij ≤ 1
}}
. (35)

Algorithm 2 Rapidly exploring random tree algorithm
Require: Initial state x0, goal region Xg, representation of

the bounded configuration space X .
1: T .init(x0)
2: while i < N do
3: x̂← RANDOMSTATE(X , T )
4: xmin← NEAREST(T , x̂)
5: if xnew← EXTEND(xmin, x̂) then
6: T .add_vertex(xnew)
7: T .add_edge(xmin, xnew)
8: if xnew ∈ Xg then
9: return T
10: end if
11: end if
12: end while
13: return T

The joint obstacle region is given by the union Xobs ∪ Xinf
of the physical obstacle region and the virtual obstacle region
defined by the network survivability constraints. We want to
navigate the free space Xfree := X \ (Xobs ∪ Xint ) defined as
the complement of the joint obstacle region. We also define a
path in X as a continuous vector function σ : [0, s] → X
from the interval [0, s] to the joint configuration space X .
Concatenation of paths is defined as σ = σ 1|σ 2. Solving the
global planning problem is then tantamount to finding a path
σ : [0, s]→ Xfree such that σ (0) = xinit and σ (s) ∈ Xg.
The dimensionality of our problem and the high compu-

tational cost of verifying a state is not part of Xinf makes
deterministic search algorithms, such as A∗ and its vari-
ants, impractical. Trajectory optimization methods such as
CHOMP [30] and STOMP [31] are inapplicable since our
problem statement yields infinite cost and does not permit
gradient calculations from inadmissible states. Instead we
turn towards the large class of probabilistic motion planners.
Generally speaking, probabilistic roadmap methods rely on
randomly sampling from the space of admissible configura-
tionsXfree and then finding feasible paths between states. This
approach will perform poorly in our problem space since Xfree
can be thought of as a very thin slice of X—this is a common
limitation of probabilistic roadmap methods [32].
We therefore turn to the use of the rapidly exploring ran-

dom tree (RRT) algorithm [33]. This probabilistic search
method offers good space filling properties and efficient
exploration of an unknown space. The basic structure of a
RRT, as detailed in Algorithm 2, is to start with an initial
point x0 and expand to explore the workspace, adding states
in a tree-like structure until a feasible point is added such
that x ∈ Xg. At each step of the RRT algorithm we pick
a random state x̂ = RANDOMSTATE(X , T ) and select the point
xmin =NEAREST(T , x̂) that is closest to x̂ among those that have
already being added to T .We then attempt a virtual drive from
xmin to x̂ using the subroutine x = EXTEND(xmin, x̂). The point
x is the first intersection of this virtual path with the border
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of the free space region Xfree, or, if the border is not reached,
the random point x̂. The point x is then added to the tree T
as a branch connected to the point xmin that was closest to
x̂ among the preexisting elements of the tree. The algorithm
terminates when a point x ∈ Xg in the goal configuration is
added to the tree.

A common problem encounteredwhen applying RRT algo-
rithms to high-dimensional state spaces is that computation
of NEAREST(T , x̂) is inefficient for increasing tree sizes. We
adopt the strategy of storing the tree T in a KD-tree data
structure which stores states in Rd by recursively subdivid-
ing based on alternating axis-aligned hyperplanes [34]. This
enables approximate nearest neighbor calculations that main-
tain performance even as the dimension increases. The sub-
routines EXTEND(xmin, x̂) and RANDOMSTATE(X , T ) present chal-
lenges that are specific to the high dimensional network con-
nectivity problem in (6). The verification of feasible states as
EXTEND(xmin, x̂) is used to expand the tree towards x̂ is costly as
it requires the solution of the SOCPs in (20). The cost of uni-
formly exploring Xfree in the subroutine RANDOMSTATE(X , T ) is
prohibitive because the infeasibility space Xinf has a complex
geometry in R2N that cannot be decomposed into cartesian
products of obstacles in R2 as is common in navigation
problems. We discuss these two issues in the following two
sections.

A. EFFICIENT VERIFICATION OF FEASIBLE STATES
The EXTEND(xfrom, xto) algorithm attempts to virtually drive the
system from xfrom towards xto by successively verifying that
points along the line connecting xfrom and xto are in Xfree. It
returns the state xnew as the closest state to xto such that all
states sampled with precision 1x between xfrom and xnew are
in Xfree. In traditional motion planning applications, verifi-
cation that x ∈ Xfree is based on an algebraic constraint or
collision querywith amultitude of efficientmethods for doing
so [35]–[37]. While the necessary computation to determine
x /∈ Xobs is typically small, computation of x /∈ Xinf requires
a solution of the SOCP (20) and can be costly.

Consequently, we store α(x) for every node in T and reuse
methods from Section V to extend new states. By relying
on the fact that an optimal robust routing solution α(x) will
be feasible for neighboring states, it is often possible to
extend x towards x̂ without the costly overhead of numerical
optimization as detailed in Algorithm 3. After initialization
in lines 1–3, the algorithm proceeds by evaluating the net-
work feasibility at successive team configurations xnew =
x + 1x with the current robust routing solution α(x). Often,
the system can take several steps, i.e. lines 5–6, before the
networking constraints are violated as indicated by the rate
margin ν(α, xnew) ≤ 0. When this does occur, a new optimal
robust routing solution is computed from (20) as in lines 8–9.

B. BIASED SPACE SAMPLING
Random states x̂ are chosen to sample the space X ⊂ R2N

according to a probability distribution px(x) representing the
belief about configuration x being part of a feasible path σ (s).

Algorithm 3 EXTEND(xfrom, xto)
Require: Initial state xfrom, desired final state xto, verify

segment over K steps
1: xnew← x← xfrom
2: α← argmax (20) for rates Rij in configuration xnew.
3: 1x← (xto − xfrom)/K
4: while xnew 6= xto andα 6= ∅ do
5: xnew← x
6: x← xnew +1x
7: if ν(α, xnew) ≤ 0 then
8: {Recompute α if the probability margin at xnew is

negative}
9: α← argmax (20) for rates Rij in configuration xnew.
10: end if
11: end while
12: if xnew = xfrom then
13: return ∅
14: else
15: return xnew
16: end if

If nothing is known about σ (s), we choose px(x) uniform in
the space X ; i.e., we make px(x) = 1/v(X )I {x ∈ X} where
I {x ∈ X} denotes the indicator function of the set X and v(X )
the volume of set X . In general, at least the final configuration
is known in that σ (s) ∈ Xg. We can then bias the distribution
towards Xg by making

px(x) =
pg
v(Xg)

I
{
x ∈ Xg

}
+

1− pg
v(X \ Xg)

I
{
x /∈ Xg

}
. (36)

When pg = v(Xg)/v(X ) the distribution in (36) corresponds to
uniform sampling. Larger values of pg make x̂ more likely to
hitXg thanwhat corresponds to its volume v(Xg). Goal biasing
as in (36) improves efficiency of RRT algorithms by reducing
the number of samples necessary to find a feasible path σ (s)
in the high dimensional space X ⊂ R2N .

In some cases of interest, the volume of Xg is comparable
to the volume of X . In these cases, goal biasing offers little
improvement over uniform sampling. In, e.g., the telepres-
ence application where9(x) = ‖x`−x`,g‖2 the goal position
of the leader x`,g is known, but the positions of the remaining
robots are free. Thus, goal biasing would reduce the explo-
ration cost along the components associated with x` but keep
the cost of exploring the remaining 2(N−1) dimensions fixed.
To further reduce exploration cost in this case we construct
a prediction X̃g ⊂ Xg of the final configuration and bias
sampling towards this configuration prediction by making the
sampling distribution

px(x) =
pg
v(X̃g)

I
{
x ∈ X̃g

}
+

1− pg
v(X \ X̃g)

I
{
x /∈ X̃g

}
. (37)

Constructing a final configuration prediction X̃g is task-
specific.We describe here amethod applicable to the telepres-
ence application. To determine the configuration prediction
X̃g we determine configuration predictions X̃i,g for each robot
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FIGURE 10. Biased space sampling. Since we only know one component
of the goal state xg,` and it is expensive to expand our search space in
the high-dimensional state of the entire system, it is beneficial to bias our
search towards configurations that are deemed likely to succeed. In (a),
an obstacle-free path γ : [0, s]→ R2 is found between the access point
and goal location. In (b), the path is divided into N − 1 segments and
enlarged to represent a class of possible goal configurations X̃i,g.

and compute X̃g as the Cartesian product of these individual
sets, i.e., X̃g =

∏N
i=1 X̃i,g. Notice that for the lead robot we

can make X̃`,g = X`,g = {x` ∈ R2
: ‖x` − x`,g‖ < δ}.

Observe now that X ⊂ R2N is the Cartesian product X =∏N
i=1 Xi of the N decoupled spaces Xi ∈ R2 corresponding to

each individual robot. If we further assume a homogeneous
team of robots then all robots operate in the same space
Xi = Y , with a common set of physical obstacles Yobs, and
consequently a common free space Yfree = Y \Yobs. It follows
that the joint free space Xfree is also a Cartesian product of
N identical sets Yfree minus those configurations for which a
network cannot be established with sufficient reliability,

Xfree =
(
Yfree

)N
\ Xinf . (38)

While infeasible network configurations are captured by Xinf
as given in (35), Xfree can otherwise be described by the free
space of individual robots.

To exploit this observation, we first determine an obstacle
free path γ : [0, s]→ R2 such that γ (0) = x0 is the position
of the operating center and γ (s) ∈ X`,g; see Fig. 10(a). This
path can be determined by a RRT algorithm [38]. Since the
dimensionality of the space and the goal set X`,g are small,
an RRT algorithm biased towards the goal set finds this path

Algorithm 4 RANDOMSTATE(X )
Require: Configuration space description X , obstacle-free

path γ (s) → R2 such that γ (0) = x0 and γ (s) = x`,g,
probability pg.

1: X̃`,g = {x` ∈ R2
: ‖x` − x`,g‖ < δ}

2: X̃i,g← Enlarge
(
γk(i)

)
3: X̃g←

∏N
i=1 X̃i,g

4: p← Uniform[0, 1]
5: if p > pg then
6: x̂← Uniform(X \ X̃g)
7: else
8: x̂← Uniform(X̃g)
9: end if
10: return x̂

FIGURE 11. Task specification for Levine experiment. The lead node x5
follows a sequence of waypoints looping the environment. Initial
configuration shown.

with small computational cost. The obstacle-free path γ :
[0, s] → Yfree is split into N − 1 equal length segments γk
such that γk : [0, sk ]→ γ : [ks/(N − 1), (k + 1)s/(N − 1)].
The ith robot is then assigned to a segment by the function
k(i) based on the Euclidian distance to its midpoint such
that

∑
i 6=0,` ‖γk(i)(s/2) − xi,0‖ is minimized; see Fig. 10(b).

Segments are then enlarged to define the region X̃i,g for i 6=
0, `. Since this is heuristic for the goal configuration, the only
requirement on X̃i,g is that γk(i) : [0, s] → X̃i,g. A typical
choice is

X̃i,g = {xi : min
s
‖xi − γk(i)(s)‖ < d̃g}

where d̃g is a parameter controlling the enlarged size of X̃i,g.
The predicted final configuration is then computed as the
Cartesian product X̃g =

∏N
i=1 X̃i,g.

This procedure is summarized in Algorithm 4. In lines
1–3, the predicted goal configuration X̃g is constructed. A
random sample x̂ is then drawn uniformly from X̃g with
probability pg or from X\X̃g otherwise. It should be noted
that the construction of X̃g described above is based on the
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heuristic that a feasible goal configuration in an environment
with obstacles will resemble a line-of-sight communication
chain. Increasing the size of X̃g with large values of d̃g limits
the implication of this assumption.

VII. EXPERIMENTAL RESULTS
We rely on a centralized implementation of the algorithms
described in Section VI. Since the algorithms implicitly
maintain a connected network of agents, coordinated control
commands can be routed through the wireless network. A
centralized implementation is possible for navigation with a
small number of agents around N = 10 or lower since it is
tractable to exchange and maintain a global state. All exper-
iments are conducted on the Scarab ground platform at the
University of Pennsylvania; see Fig. 11 inset. The robots are
capable of accurate self-localization and are equipped with
off-the-shelf Zigbee radios. Zigbee uses O-QPSKmodulation
with MSK pulse shaping. It uses 16 channels spaced at 5 Mhz
and has transmission rates of 250 kb/s [39]. The nominal
noise figure is PN0 = −60 dBm.
Each experiment consists of a telepresence-type task that

requires a single lead robot, indexed by `, to visit one or more
locations in the environment while maintaining a desired
end-to-end communication rate a`,min with reliability ε to
a fixed operating center. The algorithms introduced in this
paper yield feasible configurations for the team—α(t) and
x(t) which represent the network and physical configura-
tions respectively. During an experiment, each robot probes
the communication channels with its neighbors to deter-
mine actual instantaneous measurements of the point-to-point
received signal strength at a rate of 5 Hz. This data is logged
locally and aggregated after each experiment to compute the
supported communication rate R̂ij(t) between node i and j
at time t . Using these measurements in conjunction with the
network routing solution α(t), we can compute lower bounds
on the actual achievable end-to-end rate at time t for each
node i, âi(α(t), x(t)).

Recall that the problem statement in (4) requires that
P
[
ai(α(t), x(t)) ≥ ai,min

]
≥ ε for all nodes i. Thus, in our

experimental verification each node must be able to maintain

âi(α(t), x(t)) > ai,min (39)

with probability ε. To achieve the desired end-to-end rates,
all nodes in the team must satisfy this constraint. Thus,
in experimental analysis we will evaluate (39) across the
duration of the experiment to determine the percent of time
âi(α(t), x(t)) > ai,min and use this as a metric for the success
of that trial.

As in Section III, we conduct experimental trials in two
buildings of different construction material to demonstrate
the generality of our solution. For the first trial in the Levine
building, we focus on a task that requires a shift in the basic
topology of the network while robustly maintaining com-
munication constraints. This represents a capability that will
not emerge from purely reactive local control methodologies.
For our second experimental trial in the Towne building, we

simplify the topological constraints on the task but increase
the difficulty of the scenario by training our predictive com-
munication models on a subset of the environment.

A. LEVINE BUILDING
Figure 11 depicts a series of waypoints that the lead node,
x5 must visit. Four additional mobile nodes, x1, x2, x3, x4
are available to relay data back to the fixed access point
indicated in the lower left of Fig. 11 with end-to-end rate
of a5,min = 0.25 with probability ε = 0.75. Each relay
node must maintain end-to-end rates greater than zero. The
deployment plan is based on a priori channel measurements
for model M1 from Section III that yield parameters L0 =
−51.3 dBm, n = 2.07,w = −7.58 dBm, σ 2

F = 31.6. The
predicted and measured end-to-end rates of each node are
depicted in Fig. 13.
First, notice that the instantaneous rate â5(α(t), x(t)) is

almost always above its minimum threshold of a5,min = 0.25.
In fact, it drops below the minimum threshold only 2.9% of
the time, well within the allowable reliability ε = 25% for this
problem specification. However, for that rate to bemaintained
in an end-to-end sense across the network, each node must be
able to support the necessary rate margin ai,min. The corre-
sponding fraction of time spent below the minimum threshold
for each of the instantaneous node rates â1, â2, â3, â4 is 9.2%,
0.8%, 0.3%, and 0.6%. This means the desired rates are not
supported during, at most, 13.8% of the time.
Representative network configurations are depicted in

Fig. 12. In Fig. 12(a), at t = 100 s, the predicted goal state
X̃g assumes the shortest line of sight path which is the left
hallway, i.e. a result similar to what one would expect from
reactive methods. As the system transitions to Fig. 12(b),
where the lead node x5 has been tasked to a waypoint in
the right hallway, the prediction for X̃g shifts to a chain of
relays going through the right hallway. This shift in the basic
topology of X̃g refocuses exploration of the joint state space
so that x4 moves towards a configuration that will lower the
performance of the network over the short term. As node x5
completes the desired loop, it utilizes x4 as a relay channel and
is able to maintain the desired end-to-end rate. This dramatic
shift in network topology would not be possible with a purely
reactive method and illustrates the advantage of deliberative
planning.

B. TOWNE BUILDING
Fig. 14(a) shows the environment for this experiment. The
simple geometry does not require dramatic shifts in network
topology. However, we complicate the problem by train-
ing the communication model on the subset of the environ-
ment labeled as training region in Fig. 14(a). The deploy-
ment plan is based on a priori channel measurements for
model M1 from Section III that yield parameters L0 =
−52.2 dBm, n = 1.95,w = −3.9 dBm, σ 2

F = 41.3.
The leader is deployed to the end of the corridor at time
t = 900 s—see Fig. 14(a)—and then returns to its initial
position.
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FIGURE 12. Snapshots from the sequence of feasible network configurations that satisfy the task depicted in Fig. 11. Line weight indicates the
expected amount of information to be transmitted over that point-to-point link.

FIGURE 13. The end-to-end rates of the nodes during the Levine building
experiment depicted in Fig. 11. (a) depicts the prediction, ā5, ã5, and
instantaneous, â5, end-to-end rate for the leader and (b)–(e) depict the
instantaneous rates of the relay nodes. In each plot, the solid line with
shaded envelope depicts āi and variations that occur with probability
ε = 0.75 based on ãi . The dashed black line represents the instantaneous
end-to-end rate âi . The dashed red link in (a) depicts the threshold
a5,min = 0.25.

Predicted and measured end-to-end rates of each node
are depicted in Fig. 15. Despite the limited training data,
the performance in this environment is comparable to the
Levine experiment. The empirical failure rate for each node
is 8.2%, 3.3%, 17%, 0.5%, and 16.7% for a1 through a5
respectively. The actual end-to-end rate, â5, for 300 ≤ t ≤
900 s is consistently offset from the prediction since this
robot is operating far from the training region. This result
is expected based on the communication modeling experi-

ments described in Section III. However, it also demonstrates
an important capability of the robust methods we employ
since we are still able to maintain communication within the
desired parameters when the model systematically overes-
timates the performance of point-to-point links. The use of
a more complex radio communication model, such as the
Gaussian process method (11), would incorporate increased
uncertainty in this region and require more conservative con-
figurations from the global planner—leading to improved
performance.

C. COMPLEXITY BENCHMARKING
With regards to the running time of Algorithm 2, we note that
it is difficult to characterize the performance of randomized
search algorithms. One factor is the complexity of Xfree which
is determined both by physical obstacles in the environment
as well as the constraints placed on feasible network config-
urations. Another component in determining running time is
the planning horizon defined as the number of states that must
be expanded in order to find a solution. However, we can
study the computational complexity of the proposed approach
through a benchmark task that can be solved many times with
different problem parameterizations.
We choose the benchmark task, depicted in Fig. 16(a)

which requires the lead robot to visit a series of positions
in the environment labeled 1–8 while communicating data
at a specified rate, amin, to the operating center located near
waypoint 1.We parameterize the task by the number of robots
N and the end-to-end rate of communication that must be
maintained amin while fixing the desired reliability ε = 0.8.
The performance is measured by the running time to compute
the series of network configurations necessary for the lead
robot to visit its sequence of waypoints. The average perfor-
mance is depicted in Fig. 16(b) based on 10 trials per task
parameterization.
As expected, increasing the number of robots adds to the

complexity of both the individual SOCP solutions as well as
the randomized search algorithm. Increasing the minimum
end-to-end rate, amin, has a similar effect on the complex-
ity. Intuitively, increased amin increases complexity because
it reduces the number of feasible configurations that can
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FIGURE 14. (a) Task specification for the Towne building experiment. It
requires the lead node, x5 to follow a sequence of waypoints that take it
as far as possible from the fixed operating center. (b) Snapshot from
t = 550 s of the deployment.

FIGURE 15. End-to-end rate performance during Towne building
experiment. Predicted rates āi and corresponding variances ãi along with
observed instantaneous rates âi shown for leader robot (a) and relay
nodes (b)–(e). Solid lines with shaded envelopes depict āi and variations
that occur with probability ε = 0.75 based on ãi . Dashed lines represent
instantaneous end-to-end rates âi . The dashed red link in (a) depicts the
minimum acceptable rate a5,min = 0.25 for the leader robot. Rates
exceed minimum performance thresholds most of the time.

support the required rate amin. This increases the planning
effort necessary to explore the workspace and find a feasible
path.

Randomized planning algorithms can only offer the guar-
antee of probabilistic completeness. Since there is no precise
way to determine when a task cannot be solved with the
current configuration, we test for task feasibility by stopping
the planning process after a specified timeout period. For the
purposes of this benchmarking, that timeout is 300 s for each
subtask. An artifact of this timeout is that tasks in extremely
complex spaces (e.g. amin = 0.51,N = 8) are not solved
though we know a solution exists (e.g. the solution for amin =
0.51,N = 7 is a subset of the possible solutions with N = 8).
As the complexity of the task increases, so does the variance
of the running time as depicted in Fig. 16(c) for a particular
task with amin = 0.61.

VIII. COMPARISON WITH EXISTING METHODS
Contributions to communication-aware deployment of robot
teams can be classified according to three axes: communica-
tion channel models such as fixed communication range, line
of sight, pathloss, or stochastic; network integrity metrics like
network-wide connectivity, supported end-to-end bit error
rate, or maintenance of desired rate constraints; and mobil-
ity control method namely local gradient-based methods or
global search.

Many of the early approaches to these problems adopt
simple channel models that are either binary measures of
connectivity or deterministic functions of distance [3]–[6]. By
coupling these channel models with graph-theoretic notions
of connectivity, it is possible to construct gradient-based con-
trollers that move agents to locally optimize global measures
of connectivity in an effort to maintain network integrity.
While some gradient-based control methods do incorporate
the avoidance of obstacles [7], [40], [41], local minima in the
control space due to the environment geometry often limits
their ability to maintain connectivity as explicitly demon-
strated in [40]. Furthermore, the use of simple channel models
and graph-theoretic notions of connectivity makes it impos-
sible to assure the network’s ability to support the team’s
task.

More recent work in this area extends the state of the art
with respect to the axes outlined above. While still relying on
a binary notion of connectivity, the approach presented in [8]
does incorporate notions of deliberative global planning and
is shown to operate effectively in realistic environments to
provide the existence of a communication network to amobile
user with known or unknown path. Incorporating a rate-
based definition of network integrity, the approach in [20]
jointly optimizes network routing and mobility to support
specific communication requirements based on deterministic
channel models. However, the control methods presented do
not consider geometric constraints that arrise due to obstacles.
Finally, the recent work presented in [21] uses stochastic
models for communication channels but assumes a fixed a
priori network topology and gradient-based mobility control
that incorporates obstacles in the same way as [40] and thus
suffers from the same limitations with respect to local minima
induced by environment geometry. Jitter is added to the local
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FIGURE 16. Running time for benchmark environment with global planner solving the task depicted in (a). The average running time for tasks with
different amin and number of robots N are depicted in (b). The variance of the running time for a particular task is depicted in (c).

FIGURE 17. The achievable end-to-end rates of the nodes during the
Towne building experiment depicted in Fig. 14(a) when utilizing a static
multihop routing. (a) depicts the prediction, ā5, ã5, and instantaneous,
â5, end-to-end rate for the leader and (b)–(e) depict the instantaneous
rates of the relay nodes. In each plot, the solid line with shaded envelope
depicts āi and variations that occur with probability ε = 0.75 based on ãi .
The dashed black line represents the instantaneous end-to-end rate âi .
The dashed red line in (a) depicts the threshold a5,min = 0.25.

controllers, but this only aids in escaping small local minima
and cannot address loop scenarios as in Fig 11.

In this work we consider stochastic communication mod-
els, network–wide rate–based connectivity metrics, and
global planning. While the advantages of using global plan-
ning and network wide connectivity metrics are clear, the
advantage of using stochastic communication models is less
so. In particular, the work presented here assumes stochastic
channel models but is agnostic to its particular form asmodels
with less accurate channel estimates will just result in more
conservative deployment plans. The question remains, how-
ever, of what are the advantages of a robust stochastic routing

FIGURE 18. Discrete simulation of the routing queue at each node leads
to a representation of the actual rate of information flow from node x5 to
the fixed operating center subject to (a) a robust routing protocol or
(b) static multihop routing protocol. The dashed red line in these figures
depicts the desired end-to-end rate of 0.25.

solution. In the remainder of this section we offer some
evidence supporting the use of robust routing techniques
rather than the more traditional deterministic routes often
employed.
We do this by comparing the ability to support an end-to-

end flow of information with robust routing approaches ver-
sus more traditional fixed multi-hop routing topologies. For
the purposes of this comparison, we utilize the experimental
deployment illustrated in Fig 14(a) with the associated predic-
tions and experimentally measured wireless communication
channels, i.e., the predicted and actual rates Rij. We assume a
static multihop topology to simplify analysis where messages
are relayed in a chain x5→ x3→ x1→ x2→ x4→ AP.
Figure 17 depicts the achievable end-to-end rates of each

node during the Towne building experiment described above.
Remember that network integrity requires every node to sat-
isfy the constraint on achievable end-to-end rate based on
the queue stability argument presented in Section II. It is
clear that the end-to-end rates based on static routing in
Fig. 17 do not perform as well as those based on robust
routing in Fig. 15. It is also important to note that dynamic
application of ad-hoc routing protocols may improve the
performance in Fig. 17, the robust routes used in Fig. 15
are computed a priori and implemented in an open-loop
fashion.
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We can also pursue a more generic comparison of the
performance under robust routing versus traditional multi-
hop topologies by using wireless channel measurements of
instantaneous supported point-to-point rates along with rout-
ing allocations to perform a data-driven discrete simulation
of the queues at each node. This provides a more tangible
comparison of the end-to-end rate from node x5 to the fixed
operating center during the deployment subject to both robust
routing and a fixed multihop topology. Figure 18 depicts
the resulting rates due to this analysis when we assume a
small finite queue size at each node. Notice that while the
robust routing solution supports an actual end-to-end rate
that exceeds the desired constraint with high probability, the
static routing solution is unable to ever maintain this level of
communication.

IX. CONCLUSION
We propose a system architecture that provides end-to-
end connectivity for teams of mobile robots as they pur-
sue operator–assigned tasks. Because point-to-point wireless
communication is uncertain, we adopt a stochastic model
for supported rates and develop optimal robust solutions
to the wireless routing problem. As nodes move to sat-
isfy their tasks, channel performance degrades and eventu-
ally invalidates even robust solutions to the wireless rout-
ing problem. We presented a novel approach to maintain
network connectivity across a team of mobile agents that
takes into account specific thresholds on the end-to-end rates
of individual nodes while also considering the stochastic
nature of communication channels. By specifically search-
ing for robust solutions, our approach yields configura-
tions with spatial diversity and increased probability of
success in the face of difficult to predict communication
channels.

As can be expected, local control approaches will converge
to solutions that are local minima of the concurrent mobil-
ity and network routing problem. As the number of agents
increase, these local minima drastically limit the performance
of the system. Thus, we propose a randomized global plan-
ning approach that attempts to jointly solve the mobility and
optimal network routing problems.

We present, to the best of our knowledge, the first example
of an experimental verification for a mobile communication
maintenance system that relies on an robust end-to-end rate
constraint for network integrity. Furthermore, we are able to
do this with limited assumptions about the model for point-to-
point achievable rates. In fact, our experiments succeed with
a coarse rate model that can be applied to a wide range of
environments. Finally, our experimental results illustrate the
value in pursuing global search methods rather than reactive
gradient-based methods in that we are able to find a sequence
of network configurations that would not emerge from local
optimization of network integrity.

The use of randomized planning techniques implicitly casts
our formulation as a feasibility problem. Future work will
focus on the incorporation of techniques from gradient-based

methods to decrease the time-to-plan and increase the opti-
mality of our solutions.
Another avenue for future work is to further study the rela-

tionship between the number of agents, problem feasibility,
and planning complexity. The benchmarking results above
present an interesting scenario where the addition of a node
shifts the complexity of the problem in such away that it is not
solved within our time constraints. In general, we maintain
that the communication maintenance problem should become
easier to solve as we increase the number of relay agents
beyond the minimum required for feasibility.
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