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ABSTRACT This paper is focused on nonlinear behavior associated with fourth-order autonomous lumped
circuit known as the Reinartz oscillator. It is shown that this naturally sinusoidal oscillator with three-winding
transformer can exhibit robust chaotic behavior. Essential scalar polynomial nonlinearity is not intrinsic to
transformer, but to active two-port element described by impedance parameters. The existence of complex
solutions is proved on numerical as well as experimental basis. In the first case, conventional routines for
qualitative analysis of dynamical flows were applied, based on either prescribed set of differential equations
or generated data sequence. In detail, a pair of the largest Lyapunov exponents are visualized with respect to
key system parameters, attractor dimensions, recurrence plots and bifurcation diagrams showing interesting
routes-to-chaos scenarios are provided to illustrate complexity of observed steady state motion. For the
second case, electronic circuits dynamically equivalent to investigated mathematical model will be designed,
constructed, and experimentally measured. Chaotic signals captured as oscilloscope screenshots will be
compared to theoretical counterparts.

INDEX TERMS Chaos, hyperchaos, sinusoidal oscillator, Reinartz oscillator, impedance parameters,
Lyapunov exponents, two-port modeling, strange attractors, recurrence plots, Lyapunov exponents.

I. INTRODUCTION
Despite relative rich history of research work done in the
field of nonlinear dynamics and chaotic circuits, complex
and unpredictable time evolution of electronic systems still
attracts interest of many design engineers. Chaos in this
sense can be roughly understood as a solution characterized
by waveforms having continuous and broadband frequency
spectrum which resembles noise. Although signals seem to
be random, are generated by deterministic system without
probability functions or uncertain entries. Chaotic systems,
thanks to specific formation of vector field that guarantee
stretching and folding of state trajectories, have additional
unique properties such as extreme sensitivity to very small
changes in initial conditions, dense and bounded attractors.
Also, very frequently, chaotic and hyperchaotic dynamical
systems exhibit significant sensitivity to changes of internal
parameters. On the other hand, certain degree of structural

The associate editor coordinating the review of this manuscript and

approving it for publication was Ludovico Minati .

stability (in the meaning of the vector field geometry) is
required for practical applications of chaos. One can easily
find examples of new modulation [1], [2], [3] techniques,
novel encryption methods that somehow utilize chaotic
dynamics [4], [5], [6], analog and digital secure communi-
cation principles [7], [8], random bit, multi-state or number
generators [9], [10], and many others.
During intensive research of chaos in the last four decades,

significant attention was paid to describe, model, analyze
and classify complex phenomena in nonlinear electronic sys-
tems. To date, chaotic behavior in different forms has been
observed in many well-known structures of analog building
blocks, starting with continuous-time frequency filters that
contain various active elements and ending with digital sys-
tems with logic gates. A brief list of these discoveries is
summarized in [11] and categorized regarding to the original
determination of the circuit. Of course, other comprehensive
review papers and books can be found as well. To put this
work into the context of discoveries made so far, naturally
sinusoidal oscillators forced into chaotic regimes should be
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reviewed and discussed briefly. Let’s start our short journey
with paper [12] where authors study many different topolo-
gies of famous Wien-bridge sinusoidal oscillators from the
perspective of chaotic dynamics and evolution of complex
state attractor. The same network structure, but with frac-
tional order memristor, is topic of contribution [13]. Phase
shift oscillators also belong to RC feedback oscillators that
can be easily turned into generators of chaos, as experi-
mentally evidenced in work [14]. Probably the most favorite
oscillator for radio-frequency applications is Colpitts circuit,
where active element (usually bipolar transistor) is supple-
mented by positive feedback with single inductor and two
capacitors. Robust chaotic regimes within this simple circuit
structure are discussed in paper [15]. Parasitic capacitance
intrinsic to common-emitter transistor stage is inevitable if
high frequency model of transistor is considered. This ele-
ment completes resonant tank in work [16] where author
demonstrate existence of chaos in such configuration via
practical experiments. Chaotic two-stage Colpitts oscillator
and its overall analysis is described in paper [17]. After
reciprocal change of capacitors and inductors the so-called
Hartley sinusoidal oscillator can be obtained. In this case,
complex behavior including chaos was pointed out in [18],
but only on simulation basis. A more sophisticated study
of this kind of oscillator is provided in [19]. There, JFET
and tapped coil is used as core engine for chaos evolution.
Substitution of series resonant circuit instead of inductor in
Colpitts topology gives rise to the Clapp oscillator, basically
fourth order autonomous dynamical system, where evolution
of either chaos or hyper-chaos was proved in paper [20].
There, the concept of generalized transistor is introduced,
i.e., active element is modeled as two-port using admittance
parameters. Of course, description of general active device
using impedance parameters is possible as well. Chaotic
self-oscillations in circuit where impedance-oriented active
two-port is completed with positive feedback that consists
of dual-wind transformer is described in paper [21]. It is
demonstrated that both impedance and admittance two-port
models of bipolar transistor can result in a system with
chaotic behavior. To end this list, papers [22], [23] present a
group of chaotic electronic systems having one or two transis-
tors, developed more-less by using heuristic approach. In the
first case, inductor less single supply networks are presented,
attractive from practical application viewpoint. In contrast to
chaotic oscillators mentioned before, hysteresis nonlinearity
is considered, leading to chaotic orbit that jump between
a pair of unstable equilibria. In the latter case of paper,
49 unique and very simple circuits with chaotic solution were
described. Authors state that random search was performed,
followed by manual adjustment of some circuit component
toward chaotic states. There, standard off-the-shelf transistors
have been used, supported by realistic bias point setting.

The motivation of this work is to show that the heart of the
Reinartz sinusoidal oscillator can serve as steady state chaos
generator. The presence of chaos in lower order fundamental
models of signal processing blocks is the promise of even

more complicated motion if complete system is considered.
The mathematical order of the system and, consequently,
probability to observe complex behavior, is raised by adding
working accumulation elements, by considering ubiquitous
parasitic properties of active devices, by coupling or blocking
components. Also, it is not an exceptional case if a numerical
analysis of naturally non-chaotic analog functional block
reveals chaotic dynamics with specific and useful properties.
For example, autonomous chaotic systems having interesting
formation of vector field, equilibrium structure, complexity
of strange attractor, significant values of entropy, dynamical
flow unpredictability or attractor density. Paper contributes
to this problem, addressed structure of the Reinartz oscillator
will be reduced to the simplest form. Moreover, bipolar tran-
sistor will show up to be replaceable by nonlinear resistor.

The organization of this paper is as follows. Second section
deals with derivation process toward mathematical model
of investigated fourth-order autonomous dynamical system,
the so-called Reinartz sinusoidal oscillator. A small piece
of linear analysis is given here, just as introductory part
to optimization procedure able to localize chaotic motion
in hyperspace of internal system parameters. Third section
provides graphical outputs resulting from standard numer-
ical algorithms applied on system with revealed ‘‘sets of
chaotic parameters’’. It is demonstrated that chaos is neither
numerical artifact nor long transient. Fourth section repre-
sents harbinger of experimental verification. Analog chaotic
oscillator that is flow-equivalent to analyzed simplified
Reinartz oscillator are designed in step-by-step manner. The
robustness of discovered strange state attractors, showing its
insensitivity to discretization of solved differential equations,
rounding errors and similar problems that generally arise
in numerical integration process, is clearly demonstrated.
Finally, some concluding remarks are given.

II. MATHEMATICAL MODEL OF OSCILLATOR
Mathematical modeling plays a crucial role in qualitative and
quantitative analysis of physical dynamical systems. The final
model should be maximally simple, sufficiently accurate and
reliable with respect to investigated phenomena. In electronic
circuits that process large signals, the presence of nonlinearity
should be considered. Simultaneously, for the high frequency
circuit operation, additional accumulation elements should be
connected to terminals of modeled active devices, respecting
the inertial behavior of element. Therefore, even fundamental
mathematical models of lower-order oscillators can be sub-
ject of chaotic oscillations. Parasitic accumulation elements
can raise mathematical order of circuit, more degrees of free-
dom simultaneously increase probability of chaos or allow
hyper-chaotic self-oscillations.

Suppose lumped electronic circuit illustrated in Fig. 1. This
sinusoidal oscillator was initially dedicated for generation
of single-tone signals in frequency band from tens of kHz
up to units of MHz. The biasing point of bipolar transistor
can be calculated after shorting all inductors and replacing
capacitor by disconnection of branch. Having biasing point
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transformed into numerical values of four impedance param-
eters, external passive circuit component count decreases to
four, as indicated in Fig. 2. This is the right place to state that
a three-winding transformer is employed, but only two coils
are magnetically coupled.

Moreover, linear magnetic coupling will be assumed such
that impedance matrix of three-port can be expressed as L1 0 ±M1

0 L2 ±M2
±M1 ±M2 L3

 ·
d
dt

 i1
i2
i3

 =

 v1
v2
v3

 , (1)

where Lk is self-inductance of k-th winding, Mn is a mutual
coupling between n-th and third coil. Signs associated with
individual mutual coupling coefficient represent case stud-
ies: situation of cooperative (+) or competing (–) magnetic
flows. In upcoming numerical analysis, M1,2 will be fixed
parameters, as these are related to a physical construction of
transformer. Conventional quasi-linear analysis can answer
the question about natural oscillation frequency and con-
ditions for which circuit produce oscillations with stable
amplitude. However, despite many passive circuit elements
being removed, further symbolic calculation leads to enor-
mously complicated fourth-order characteristic equation with
only little understandable explanatory value. Thence, rea-
sonable simplifications need to be adopted. By considering
typical values of circuit elements, properties of transformer
and parameters of bipolar transistor, oscillation mechanism is
restricted to parallel resonant tank and oscillation frequency
is defined by famous Thomson rule

fosc =
1

2π
√
L3C

. (2)

Schematic provided in Fig. 3 represents circuit structure
of the Reinartz oscillator with bipolar transistor modeled
as two-port by four impedance parameters: linear input and
output impedance z11 and z22 respectively, linear backward
trans-resistance z12 and scalar polynomial odd-symmetrical
forward trans-resistance z21 of the form

z21 (i) = α · i3 + β · i. (3)

Saturation-type nonlinearity typical for large signal models
of active elements are respected by condition α < 0 and
β > 0. Straightforward analysis leads to following system
of ordinary differential equations (ODE)

d
dt
vC = −

1
C
i1,

d
dt
i1 =

1
L3

(
vC −M1

d
dt
i2 −M2

d
dt
i3

)
,

d
dt
i2 =

1
L1

[(z12 − z11 − z22) i2 + z11 · i3 − z21 (i3 − i2)

−M1
d
dt
i1

]
,

d
dt
i3 = −

1
L2

[
z12 · i2 + z11 (i3 − i2) +M2

d
dt
i3

]
, (4)

where state vector is composed by four items x= (vC , i1, i2,
i3)T. Lets introducemagnetic coupling coefficient for j = 1, 2

FIGURE 1. The Reinartz oscillator, full circuit configuration commonly
used in practical applications.

as circuit quantity

kj = M2
j /
(
Lj · L3

)
, (5)

and define group of three auxiliary constants

1 = −
1

1 − k21 − k22
, ε =

z11 (M1 · L2 −M2 · L1)
L1 · L2 · L3

,

δ =
M1 · L2 (z12 − zzz − z22) −M2 · L1 (z12 − z11)

L1 · L2 · L3
. (6)

Note that at least one mutual coupling needs to be different
from zero. Having these definitions, set of ODE (where state
variables are normalized with respect to both frequency and
impedance) that as ready for further numerical investigation
will be

d
dt
vC = −

1
C
i1

d
dt
i1 =

1

1 − k21 − k22

[
vC
L3

−
M1 · L2 (z12 − z11 − z22) −M2 · L1 (z12 − z11)

L1 · L2 · L3
i2

−
z11 (M1 · L2 −M2 · L1)

L1 · L2 · L3
i3 −

M1

L1 · L3
z21 (i3 − i2)

]
d
dt
i2 = −

M1

L1 · L3
(
1 − k21 − k22

)vC
+

[
z12 − z11 − z22

L1
+

M1 · δ

L1
(
1 − k21 − k22

)] i2
+

[
z11
L1

+
M1 · ε

L1
(
1 − k21 − k22

)] i3
+
M1 − L1 · L3
L21 · L3

z21 (i3 − i2)
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d
dt
i3 = −

M2

L2 · L3
(
1 − k21 − k22

)vC
+

[
z11 − z12

L2
+

M2 · δ

L2
(
1 − k21 − k22

)] i2
+

[
M2 · ε

L2
(
1 − k21 − k22

) −
z11
L2

]
i3

+
M1 ·M2

L1 · L2 · L3
(
1 − k21 − k22

) z21 (i3 − i2) , (7)

where 1−k21 −k22 ̸= 0. Note that eleven system parameters are
involved, and this number needs to be reduced. Of course, the
process of mathematical model reduction must respect basic
physical principles that apply in analog circuits.

Our purpose is to find as simple circuit model as possible
but still exhibiting two features: initial Reinarz-like topology
and robust chaotic self-oscillations (no input driving signal).
Parameter space dedicated for optimization-based searching-
for-chaos routine can be significantly reduced by considering
hypothetical biasing point of generalized bipolar transistor.
Assume negligible backward trans-resistance and active two-
port operation as ideal current-controlled voltage-source, i.e.,
with zero input z11 = 0 � and zero output z22 = 0 � resis-
tance. After that, the second coil becomes shorted, and the
order of mathematical model decreases to three. Numerical
analysis of this situation with beginnings of coil windings as
indicated in Fig. 2 does not show chaotic attractors. However,
if collector coil is wounded in reverse fashion, numerical
results become more promising. Now we are speaking about
circuit provided in Fig. 4 and described by following set of
ODE

d
dt
vC = −

1
C
iA

d
dt
iA =

1
L3

[
vC +M1

d
dt
iC

]
d
dt
iC =

1
L1

[
−M1

d
dt
iA + z21 (iC )

]
, (8)

which can be rewritten in formmore convenient for numerical
analysis as

d
dt
vC = −

1
C
iA

d
dt
iA =

1
L3

[(
1 −

M2
1

L1 · L3 +M2
1

)
vC

+
M1

L1 · L3 +M2
1

z21 (iC )

]
d
dt
iC = −

M1

L1 · L3 +M2
1

vC +
L3

L1 · L3 +M2
1

z21 (iC ) , (9)

where the new state vector is x= (vC , iA, iC )T. Obviously,
only mutual coupling between first and third coil remains
active. Note that the investigated circuit de-facto represents
nonlinear resistor with cubic polynomial ampere-voltage
characteristics inductively coupled with simple resonant tank.

FIGURE 2. The Reinartz oscillator, simplified fourth-order network ready
for linear AC analysis.

FIGURE 3. The Reinartz oscillator, schematic with bipolar transistor
modeled as two-port by four impedance parameters.

FIGURE 4. The Reinartz oscillator without mutual coupling between
second and third coil leading to third-order system: a) circuit structure
with single current-controlled voltage-source, b) dual oscillator.

This represents significant difference if compared to ‘‘mature
study’’ of fourth order autonomous system presented in
paper [24].
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For experimental verification, a chaotic system containing
two inductors can be transformed into dual equivalent with
single inductor. Corresponding circuitry is provided in Fig. 4,
where E1 represents, in fact, static coupling of two capacitors.
Mathematical model consists of formally the same set of
ODE as system (7), but with circuit quantities and passive
elements interchanged by their duals, namely

d
dt
iA = −

1
LA
vA

d
dt
vA =

1
CA

[
iA + E1

d
dt
vB

]
d
dt
vB =

1
CB

[
−E1

d
dt
vA + y21 (vB)

]
. (10)

III. NUMERICAL ANALYSIS OF REDUCED MODEL
Regarding numerical values of internal parameters, origin of
state space is always equilibrium point of analyzed dynam-
ical system (9). Considering time derivatives equal zero in
system (8) one can easily learn that there are additional equi-
librium points placed symmetrically with respect to origin,
namely in positions

xeq =
(
veqC ieqA ieqC

)T
=

(
0 0 ±

√
−

β
α

)T
, (11)

Optimization routine used to reveal dynamical motion with
specific fingerprints deals with self-excited attractors, namely
those excited directly by fixed point located at origin of state
space. Thus, state space origin is kept unstable, and this rule
represents first step toward calculation of objective function.
To preserve this feature, at least one root of characteristic
polynomial expressible as

λ3 −
L3

L1L3 +M2
1

(
3 · α · i2C + β

)
λ2

+
1

L3C

(
1 −

M2
1

L1L3 +M2
1

)
λ

−
1

C
(
L1L3 +M2

1

) (1 + 3 · α · i2C
)

= 0, (12)

and associated with fixed point at origin (where iC = 0 A)
need to have positive real part. For the existence of strange
attractor, divergence of vector field calculated along orbit
needs to be negative, at least on average. Divergence of vector
field of dynamical system (9) is function of current iC

∇ · F = f (iB) =
L3

L1L3 +M2
1

(
3 · α · i2C + β

)
< 0. (13)

The last step is calculation of accurate flow quantifier that
can be rapidly calculated, such as the largest Lyapunov
exponent (LE) or, more general measure, dimension of state
attractor. Since nature inspired optimization procedures are
based on evaluation of population (group of solutions) and
individual calculations of fitness functions are not mutually
connected) it is also well-suited candidate for acceleration
using multi-core computers and parallelization of processes.

This can make convergence in lower dimensional parameter
space rather fast.

This is the right place to point out that fixing unity values
of accumulation elements L1 = L3 = 1 H and C = 1 F does
not violate requirements mentioned above. Since parameter
α associated with cubic term of polynomial trans-resistance
plays attractor rescaling function rather than role of bifurca-
tion parameter, only two parameters remain to be changed:
magnetic couplingM1 and linear term of trans-resistance β.

From the circuit theory point of view, magnetic coupling
coefficient is a real number between zero and unity. Under
this final restrictionM1 ∈(0, 1) and for negativeα, vector field
is dissipative in each point (regardless of iC ) and discovered
set of parameters leading to robust chaotic solution is

M1 = 680 mH , α = −1V 3A−1, β = 1.05�. (14)

This is indeed a physically reasonable combination of circuit
parameters; normalized with respect to time and impedance.
The numerical value ofM1 represents tight coupling, but still
a practically implementable magnetic coupling coefficient.
For parameter set (14), local vector field geometry around
origin is composed by stable eigenplane and eigenvector, i.e.,
eigenvalues are

λ1,2 = −0.078 ± j0.903, λ3 = 0.875. (15)

Simultaneously, both fixed points located at exterior of vec-
tor field are full repellors with strong spiral movement.
Geometry of vector field in the close neighborhood of
these equilibrium point is characterized by following set of
eigenvalues

λ1,2 = 0.33 ± j0.733, λ3 = 0.057. (16)

A typical strange attractor evolved for a group of parame-
ters (14) together with initial conditions x0 =(100 mV, 0 A,
0 A)T is graphically visualized in Fig. 5. For this numeri-
cal integration, the fourth order Runge-Kutta method with
fixed step size (set to 10 ms) was adopted, and final time
2000 s. Figure 5 shows that solution of dynamical system (9)
together with parameters (14) is highly sensitive to small
changes of initial conditions. To prove this, a group of 104

initial conditions was generated around the origin of state
space, adopting uniform distribution, and forming a cube
with edge 0.01 (black points). Then, final states are stored
after 1 s (red points), 10 s (green points) and 100 s (blue
dots) long time evolution. Starting with initial conditions
spread near state space origin, the most expanding direction
is along iC axis. Poincare sections reduce 3D problem into
2D map; slices are provided for zero voltage across capacitor
and zero current through inductor in series. The geometric
shape of observed typical strange attractor resembles popular
double-scroll attractor; spirals are evolved around unstable
fixed points placed in exterior positions (11). Before merged
together, two single-scroll attractors exist and can be cap-
tured also via careful experimental measurement. Recurrence
plots [25], time-vs-time visualization where signal periodic-
ity and self-similarity of its time domain segments can be
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judged. For this numerical analysis, the following group of
parameters was used: final time 500 s, time step 10 ms and
radius of sphere 0.05. If trajectory (only two coordinates are
visualized) returns within this small state space distance it
leads to successive detection of orbit repeating. For parameter
set (14) with slightly increased value of cubic polynomial
term α =−4 V3A−1 strange attractor shrinks and occu-
pies relatively small fragment of state space. By considering
dimensionlessmathematical model, maximal value among all
state variables does not exceed 1.2 (for default α maximal
value is about 2.2). Attractor compression feature can be
useful from viewpoint of full on-chip realization of chaotic
oscillator. Especially for low power dissipation applications,
where supply voltage is low as well, robust and small-sized
strange attractors are welcomed. More details about this
topic can be found in papers [26], [27]. Of course, too large
amplitudes of generated signals are not the only concern of
fully integrated analog chaotic oscillators. Process-voltage-
temperature variations can cause serious problems as well,
as demonstrated in tutorial papers [28], [29]. There, authors
nicely explained what needs to be done to construct oper-
ational transconductance amplifier (OTA) based lumped
chaotic systems resistant to common fabrication process-
oriented problems. As was done in case of this paper,
metaheuristics is used to find optimal values of chaotic sys-
tem internal parameters. The proposed approach is validated
via layout and post-layout simulations. Circuitry realization
of dynamical system should always be preceded by suffi-
ciently deep numerical analysis. Systematic design process
toward OTA based chaotic oscillator and its CMOS realiza-
tion is described in paper [30]. Authors adopt well known
Lorenz system and show how Matlab/Simulink software
can be used to implement both mathematical model of this
system and its application in master-slave synchronization.
Besides these results, authors showed method how chaotic
state attractor can be rescaled, i.e., how to decrease ampli-
tudes of generated waveforms without qualitative change
of global dynamics. For 180 nm UMC integrated circuit
technology, rescaling was performed via first and second
order filters with predefined transfer function using Laplace
transforms.

Fragments of parameter space where chaos can be local-
ized are visualized by means of Fig. 6. The largest LE is
0.166 and corresponding Kaplan-Yorke dimension is close
to value 2.28. High value of the largest LE occurs at
upper boundaries of M1 and β, one step before state tra-
jectory becomes unbounded. Degree of disorderliness of
time-domain sequences associated with generated signals can
be judged via approximate entropy (AE) concept. In our
case, the maximal value of AE [31], [32] derived from 500 s
long time sequence that represents voltage across capacitor
is 0.334. Note that combination of parameters M1 and β that
leads to the largest positive LE does not directly corresponds
to combination for the highest value of AE. Simultaneously,
places where state space attractor possesses the greatest value

FIGURE 5. Few selected numerical results: a) phase portraits of typical
strange attractor generated by system (9) having parameter group (14),
b) group of 104 initial conditions with zoom on short time trajectory
separation process, c) sensitivity demonstration, d) e) vC = 0 V and iA = 0
A cross-sections of typical attractor, f) g) recurrence plots calculated for
state variable vC (t) and iB(t) respectively.

ofmetric dimension are also different if compared tomaximal
AE.
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FIGURE 6. Rainbow-scaled surface-contour plots of the largest LE as 2D
function of key system parameters: a) M1 ∈(0.6, 0.7) H, β ∈(1, 1.1) �,
b) M1 ∈(0.5, 0.6) H, β ∈(1, 1.1) �, c) M1 ∈(0.5, 0.6) H, β ∈(1.1, 1.2) �, and
d) M1 ∈(0.6, 0.7) H, β ∈(1.1, 1.2) �. Each plot contains 101 × 101 points.

Figure 7 shows rainbow-scaled two-dimensional plot of
AE as function of system key parameters. Note that the

FIGURE 7. Rainbow-scaled surface-contour plots of AE as 2D function of
key internal system parameters: a) M1 ∈(0.6, 0.7) H, β ∈(1, 1.1) �,
b) M1 ∈(0.5, 0.6) H, β ∈(1, 1.1) �, c) M1 ∈(0.5, 0.6) H, β ∈(1.1, 1.2) �, and
d) M1 ∈(0.6, 0.7) H, β ∈(1.1, 1.2) �. Each plot contains 101 × 101 points.

graphical pattern suggesting chaotic behavior is different if
compared to profile of the largest LE. Graphical visualization
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FIGURE 8. Orcad Pspice simulation of chaotic system dual to Reinartz
chaotic oscillator: a) implementation using the ideal controlled sources,
b) frequency spectra of voltages across working grounded capacitors,
time-domain waveforms: c) long-time evolution, and d) zoomed pattern.

of AE results shows that generated waveform exhibits sig-
nificant level of entropic properties for many combinations
of magnetic coupling and linear term of forward trans-
resistance.

IV. EXPERIMENTAL VERIFICATION
True experimental verification via analog circuit construc-
tion and measurement belongs to standard and logical step
when presenting new chaotic dynamical system [33]. Also,
it clearly represents a step that can hardly be taken over by
artificial intelligence [34].

FIGURE 9. Dual Reinartz oscillator: a) circuitry realization using
off-the-shelf components, b) Orcad Pspice simulation of ampere-voltage
curve of polynomial resistor, calculated in interval of input voltages
−3.5 V to 3.5 V and zoomed area from −1 V up to 1V, both with voltage
step 1 mV.

Numerical analysis as well as circuit simulations are based
on problem discretization, it means that solution is available
at discrete instances of time, is burdened by rounding errors
and errors caused by finite precision of chosen integration
method. On the other hand, real practical measurement offers
smooth integration and, if circuit time constants are reason-
ably short, transient behavior is visually uncapturable.
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FIGURE 10. 1D bifurcation diagram calculated for magnetic coupling in
interval M1 ∈(0.2, 0.6) H with step 500 µH and experimentally confirmed
route-to-chaos scenario via period-doubling sequence.

FPGA based implementations of autonomous dynamical
systems can be found in many research papers, tutorials
and studies. For example, authors in work [35] illustrate
FPGA implementation of mechanical jerk function by syn-
thesizing the discrete equations which are the result of
one-step numerical integration method. After successful con-
struction, obtained oscilloscope screenshots are compared

with Matlab simulation outputs. Paper [36] demonstrate
that only three building blocks are necessary to practically
realize FPGA based 3D jerk systems, namely multipliers,
adders and subtractors. Interesting feature of investigated
systems is the presence of stable equilibrium, i.e., dynam-
ics that exhibits hidden chaotic attractors. Authors conclude
very good agreement between experimental observations and
numerical integration results. New chaotic dynamical system
and, after discretization of ordinary differential equations,
FPGA based implementation of this system is one of top-
ics of paper [37]. Authors propose pseudo-random number
generator with this FPGA part followed by successful NIST
randomness analysis. Of course, other interesting papers can
be cited here, proving that FPGA based implementation
of dynamical systems forms a bridge between numerical
analysis and analog realization.

The most straightforward circuit synthesis method toward
chaotic oscillator is based on integrator block schematic
of mathematical model. A very nice comprehensive review
paper thoroughly clarifying this synthesis method is [38].
Besides this, there are many papers [39], [40], [41], [42]
where curious readers can find case studies, design exam-
ples, both simple and complex. A common disadvantage
of these designs is the necessity to use many active and
passive circuit elements. Moreover, one parameter associated
with the initial mathematical model is often represented by
several parameters of final circuit. Therefore, to observe 1D
bifurcation scenario, simultaneous change of several circuit
parameters is needed. For example, change of M1 within
presumptive analog computer-based realization of system (9)
will be quite problematic. Fortunately, there are other ways
nonlinear dynamical systems can be realized.

Since continuous smooth change of transformer´s mag-
netic coupling as well as achieving its accurate specific value
up to decimal place is impossible in practice, linear trans-
former could be substituted by its dual, synthetic analog
equivalent. Principal schematic is depicted in Fig. 8, where
the form of static coupling is considered. Due to reciprocity,
following equalities Cx = Cy and E1 · F1 = ±E2 · F2 need
to be respected, i.e., ‘‘electrostatic transformer’’ is lossless.
Behavior of developed circuit is uniquely determined by set
of following ODE

d
dt
iA = −

1
LA
vA

d
dt
vA =

1
CA

[
iA + E2 · F2 · CX

d
dt
vB

]
d
dt
vB =

1
CB

[
−E1 · F1 · CY

d
dt
vA + G1 · V1 · vB − G1 · v3B

]
,

(17)

where electrostatic coupling coefficients E1,2 are in
Coulombs. Numerical values provided in schematic adopt
impedance and frequency scaling factors, both equal to 103.
Nonlinear resistor is implemented by one ideal differentiation
block (DIFF), two multiplication blocks (MULT) and output
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FIGURE 11. Plane projections of typical strange attractor generated by
chaotic third-order system derived from reduced Reinartz sinusoidal
oscillator: a) vC vs iC , b) iC vs iB.

FIGURE 12. Selected plane projections of interestingly shaped chaotic
attractors captured during experimental investigation of third order
Reinartz-like oscillator.

voltage controlled current source G. Parameter β can be
changed by voltage V1. Resistor R7 is redundant and creates
non-zero admittance from node to ground as required by
simulator. Pseudo-component IC1 serves to impose non-zero
initial conditions.

Next step is to replace ideal blocks by real commercially
available integrated circuits. The nonlinear part of vector field
can be realized by a cascade of two four-quadrant analog
multipliers AD633, see yellow area in Fig. 9. This figure
also shows the difference between simulated and theoretical
shape of ampere-voltage characteristic of nonlinear resistor.
Within working range of input voltage (about ±1.5 V for
typical chaotic attractor) nonlinear resistor distributes less
than 2 mA. Each pair of properly coupled ideal controlled
sources, namely current-controlled current source (Fk ) and
voltage-controlled voltage source (Ek ), can be substituted by
second-generation current conveyor [43]. To minimize the
required number of these active devices, a negative variant
was chosen, marked as EL2082. This versatile building block

offers the possibility to control transfer value of conveyed
current via external DC voltage source in the range from 0 V
to 2 V. This property will be used to smoothly adjust numer-
ical value of electrostatic coupling coefficient. If necessary,
large value of inductor can be decreased by additional fre-
quency scaling or, more likely, inductor is implemented as
active grounded synthetic element. Dynamical behavior of
circuit provided in Fig. 9 is determined by following set of
ordinary differential equations

d
dt
iL1 = −

1
L1
v1

d
dt
v1 =

1
C1

[
iL1 + V1 · C2

d
dt
v3

]
d
dt
v3 =

1
C2

[
−V2 · V3 ·

R2
R1

· C1
d
dt
v1 +

V9 · v3 − v33
R3

]
,

(18)

where v1 and v3 are voltages measured at current outputs
of integrated circuits U1 and U3 respectively. Resistors R7
and R8 do not take part in differential equations since these
serve for compensation of internal transfer constant 0.1 of
first analog multiplier (integrated circuit marked as U4).

Experimental verification of the chaotic nature of reduced
Reinartz oscillator is represented by oscilloscope screenshots,
see X-Y displays in Fig. 10, Fig. 11, and Fig. 12.

V. CONCLUSION
This brief paper demonstrates that significantly simplified
configuration of the Reinartz oscillator can produce robust
chaotic waveforms. The suggested simplification is based on
specific working regime of generalized bipolar transistor and
missing (negligible) magnetic coupling between two coils.
Via numerical and experimental tests, it has been proved
that generated strange attractors are neither numerical arti-
fact nor long transient behavior. Searching for chaos routine
went through element-reducing of circuit model used in
practice. It results in a final dynamical system having two
parameters; and each can be used to trace unique route-to-
chaos scenario. Since one bifurcation parameter is remaining
one magnetic coupling, which is very hard to adjust pre-
cisely, alternative synthesis of nonlinear dynamical system
is applied. Selected oscilloscope screenshots are provided to
clearly show that desired strange attractors are structurally
stable.

The importance of study presented in this paper is not only
in finding new chaotic dynamical system. Structural stability
of observed strange attractor and its distinct unpredictability
(promising positive value of the largest LE) predetermine it
for practical signal processing applications. The component
count of the new chaotic oscillator is the least possible: linear
transformer, capacitor, and nonlinear resistor. Such amount of
circuit elements is comparable to canonical chaotic circuits
with memristor [44]. Simultaneously, real circuit realization
of discovered chaotic system can be simple; even simpler than
specific network designed, described, and experimentally
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verified in this paper. Having magnetic coupling coeffi-
cient of real transformer measured, mathematical model
of proposed third-order dynamical system can be rescaled
accordingly to this numerical value. Then, the final chaotic
oscillator can be constructed by following the original three
component circuit configuration.
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