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ABSTRACT Digitalization has enabled the potential for artificial intelligence techniques to lead the power
system to a sustainable transition by extracting the data generated bywidely deployed edge devices, including
advanced sensing and metering. Due to the increasing concerns about data privacy, federated learning has
attracted much attention and is emerging as an innovative application for machine learning solutions in
the power and energy sector. This paper presents a holistic analysis of federated learning applications
in the energy sector, ranging from applications in generation, microgrids, and distribution systems to
the energy market and cyber security. The following federated learning-based services for energy sectors
are analyzed: non-intrusive load monitoring, fault detection, energy theft detection, demand forecasting,
generation forecasting, energy management systems, voltage control, anomaly detection, and energy trading.
The identification and classification of the data-drivenmethods are conducted in collaboration with federated
learning implemented in these services. Furthermore, the interrelation is mapped between the categories
of machine learning, data-driven techniques, the application domain, and application services. Finally, the
future opportunities and challenges of applying federated learning in the energy sector will be discussed.

INDEX TERMS Data-driven techniques, energy service, federated learning, smart grid.

I. INTRODUCTION
The energy sector is currently experiencing a rapid digital
transformation characterized by a significant increase in data
availability. The dramatic increase in data is largely generated
by the adoption of Intelligent edge devices, such as advanced
metering infrastructure [1], [2], which have paved the way for
the digitalization of energy systems, fundamentally reshaping
the way we approach energy management. The vast amount
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of data, including operational and non-operational data col-
lected by these intelligent systems, opens doors to a multitude
of potentials to power a wide array of service applications to
optimize and enhance the efficiency of energy systems [3].
To harness this potential and make better-informed decisions
regarding grid services [4], data-driven techniques are imper-
ative. Nevertheless, raw data from the power system need to
be preprocessed before developing data-driven algorithms for
energy services [5].

While data-driven techniques bring considerable bene-
fits, they simultaneously introduce significant challenges,
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particularly in data privacy and security. The extensive data
centralization required for model training will compromise
end-user privacy, as some sensitive information could be dis-
closed. Users may be unwilling to share the data with others,
considering business competition and technical problems.
Additionally, regulations on data privacy, such as the General
Data Protection Regulation (GDPR), which was applied in
the EU in 2018, enhance data privacy when data is shared
between different parties [6].
Besides, traditional data-driven algorithms will also have

technical issues, especially communication overhead prob-
lems, due to the frequent data exchange with central
servers [7]. Data insufficiency is another critical problem
since centralized models typically need massive datasets
to avoid overfitting. However, customers are usually either
unable or reluctant to provide sufficient data for accurate
model training, such as limited available data from individual
customers or new buildings [8], [9].
To address the referred concerns, federated learning (FL)

has attracted much attention due to its unique training
methodology and features. Federated learning is a distributed
learning paradigm that allows training the local in each agent
without collecting all data from other agents to the central
server, which will result in heavy network traffic. Moreover,
privacy concernswill also be alleviated since only the updated
parameters are transferred in the model training process.
Regarding data insufficiency, transfer federated learning can
help set up the model by applying datasets from similar
customers without leaking their privacy [9].

Several recently published papers review the state-of-the-
art of FL in various fields [6], [10], [11], [12], [13], [14],
[15], [16], offering insight into the definition, categories,
challenges, opportunities, and general applications. In [6],
promising applications related to service recommendations
and edge computing integrating mobile edge devices and FL
are introduced. The work in [11] summarized the characteris-
tics of FL and addressed the optimization algorithms to tackle
the challenges in communication efficiency and data privacy
and security, classifying the real-world applications in various
domains, including mobile devices (smartphone keyboards
and motion sensors), industrial engineering (environment
protection, image detection, and representation), and health-
care (MRI). Furthermore, [12] presents how FL works in
some critical areas such as finance, transportation, and natural
language processing (NLP), while [13] identifies the current
main applications of FL and the future use directions, clas-
sifying them into applications to technologies including AI,
NLP, blockchain, the Internet of Things (IoT), autonomous
vehicles as well as resource allocation. Additionally, [13]
discusses application to market use cases in healthcare, data
science, education, and industry are presented. Future use
cases such as IoT, battery management, autonomous vehicles,
and recommendation engines are also discussed.

Some review papers delve into FL applications within
specialized domains. The authors of [14] concentrate on FL
applications in IoT networks, encompassing Industry 4.0,

smart city and home,metaverse and virtual reality, healthcare,
and autonomous driving. Reference [15] highlights FL appli-
cations in wireless communications covering the spectrum
of management, edge computing, caching, and 5G networks.
Besides, [16] provides a detailed context of FL applications
in the Internet of underwater things, spanning environmen-
tal monitoring, navigation and localization, and underwater
exploration.

However, little attention has been paid to the applica-
tions of FL in power and energy systems. In [10], some FL
use cases for energy systems are presented after describing
the data aggregation algorithms and how the updates from
each local model of the local client are aggregated into the
central server. These cases refer to some FL applications.
Nevertheless, the whole range of possible applications is
not classified. Furthermore, data-driven techniques that col-
laborated with FL to fulfill each energy service have not
been analyzed in depth. Apart from this, the interrelationship
between data-driven techniques, machine learning categories,
potential energy services, and application domains has not yet
been addressed.

To the best of the authors’ knowledge, there is no system-
atic assessment paper that holistically analyses and evaluates
machine learning techniques collaboratively employed with
federated learning, specifically within energy applications.
Motivated by the increasing growth of research and promising
application in power systems, this study is to conduct a com-
prehensive assessment within the domain of power systems.
In particular, the federated learning potential for ensuring
data privacy in energy services that enhances the operation
of electrical power systems is analyzed. These services are
based on operational and non-operational data that would
play critical roles in fulfilling energy services, including
weather data, socioeconomic data, and energy market data.
The objective is to provide valuable insights that can serve
as a foundation for future applications and implementations
in this field. This study summarizes the characteristics of FL
and analyzes the challenges of various applications where
data-driven models have been integrated with FL. In addition
to this, the interrelation between the data-driven techniques,
the application domains, and energy services will be mapped.

The main contributions of this study are listed as follows:
• This study provides a comprehensive review and analy-
sis of FL-based applications in the energy sector. It con-
tains a detailed examination of FL techniques integrated
with energy services, like non-intrusive load monitor-
ing, fault detection, energy theft detection, demand
forecasting, generation forecasting, energy management
systems, voltage control, anomaly detection, and energy
trading.

• The data-driven techniques that collaborate with feder-
ated learning to enable energy services are identified in
this paper. The interrelationships between models and
the grid services are mapped, identifying the different
machine-learning techniques integrated with FL that can
facilitate the respective grid services.
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• Besides, this paper identifies future opportunities and
challenges for FL applications in power systems. It ana-
lyzes the FL-based applications where FL could signif-
icantly influence the advancement of intelligent power
systems, such as data privacy and security, communica-
tion cost reduction, and data availability. At the same
time, challenges, including aggregation algorithm selec-
tion and collaborated machine learning model selection,
are also highlighted.

This paper is structured as follows. The overview of feder-
ated learning is presented in Section II, where the definition,
the driving forces to apply FL in power systems, and the
machine learning techniques integrated with FL are detailed.
The categories of FL based on data partition and network
structure are presented in Section III. In Section IV, federated
aggregation algorithms are introduced. Data-driven services
based on the application of FL in power systems are analyzed
in Section V. Discussions on the interrelationship between
the four dimensions, including the machine learning cate-
gories, the data-driven techniques, the application domains
and services, and the opportunities and challenges for the
energy sector, are presented in Section VI. In Section VII,
some conclusions are drawn.

II. FL CONCEPT, OPPORTUNITIES, AND COLLOBORATED
MACHINE LEARNING TECHNIQUES FOR POWER SYSTEMS
The goal of this section is to present the FL definition and
conception (Subsection A), to identify current opportunities
for the applications of FL in power systems (Subsection B),
and to analyze the machine learning techniques that can be
collaborated with FL (Subsection C). Federated Learning is a
decentralized learning technology that can be used to alleviate
challenges such as data privacy protection, data transmission
overhead, and data insufficiency [7], [8], [17], [18], [19], [20].
This potential opens up opportunities for its application to the
energy sector.

A. DEFINITION AND CONCEPTUAL EXPLANATION OF
FEDERATED LEARNING
Federated learning, as a decentralized paradigm learning, was
first introduced by Google in 2016 [11], [21], which has
changed the way collaborative model training is formulated
across distributed datasets located in edge devices while
enabling privacy preservation and security. The fundamental
difference between FL and traditional centralized learning
methods lies in the ability to train a model without necessi-
tating the centralized collection of raw data from local clients
to a central server.

In comparison with federated learning, distributed learning
approaches show different characteristics in their objec-
tives and training methodologies, though both learning
approaches enable collaborative learning across multiple
agents. As described in [22] and [23], distributed learning
involves agents working collaboratively to solve a common
problem or achieve a shared objective, with agents shar-
ing information with each other and learning from their

individual knowledge or data. Meanwhile, federated learn-
ing focuses on training a global model through machine
learning models across edge agents without exchanging raw
data. This distinction reveals why FL outperforms distributed
learning approaches in terms of data privacy preservation
and communication overhead reduction. In relation to privacy
protection issues, [24] highlights the utilization of the Pailier
cryptosystem encryption approach between the communica-
tion, while federated learning can inherently preserve data
privacy by transmitting only model updates in the train-
ing system. Moreover, federated learning can incorporate
encryption approaches such as differential privacy encryption
mechanisms, which can also be adopted into federated learn-
ing to further enhance sensitive information in the training
process.

Based on the operational framework of FL, it can be
described as a multi-stage process that is structured into
six steps: initialization, local training, model update, model
aggregation, iterative process, and global model update [25],
[26]. These six stages together constitute the process of fed-
erated learning, enabling collaborative model training across
decentralized data sources while safeguarding data privacy.
This approach has found applications in diverse domains,
including engineering, healthcare, finance, and IoT. This arti-
cle will give a conceptual explanation of how FL works as
follows:

1. Initialization: the FL process will commence since the
central server initializes a global model, and this global
model typically serves as a preliminary model.

2. Local training: In this phase, the global model is dis-
tributed to the edge clients, and local training will be
demonstrated using their own local datasets. Besides,
the individual characteristics will be adapted to the
global model.

3. Model update: after the local training process, the edge
clients will generate the model updates, which will be
sent to the central server. The model updates differ
across clients due to the diversity in local training with
different local datasets.

4. Model aggregation: in this stage, model updates will
be sent to the central server, where the updates are
aggregated using federated aggregation algorithms such
as FedAvg and FedSGD, as further elucidated in
Section IV.

5. Iterative process: This process will repeat from stage 2
to stage 4 until convergence is achieved.

6. Global model update: In the final stage, after achieving
convergence, the updated globalmodel will be sent back
to the participating edge clients.

B. THE CHALLENGES TO BE ADDRESSED APPLYING FL IN
THE POWER SYSTEM
Federated learning has been adopted in various domains,
such as healthcare, transportation, finance, and natural lan-
guage processing, benefiting from its capabilities to enhance
data privacy, reduce communication overhead, and distribute
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computational complexity. Notably, in the context of the
energy sector, the scientific community is increasingly
exploring the adoption of federated learning to address
some challenges resulting from data-driven approaches in the
energy sector. This section outlines the primary motivations
for integrating FL in power systems, with each point offering
an opportunity to contribute to energy systems improvement.

To attain a comprehensive understanding of motivating
factors, their definitions and a brief explication will be given
as follows:

• Data privacy and security: this refers to the protection
of sensitive information from unauthorized access and
breaches. In the power system, where data often con-
tain confidential consumer information, FL can preserve
data privacy by allowing model training locally on local
device clients without sharing raw data. Techniques like
federated averaging and differential privacy ensure that
only model updates without the sensitive information
being transferred for global model training [25].

• Communication overhead or cost: it indicates the cost
and overhead during data transmissions across the com-
munication networks. FL can reduce communication
overhead by minimizing the need to transmit large vol-
umes of raw data to a central server. Instead, only model
updates are shared between central servers and clients,
significantly reducing communication costs, which can
be particularly advantageous in power systems with
remote or distributed data sources [27].

• Computational complexity: this involves the power and
time required to process the data. FL distributes the com-
putational load across local devices or clients, which can
enhance computational efficiency. This is particularly
beneficial when dealing with complex system models
and large datasets [28].

• Scalability: scalability is the capability of a system to
handle an increase in workload without performance
degradation. FL is inherently scalable as it can handle
an increasing number of devices or clients participating
in the model learning process [29].

• Data insufficiency: data insufficiency occurs when the
available data is too limited to build accurate models.
FL can be employed in scenarios with insufficient data
by leveraging information from multiple sources with-
out sharing raw data. This is valuable in power systems,
especially for some newly equipped components in the
power system, which may have limited data availabil-
ity [7].

• Model generalization ability: model generalization abil-
ity refers to the ability of a machine learning model to
deal with unfamiliar datasets. FL can improve model
generalization by training on diverse and distributed
datasets [30].

• Data heterogeneity: data heterogeneity refers to the data
with diverse or varied formats, contents, or character-
istics within one dataset or multiple datasets. FL is
well-suited for dealing with heterogeneity, as it can train

models on data with varying characteristics and distri-
butions across different locations or entities within the
power system [20].

FIGURE 1. Motivating factors for applying FL in publications from
2019 until 2023.

Table 1 outlines the driving forces to apply FL within
energy services, providing a brief introduction to the specific
challenges FL is proposed to overcome in energy sectors.
Fig. 1 portrays a bar graph encapsulating the predominant
driving forces to integrate federated learning within the
energy sector in recent literature. As indicated from the illus-
tration, preeminent concerns are centered around data privacy
and security, followed by communication overhead or cost,
data insufficiency, and data heterogeneity. Scalability and
model generalization ability have remained less emphasized
areas of research within this domain.

C. OVERVIEW OF MACHINE LEARNING TECHNIQUES
COLLABORATING WITH FEDERATED LEARNING
The substantial amount of data generated in the power system
has provided the potential for innovative energy services
through the application of machine learning (ML) algorithms.
When compared to traditional centralized machine learning
approaches, machine learning techniques trained in a fed-
erated manner can fulfill energy services while addressing
challenges such as data privacy and data silos.

Federated Learning serves as a collaborative approach dur-
ing the model training process, where the initial data-driven
model is distributed to clients for local training. Therefore,
a variety of ML techniques that can be integrated with feder-
ated learning will drive innovation in the power and energy
sectors. Fig. 2 provides a depiction of the ML techniques
mentioned in the reviewed literature with respect to their
classifications.

As outlined in the study [93], machine learning approaches
are typically divided into three categories: supervised learn-
ing, unsupervised learning, and reinforcement learning.
Supervised learning is a type of machine learning algorithm
that is trained on a labeled dataset, where the training data is
paired with an output label. This process is used in classifi-
cation tasks where the labeled dataset represents categories
and regression tasks, where the labeled dataset indicates the
data to be forecasted. Within the energy context, regression
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TABLE 1. The driving factors for applying FL in the power and energy systems.

methods are primarily applied to prediction tasks such as
demand forecasting [70], [77], generation forecasting [38],
and voltage forecasting [61]. Classification methods are typi-
cally employed in scenarios where the objective is to identify
specific cases based on historical data. The general applica-
tions mainly involve energy theft detection [83] and anomaly
detection [87].
In comparison to supervised learning, unsupervised learn-

ing aims to learn patterns from unlabeled data [94]. For
instance, clustering techniques such as K-means are used to
group data points based on similarity without prior labels.
In the energy sector, clustering can be used in load profile
clustering.

Reinforcement learning (RL) is a type of machine learning
where agents learn to make decisions by interacting with
an environment to maximize the cumulative rewards [95].
This computational and model-free approach is applicable
for control, operation and management. Hence, it can be
implemented in energy management systems [28], [89] and
voltage control issues [29] for optimal control.

Additionally, deep learning (DL) algorithms are also
employed to implement various tasks across all categories
of machine learning in power systems. DL is a special arti-
ficial neural network, which is a sophisticated approach to
function approximation. It utilizes multi-layered neural net-
works to model complex relationships in data and can be
used in generation forecasting [53], [88], energymanagement
systems [41], [58], and fault detection [42] for power devices.

III. FEDERATED LEARNING CATEGORIES
Federated learning is typically classified into two groups,
one based on data partitioning and the other based on
network topology. In federated learning, data partitioning
refers to how the data is divided among various devices
or nodes that participate in the learning process, includ-
ing horizontal (or sample-based) partitioning and vertical
(or feature-based) partitioning. In this context, features are
the distinct attributes or properties of the dataset that are
used for analysis in machine learning. Network topology
refers to the structure of how nodes (devices or servers) are
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FIGURE 2. Machine learning techniques integrated with FL in power systems.

connected and communicate with each other in the federated
learning system, which will significantly affect the learning
process and includes centralized topology and decentralized
topology.

A. FEDERATED LEARNING BASED ON DATA PARTITION
Based on the data partition of how the features and the
samples are distributed, federated learning can be categorized
into three dimensions: horizontal federated learning, vertical
federated learning, and federated transfer learning [21].

1) HORIZONTAL FEDERATED LEARNING
Horizontal federated learning, also referred to as
samples-oriented federated learning, is typically employed
in scenarios where datasets exhibit similar features but
contain rare identical samples. As shown in Fig. 3, these
datasets exhibit significant overlapping in features with lit-
tle overlapping in the samples. This approach leverages
the same set of features across different samples, effec-
tively increasing the sample size. For example, there are
two datasets from two different distribution grid operators
located in different districts. Despite differences in their cus-
tomer bases, these datasets share identical business-related
features.

Hence, the characteristics of horizontal federated learn-
ing can be concluded to be similar features and different
samples. In [92], a privacy-preserving approach is devel-
oped to forecast energy demand for retail energy providers
using a horizontal federated learning framework to handle

FIGURE 3. Horizontal federated learning [21].

the residential household energy data collected from the
smart meters. Reference [47] provides a horizontal federated
learning approach for household load identification. Besides
this application, horizontal federated learning schemes are
also used for load forecasting [25], [27], residential load
profile identification [18], energy management [49], gen-
eration forecasting [35], and energy forecasting for EV
networks [31].

2) VERTICAL FEDERATED LEARNING
When compared to horizontal federated learning, vertical fed-
erated learning finds applications in scenarios where datasets
share similar samples but exhibit distinct rare features (e.g.,
data, time, temperature, electricity usage., etc.). It is also
referred to as features-oriented federated learning. As illus-
trated in Fig. 4, these datasets display significant overlapping
in samples but limited overlapping in the features. In vertical
federated learning, datasets are partitioned vertically based
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FIGURE 4. Vertical federated learning [21].

on their feature perspectives, extracting columns of data
with identical samples but differing features for subsequent
training [21].

For example, consider two different organizations located
in the same geographic region, such as distributed energy
retailers and regional banks. Hence, they may have the major-
ity of customers, representing significant overlapping in sam-
ples. However, the retailer has energy usage data, while the
bank possesses financial transaction records, which can have
different features. Vertical federated learning enables these
organizations to collaboratively train models that can fully
utilize customer data without sharing sensitive information
directly.

Vertical FL is particularly valuable in environments where
the parties hold the same samples but with scattered fea-
tures. For example, vertical FL is employed in scenarios for
accurate load forecasting using different features located in
different data partitions for model training [96]. For exam-
ple, in [38], an innovative learning framework integrating
vertical federated learning and horizontal learning with an
XGBoost-based learning framework is proposed to address
the distributed features of datasets for utility power prediction
in China.

3) FEDERATED TRANSFER LEARNING
Federated transfer learning is applied in scenarios where two
datasets share few common features and few overlapping
samples, as depicted in Fig. 5. For instance, two organizations
located in different districts are considered, such as one super-
market located in Spain and one regional bank in France.
Due to their different locations, there is little overlapping in
their consumer groups. Moreover, they share very few similar
features owing to their distinct businesses.

Federated transfer learning holds significant potential
despite the difference in data across different domains.
By definition, transfer learning leverages the knowledge
gained from one domain and applies it to another. It is
particularly effective when there are underlying similarities
or commonalities between domains. However, even in a
federated setting where samples and features differ signifi-
cantly, transfer learning can still be facilitated by identifying
abstract patterns or representations that can be common
across domains.

FIGURE 5. Federated transfer learning [21].

In federated transfer learning, different parties collabo-
rate to improve a global model without sharing their data
directly, benefiting from the federated architecture to gain
a broader insight into varied data. This is characterized by
having different features and samples. In [17], transfer learn-
ing is used to test the proposed NILM approach in different
datasets to verify the transferability. Reference [9] proposed
a novel approach based on transfer learning for building
energy demand forecasting, addressing the data insufficiency
problem by utilizing the buildings with sufficient operational
information without privacy leakage. Similarly, an approach
based on federated transfer learning is proposed to predict
the load consumption of a novel power system, where feder-
ated learning is used to transfer the parameter features from
non-mask load to local data [97].

While the direct application of models from one domain
to another with no commonality is challenging, fed-
erated transfer learning can exploit even a few simi-
larities. It may use some strategies, including instance
transfer, parameter transfer, feature-representation transfer,
or relational knowledge, to identify and leverage between
source and target domains [98]. These approaches allow
the model to abstract knowledge that can be general-
ized across different domains, which is particularly useful
when dealing with different datasets in federated learning
environments.

Fig. 5 illustrates the concept of federated transfer learn-
ing [21], where, despite the inherent differences in datasets,
collaborative and strategic model training can generate a
model that is robust and applicable across various domains.

B. FEDERATED LEARNING BASED ON NETWORK
TOPOLOGY
Based on the network layout, federated learning consists
of two categories: centralized and decentralized FL, respec-
tively. Actually, both kinds of FL function the same, whereas
the main difference between the centralized and decentral-
ized FL is the central server or global model, where all
updated parameters will be collected. In terms of the decen-
tralized FL, there is no central server, and any client can
perform as the central server randomly to update the global
model.
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FIGURE 6. Centralized federated learning.

1) CENTRALIZED FL
Centralized FL, also referred to as central server-based FL,
represents the prevailing network topology for federated
learning. Fig. 6 provides an illustration of the typical network
architecture of centralized FL. This structure encompasses a
central server andmultiple edge devices serving as clients that
could be capable of storing the datasets and implementing
local model training. For each training round, the process can
be separated into several stages. Initially, local models are
trained and set up in the clients locally. Subsequently, in the
second stage, the encrypted parameters of these local models
will be sent to the central server. The central server aggregates
the encrypted parameters using federated aggregation algo-
rithms, such as FedAvg and FedMa (detailed in Section IV).
Consequently, the global model is updated. At the next
stage, the updated global model will be transmitted back to
the edge clients. Finally, at the last stage, each client will
update the local model based on the received global model
and await the commencement of another training iteration.
Throughout the training process, the parameters from the
local model remain securely isolated from the other clients,
thereby ensuring the preservation of the privacy of end-users.

2) DECENTRALIZED FL
Decentralized FL, also referred to as distributed FL, dis-
tinguishes itself from centralized FL by its absence of a
central server within the framework. The typical network
structure of decentralized FL is depicted in Fig. 7. During
the training process, each client independently refines its
local model using its own datasets. Subsequently, the client
shares its model parameters with the neighboring clients
under peer-to-peer (P2P) communication agreements who are
also engaged in the training process. In parallel, the client
receives the updatedmodels from other participants, resulting
in model aggregation and distribution. The aggregated model
is then compared with the local model of the clients, with

the superior one retained as the new local model for the
subsequent iterations until convergence. Importantly, each
client also acts as a server for other participants. Due to the
sparse communication topology, decentralized FL demon-
strates enhanced robustness against potential cyber-attacks,
thereby mitigating vulnerabilities that a centralized approach
may encounter when targeted by malicious actors.

To alleviate the problem caused by malicious attacks on
the central server, a possible solution based on a fully decen-
tralized federated learning approach has been applied to
a non-intrusive load monitoring topic [44], with the per-
formance and applicability are also validated. Ref. [20]
introduces a collaborative fault detection algorithm with
serverless federated learning topology, which can effectively
improve the model generalization, as well as address chal-
lenges such as data islands, training time, and communication
overhead and efficiency.

FIGURE 7. Decentralized federated learning.

IV. FEDERATED AGGREGATION ALGORITHMS
Federated aggregation algorithms play a critical role in gov-
erning the operation of federated learning, particularly in
the aggregation of updated local models. Currently, several
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algorithms have been adopted, such as FedAvg, FedSRC,
FedSGD, FedMa, FedPer [58], and FedGMA. This section
will introduce selected algorithms that are used in the energy
sector.

• FedSGD (Federated Stochastic Gradient Descent): this
algorithm employs a straightforward approach by exe-
cuting a single gradient update on selected devices
during each training round. It randomly selects a subset
of edge devices, transmitting the updated model param-
eters (weights) to the central server. This central server
then aggregates these parameters from locally trained
models and update the global model. The averaging of
weights is proportional to the volume of locally trained
samples, essentially representing one gradient descent
step [74]. The approach of performing a single SGD per
iteration necessitates multiple iterations for the global
model to converge.

• FedAvg (Federated Averaging): FedAvg, a commonly
used strategy in centralized federated learning, operates
similarly to FedSGD with a key distinction. FedAvg
allows devices to perform multiple training steps locally
before sending their updates. This means each device
works on improving its local model for a while,
thereby decreasing the communication frequency with
the server [25]. This method has been shown to enhance
accuracy and efficiency, particularly in applications such
as residential load prediction.

• FedGMA (Federated Gradient Masked Averaging): to
address the issue of outliers in model updates, which
may arise with FedAvg, FedGMA uses a geometric
mean for aggregation. This can provide a more robust
global model update, particularly when there’s signifi-
cant variance among the local updates [39].

• FedProx (Federated Proximal Algorithm): an enhance-
ment of FedAvg, FedProx introduces a proximal term
that helps handle data heterogeneity. This term helps
to stabilize the learning process and makes the model
updates more consistent, even when the data is quite
diverse. Evaluation in [85] indicates that FedProx out-
performs FedAvg, particularly in handling heteroge-
neous settings for NILM, more effectively than FedAvg.

In addition to these federated aggregation algorithms men-
tioned above, various open federated platforms have been
developed by organizations, including TensorFlow Feder-
ated, PySyft, Fed-BioMed, Flower, IBM FL, FATE, FedAI,
FedML, and Paddle FL. These platforms offer potential solu-
tions for applications in the energy sector, with examples like
the use of the FATE-based federated platform for enterprise
energy consumption prediction to secure the data privacy of
power enterprises [77].

V. APPLICATIONS OF FL IN POWER AND ENERGY
SYSTEMS
In this section, an exhaustive review of recent literature on
innovative applications utilizing federated learning within
the power and energy domains is undertaken. Following

Kitchenham’s approach, the literature review was systemat-
ically organized and implemented [99]. The literature was
searched in academic databases, including IEEEXplore, Sco-
pus, and Web of Science, to gather peer-reviewed research
articles published between 2019 and 2023. Papers were
selected based on their relevance to the application of FL
in energy systems, mainly focusing on non-intrusive load
monitoring, fault detection, energy theft detection, demand
forecasting, generation forecasting, energy management sys-
tems, voltage control, and anomaly detection. Only relevant
papers in terms of scope, relevance, and quality have been
taken into account for this study. Titles and abstracts were
first checked for relevance, followed by a full-text review
to ensure that the studies met the inclusion criteria. In total,
76 papers related to federated learning applications within
power systems were selected for review and analysis, which
provided a clear methodology and quantitative results on the
use of FL.

For each selected paper, relevant information was extracted
and systematically organized into tables based on the defined
energy services. The tables highlight the data-driven tech-
niques, federated learning algorithms, aggregation algorithms
employed, application scenarios, and contributions of each
study. Additionally, applications that utilize decentralized,
federated learning are denoted with an asterisk (∗), whereas
those based on centralized learning-based applications are
not marked. Applications with horizontal, vertical, and trans-
fer learning will be marked with numbers (1, 2, and 3)
respectively.

To offer a clear comprehension of the scope and focus of
FL applications in the energy sector, a bar graph (Fig. 8)
was constructed. This graph illustrates the prevalence of FL
techniques applied to different energy services, based on the
number of publications in each category within the specified
timeframe. Moreover, to enhance the understanding of the
driving forces presented in Section II-B, Table 2 is estab-
lished to clarify the relationship between the identified FL
applications and the driving forces outlined in Section II-B,
providing a cohesive narrative that maps the advantages of FL
to practical implementations in the energy sector.

A. NON-INTRUSIVE LOAD MONITORING
Non-intrusive load monitoring, also known as energy disag-
gregation, was initially proposed by George in 1991 [100].
It typically applies data-driven techniques to disaggregate
the total energy consumption readings from smart meters
at the residential or microgrid levels into appliance level.
Energy consumption characteristics with respect to the spe-
cific devices can help the power company to analyze the
consumption behavior of the customers and enable diversi-
fied grid applications such as demand response and energy
management. However, most advanced metering infrastruc-
ture systems only collect the overall consumption data of
the subsystem at the electrical entry. Hence, NILM would be
more economical than installing AMI at the appliance level.
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TABLE 2. The benefits, challenges, and approaches of FL within varied energy services.
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TABLE 2. (Continued.) The benefits, challenges, and approaches of FL within varied energy services.

FIGURE 8. Applications of FL in the energy sector in recent literature from
2019 until 2023.

The demand for electricity consumption pattern extraction
provides the main driving force for further development.

The research on this topic has gained more and more
attention in recent years. Typically, this work for NILM will
be conducted in a centralized manner, assuming that the data
recorded by smart meters are fully accessible. However, this
will rise privacy concerns as the data is owned by various

power companies or retailers. Consequently, decentralized
algorithms become essential for NILM. Data privacy is the
primary concern in the energy disaggregation applications,
as highlighted in [4], [17], [18], [36], [47], [52], and [82],
and communication overhead problems and communication
efficiency are significant factors to apply FL to address
in [4], [18], [36], [44], [76], [82], and [84]. Furthermore,
some researchers also aim to improve the scalability and
model generalization ability [86], and address data insuf-
ficiency [76], and tackle data heterogeneity problems [76],
[82], [84], [85] in NILM.

Various data-driven techniques incorporated with FL have
been applied to extract important value and hidden charac-
teristic pattern. In [17], the author compares the performance
with different learning models, including sequence-to-point
(Seq2Point), long short-term memory (LSTM), and convolu-
tional neural networks (CNN). It was found that Seq2Point
demonstrated superior performance. Furthermore, different
deep neural network (DNN) structures based on seq2point
employing CNNs are proposed in [44], [56], [76], and [82],
while artificial neural network (ANN) is applied for model
training with principal component analysis (PCA) for feature
extraction from smart meter data. A gated recurrent unit
(GRU) model is selected in [4] due to the comparable per-
formance in complexity reduction; meanwhile, it is applied to
help solve the vanishing gradient problem. According to [36],
a clustering algorithm based on K-means is trained in two
strategies, including gradient-sharing and model-averaging,
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TABLE 3. Data-driven techniques collaborated with FL for NILM.

and then verified in two real-world datasets. The gradient
boosting machine-based NILM algorithm achieves a com-
petitive accuracy compared with the centralized learning
algorithm [75].

In addition to identifying residential consumption char-
acteristics, NILM can also be used to determine the solar
generation behind the meter at the community level [52].
This approach leverages a Bayesian neural network (BNN)
method to overcome uncertainties, thereby enhancing the
decision-making progress.

Table 3 presents the machine learning algorithms used
for NILM in the literature reviewed, along with the corre-
sponding evaluation metrics and datasets employed in the
evaluation for various algorithms. Evaluation metrics are
employed as a measure of the efficacy and performance of the
proposed federated learning models. Data-driven models are

integratedwith federated learning, a distributed paradigm that
collaborates with data-driven models to deliver exceptional
performance, particularly in data privacy preservation. This
collaborative relationship is explored in Subsection III-B,
which describes the mechanics of federated learning. Here,
various data-driven techniques or models, such as ANN or
DNN, are used for local training and model aggregation.
In contrast with data-driven techniques, data aggregation
algorithms delineate the process of how to aggregate the
model updates from local models for global model aggrega-
tion, exemplified by techniques such as FedAvg or FedSGD.

B. PREDICTIVE MAINTENANCE AND FAULT DETECTION
FOR POWER DEVICES
Predictive maintenance and fault detection are crucial for
power systems, ensuring power systems operate reliably
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TABLE 4. Data-driven techniques collaborated with FL for fault detection in power systems.

and continuously. Predictive maintenance is a maintenance
strategy that can predict potential equipment failures using
data from various sensors [101]. For instance, the authors
in [102] utilized a hybrid approach that combines a fuzzy
logic controller with fuzzing clustering means to diagnose
and prognose incipient faults and assess the insulation status
of power transformers, enhancing the accuracy and reliability
over previous experimental and data analysis methodolo-
gies. However, traditional machine leaning-based predictive
maintenance approaches confront challenges such as data
communication overhead and data security issues, which
federated learning can be potentially applied to address [103].

Fault detection in power systems is becoming increasingly
critical with large installations of distributed generation and
new devices in the power networks. The reliability of these
complex systems is crucial; hence, the deployment of fault
detection services is indispensable. Existing fault detection
methods can be generally categorized into two approaches.
The first is the model-based approach that utilizes sensor
data and model results to detect anomalies [5]. The second
approach employsmachine learning techniques to predict and
identify faults, representing a significant advancement over
traditional methods.

Applying federated learning to fault detection can address
several challenges in power systems. This includes over-
coming the fragmented nature of data across different
installations, referred to as data islands, while also respecting
data privacy requirements [20], [42], [57]. Additionally, FL is
beneficial in reducing communication overhead to improve
communication efficiency, which is crucial given the vast
amounts of data generated by sensors across the grid [42].
For instance, in photovoltaic (PV) stations, fault detec-

tion focuses on identifying key issues such as short-circuit
faults, degradation faults, and partial shading faults [20].
A novel algorithm combining serverless FL with CNN is pro-
posed to enhance the detection and diagnosis of such faults.
In [42], a decentralized fault detection method is introduced
for power terminals, which are essential devices in smart
grids responsible for measuring, monitoring, controlling, and

performing other functions. This method adopts a three-tier
structure (terminal-edge-server) model and employs long
short-term memory (LSTM) to enhance detection accuracy.
In another case, hierarchical federated learning is applied for
transformer fault diagnosis, with CNN used to identify fault
types [57].

Table 4 offers a summary of data-driven techniques
employing FL for fault diagnosis across different devices,
including PV stations, power terminals, and power trans-
formers. The table outlines dataset sources, contributions,
and evaluation metrics for these techniques, providing a clear
overview of the state-of-the-art in this critical field.

C. ENERGY THEFT DETECTION
In the power system, energy losses are typically catego-
rized into two main types: technical losses and non-technical
losses. Technical losses primarily encompass electrical resis-
tance losses within the conductors, whereas non-technical
losses, also referred as to financial losses, relate to billed
electricity without payment and non-billed electricity [104].
The latter often arises from consumers taking electricity
illegally, also called energy theft or energy fraud. Energy
theft poses a significant economic loss for power compa-
nies and necessitates the development of effective detection
methods. Such incidents of energy fraud cases are reported in
many countries, with instances like electricity theft leading
to substantial financial losses of 6 billion US dollars in the
USA [105]. In Spain, the utility company Endesa reported
the recovered electricity from 1,636 fraud cases, amounting
to 159 million kWh, equivalent to the annual consumption of
45,000 households [106].
Recognizing the importance and urgency of addressing

this issue, numerous researchers have focused on energy
theft detection. A systematic review in [105] explores the
various types of energy theft and energy theft detection
techniques, analyzing their limitations, strengths, challenges,
and future prospects. This review categorizes the detection
techniques into three types: data mining techniques, state and
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TABLE 5. Data-driven techniques collaborated with FL for energy theft detection.

network-based techniques, and game theoretic techniques,
with the latter rarely being used. Another comprehensive
review [107] covering more than 100 selected studies found
that non-hardware-based solutions have gained significant
attention [104].
Federated learning is applied to address data privacy

preservation [50], [83], and tomanage data heterogeneity [83]
in energy theft detection. For instance, in [83], a federated
deep neural network framework based on temporal con-
volutional networks (TCN) is introduced. This innovative
approach achieves competitive detection accuracy compared
to other federated methods (federated multi-layer percep-
tron (FedMLP), FedCNN, federated recurrent neural network
(FedRNN)and FedLSTM), as well as centralized models
(CNN and TCN). Furthermore, the research in [83] intro-
duces the FVCmodel, a voting-based classifier that combines
KNN, RF, and BG to create an optimal prediction model.
This prediction model outperforms other federated models,
including FedTCN [50].
Table 5 provides an overview of data-driven models

integrated with FL for energy theft detection. It details
the evaluation metrics, contributions, and models used for
comparison.

D. FORECASTING
The increasing integration of intermittent and distributed
renewable energy systems (RESs) into the current power
grids makes a significant transition into an active, bidirec-
tional, and smart grid. The transition also introduces new
challenges for grid operation and planning due to the inherent
intermittency of RESs. Consequently, accurate forecasting
has become crucial by utilizing historical data to predict
trends for generation, demand, flexibility provision, and
energy price, which provides valuable information for grid
management and the electricity market. This section will
discuss the recent improvements in demand and generation
forecasting, as well as voltage forecasting, applying machine
learning techniques combined with FL.

The research on forecasting can be classified generally
into three categories based on the forecasting time horizon,
including short-term, medium-term, and long-term [108],
[109], [110]. In some instances, very short-term forecasting

is added to the classification [111], [112], [113]. These
forecasting horizons are defined as follows:

• Very short-term forecasting refers to prediction time
from seconds to one hour;

• Short-term forecasting refers to prediction time from one
hour to one week;

• Medium-term forecasting refers to one week to a few
months;

• Long-term forecasting refers to a few months upward;
As illustrated in [110], most studies concentrate on

short-term forecasting tasks commonly employed in the
optimal operation of energy and power systems [5]. Very
short-term forecasting is frequently applied in tasks to main-
tain the balance of the power system, while medium-term
forecasting plays a crucial role in operation and planning [11],
[114]. For long-term forecasting, it is typically used for grid
expansion [108].

1) DEMAND FORECASTING
Demand forecasting plays a pivotal role in balancing gen-
eration and demand. However, besides the uncertainty from
historical records and weather conditions, the flexible loads
and prosumers who can consume and produce energy have
increased the uncertainty and complexity of the task, espe-
cially for residential end-users [115]. The study [116]
highlights that AI-based techniques perform well across
all forecasting horizons and application domains, whereas
conventional techniques are better suitable for long-term
prediction at the utility level. In [114], different machine
learning algorithms for building load prediction are ana-
lyzed. However, these centralized machine techniques cannot
overcome challenges such as data privacy and security [19],
[31], [32], [51], [74], communication overhead [25], [31],
[32], [34], computational ability [63], data insufficiency [66],
[77]; hence, the federated learning based model has been
introduced, which can also be used to improve the model’s
scalability [74], [92] and the model generation ability [30],
and to mitigate the problems of data heterogeneity [81], [92].
Most studies of FL applications for demand forecasting

focus on short-term forecasting, but only a few studies on
very short-term and long-term forecasting because AI-based
algorithms can provide highly accurate short-term demand

76766 VOLUME 12, 2024



R. Zheng et al.: Advancing Power System Services With Privacy-Preserving FL Techniques: A Review

forecasting at the regional level compared with traditional
models [116]. Typically, the historical load dataset, along
with some relevant information such as temperature and
housing attributes, serves as the primary input data for
short-term forecasting [32], [33]. For long-term forecasting
at the regional level, more influential factors need to be
considered, such as urbanization rate, resident population,
carbon emission, load profile, and weather conditions [30].
These additional considerations significantly increase the
complexity of long-term predictions compared to short-term
predictions at the individual level.

As presented before, the literature indicates that load
forecasting services are implemented at individual and aggre-
gated levels. At the individual level, demand forecasting
usually applies within a house or building, either residential,
commercial, or campus building. The authors implement the
LSTM model integrated with FL to predict the residential
load with a one-hour horizon, considering the stochastic char-
acteristic of the load [19]. The study [9] integrates an ANN
with FL to forecast the short-term demand for a building
to solve the data insufficiency problems. At the aggregated
level, forecasting services can be applied to scenarios such
as communities, EV networks, and virtual plants. Ref. [81]
approaches a novel multi-center model-based FL with LSTM
for load prediction of virtual power plants to improve the
prediction accuracy. In this research, the virtual plant is con-
sidered an aggregator of electric vehicles, energy storage,
flexible loads, and distributed generations. In [31] and [79],
the authors apply LSTM for energy prediction in the EV
charging station network.

Table 6 presents the data-driven model cooperated with FL
utilized for demand forecasting based on various application
domains and forecasting time intervals. Besides, it describes
the evaluation metrics used for the data-driven models.

2) GENERATION FORECASTING
With the increasing integration of renewable energy
resources, accurate generation prediction is essential to
manage uncertainty. Initially, approaches mainly relied on
physical models, which encountered challenging issues,
including prior assumptions, complicated modeling pro-
cesses, and unsatisfied forecasting results [35], [88], paving
the way for data-driven approaches. However, these methods
will suffer from issues including data privacy, heavy commu-
nication overheads, and data islands. Consequently, federated
learning-based models have been proposed to alleviate these
concerns [7], [35], [48], [53], [68], [88].

Several machine learning algorithms have been integrated
with FL for renewable generation prediction. A federated
framework utilizing the least square generative adversarial
network (LSGAN) has been proposed for this purpose and the
robustness of this method has been verified [35]. The research
in [88] introduces an approach for PV power forecasting
based on the CNN-LSTM model. This algorithm is also
proposed for net-energy forecasting, analyzing the renew-
able generation profile and power consumption data [53].

The authors in [48] present an approach integrated with
federated learning and Bayesian LSTM neural network
(BayesLSTM-NN) to forecast solar irradiation and identify
that the proposed approach can provide competitive perfor-
mance compared with centralized BayesLSTM-NN and other
state-of-the-art approaches. Additionally, fuzzy clustering is
another possible solution for solar power forecasting [7].

Table 7 displays the data-driven approaches integrated
with Fl for generation forecasting, including the datasets and
metrics for evaluation.

3) VOLTAGE FORECASTING
Voltage forecasting is critical for distribution system oper-
ators (DSOs) to ensure the efficient, stable, and reliable
operation of the distribution network. This becomes partic-
ularly important with the increasing integration of DERs
including electric vehicles, distributed generation, and flex-
ible loads, which contribute to voltage variations. While
traditional voltage prediction methods have relied on net-
work models and centralized data [118], [119], data-driven
approaches, such as deep learning methods [120] and ensem-
ble machine learning techniques [121], offer high accuracy
but typically require extensive data collection.

Federated learning, introduced in [61], aims to mitigate
these privacy issues while also data heterogeneity and data
scarcity problems. This study proposes a privacy-preserving
model that combine LSTMwith federated learning for proba-
bilistic nodal voltage prediction in local energy communities.
It verifies that the performance outcomes of locally trained
models and the trade-off between model performance and
privacy can be optimized according to the privacy preference
of the energy communities.

E. CONTROLS IN POWER SYSTEMS
Energy systems are transitioning from traditional to smarter,
more efficient operations, necessitating more effective con-
trol approaches to manage the complex grids. Conventional
control approaches typically focus on maintaining the sys-
tem in a stable, reliable, and efficient way by adjusting the
parameter settings, while these approaches are limited by
the challenges of centralization of the real-time data. In con-
trast, smart energy systems require adaptive and data-driven
control methods that can respond to fluctuations of energy
resources and demand. Machine leaning-based control strate-
gies, such as reinforcement learning (RL) and model predic-
tive control, offer promising solutions. RL-based approaches,
particularly those enhanced by deep learning, can provide
optimal control strategies without the need for a predefined
model. Meanwhile, MPC can optimize control strategies over
a forecasting horizon for real-time energy management.

Integrating federated learning with these control
approaches can mitigate the challenges of data privacy and
security without centralization of data for model training.
Such control approaches for energy systems can leverage the
localized data, enhancing data privacy and security. Based
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TABLE 6. Data-driven techniques collaborated with demand forecasting.
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TABLE 6. (Continued.) Data-driven techniques collaborated with demand forecasting.

on the control domains, controls in energy systems can be
classified into three types: energy management systems,

voltage control, and energy trading, which are crucial for
maintaining the grid system in a stable and reliable operation.
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TABLE 7. Data-driven techniques collaborated with FL for generation forecasting.

1) ENERGY MANAGEMENT SYSTEMS
Energy management systems are typically used to improve
energy efficiency by optimizing the schedule of power
devices adopted in the power system through demand
response programs, including flexible loads, energy stor-
age systems, electric vehicles, and renewable generation
sources. This section will address energy management sys-
tems (EMS) in the distribution grid and microgrid levels,
covering applications in residential homes, multiple homes,
EV charging stations, and shared energy storage, utilizing
machine learning techniques collaborated with FL-based
methods. As presented in [107], AI-based approaches are
promising tools to address the challenges of EMS in the
digital era, aiding in decision-making and scheduling the
devices when considering the preferences of the end-users.
These studies on this topic have witnessed a sharp increase in
recent years.

Centralized energy management systems aggregate the
load demand information of the end-users, potentially

violating data privacy. Federated learning has been applied
in [28], [41], [49], [62], [78], and [89] to address privacy
concerns. Meanwhile, the authors in [28], [62], and [78]
aim to achieve computational complexity and communication
overhead reduction, respectively.

A systematic review [122] of reinforcement learning
approaches to the control of power and energy illustrates why
reinforcement learning (RL) can provide optimal solutions
related to optimization and control issues. RL is capable
of deriving optimal operation data from historical informa-
tion through continuous interaction with the environment,
without relying on the physical models. Its scalable learning
strategy makes it well-suited for online decision-making and
can be widely applied in demand-side management. In [78],
a Q-learning-based RL framework is proposed to optimize
the energy demand of vehicle-to-grid (V2G) networks.

In addition, deep reinforcement learning (DRL)-based
EMS has been applied in studies [28], [41], [49], [62],
[89], with actor-critic algorithms utilized in [28], [49], [62],
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TABLE 8. Data-driven techniques collaborated with FL for energy management systems.

and [89]. The following research studies related to demand
response (DR) programs apply DRL techniques. A DRL
framework based on A2C has been proposed in [62] to
optimally schedule the consumption of devices, including
air conditioners (ACs), energy storage systems (ESSs), and
washing machines (WMs), across multiple homes consider-
ing the comfort of residential users. A federated DRL with
an actor-critic method is designed for HEMS with respect
to real-time pricing [49]. Reference [28] creates an EMS
integration with model-free based DRLwith the SACmethod
tomaximize the revenues of multiple electric vehicle stations.
A DRL model with an actor-critic method is used to optimize
the scheduling of a shared ESS for three smart buildings [89].
In [41], The author proposes a new approach based on DRL
to reduce the standby energy in residential buildings.

Besides RL-based control models, model predictive con-
trol (MPC) offers another strategy for data-driven energy
management. MPC employs a mathematical model to fore-
cast future behavior and optimizes control inputs to minimize
a defined cost function. This predictive capability proves par-
ticularly effective in real-time energy management, as illus-
trated by the stochastic MPC approach implemented in [123].
Additionally, [124] developed a model predictive approach
for cost optimization by optimizing the electrical assets in
real-time energy markets.

While research on combiningMPCwith federated learning
is still emerging, [125] implemented a decentralized model

of predictive control and federated learning. This innovative
approach aims to achieve an effective and efficient solution
for energy management, providing optimal performance in
precision, convergence speed, and scalability.

Table 8 illustrates the data-driven techniques used in
collaboration with FL for energy management systems.
It also details the application domain, the model used for
comparison, and contributions.

2) VOLTAGE CONTROL
Renewable energy resources have been increasingly inte-
grated into the distribution grid, leading to significant
challenges concerning grid voltage, such as voltage rise and
voltage fluctuation, which require advanced operation and
control strategies [126]. The traditional regulation strategy is
applied by regulating the on-load tap changers of transform-
ers and shunt capacitor banks, but this approach rarely used in
practice since system-level regulation fails provide accurate
and on-time services based on historical data [54], [126].
As discussed in the review literature [127], various control
approaches, including centralized, decentralized, and decen-
tralized coordinated control methods, have been employed to
enhance voltage regulation performance. With the digitaliza-
tion of the distribution grid, data-driven methods, which are
used to optimize the operation of the grid based on histori-
cal data or the data collected from AMI, have drawn more
attention.
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TABLE 9. Data-driven techniques collaborated with FL for voltage control.

TABLE 10. Data-driven techniques collaborated with FL for energy trading.

Table 9 outlines the data-driven techniques incorporated
with FL for voltage control in distribution grids. As illustrated
in [128], DRL is an effective approach for voltage control
due to its feedback-based nature. A federated multi-agent-
based DRL framework with a soft actor-critic algorithm is
developed in [29] for voltage regulation in distribution net-
works. Federated learning is used for its ability to address
significant challenges, such as heavy communication over-
head and data privacy concerns, which are often encountered
by centralized learning systems. Compared to centralized
approaches, scalability, and privacy have been improved by
the decentralized model while similar convergence is main-
tained. In [54], a local voltage regulation method based on
cloud-edge collaboration is introduced for a distributed net-
work with distributed generators (DGs) integration. A graph
convolutional neural network (GCN) serves as a surrogate
model at the cloud level to estimate the voltage, and federated
learning is used in the inter-area coordination to update the
parameters of the control curves for DGs, thereby preserving
the data privacy related to DG behaviors.

3) ENERGY TRADING
To facilitate the current energy system’s transition towards
sustainability, energy trading services are essential in adapt-
ing to the new energy infrastructure. Recently, data-driven
approaches have been applied in the electricity market,
including both the wholesale and distributed local energy
markets, to optimize the activities of participants like energy
communities, prosumers, and operators.

The deployment of blockchain technology, a decentralized
ledger system, enables energy trading or sharing within a P2P
market, allowing participants to directly exchange energy
using smart contracts [60], [64]. In [59], a bidding application

combining blockchain and federated learning is proposed for
power plants in the wholesale electricity market, where fed-
erated learning is used for cost data aggregation while main-
taining privacy and security. The researchers in [64] develop
a decentralized trading platform for prosumers, optimizing
the energy resource request based on profit maximization
with the aid of federated learning. Similarly, a Peer-to-peer
(P2P) energy trading framework assisted by blockchain and
FL is formulated in [60], enabling autonomous transactions
between active participants inmicrogrids. Besides, CNN inte-
grated with FL is used for demand prediction for the smart
contract.

Table 10 displays federated learning applications for
energy trading in the energy system, identifying the
application level and contributions.

F. ANOMALY DETECTION
The rapid integration of Internet of Things (IoT) technologies
is transforming the power grid to an advanced cyber-physical
system in monitoring, communication, control, as well as
other services. While this transition improves reliability
and energy efficiency, it also increases the vulnerability
to anomaly threats such as cyber-attacks [39], [108]. Cur-
rently, anomaly detection approaches are used to distinguish
or identify unusual data from the distribution of normal
datasets. According to [129], many detectionmethods includ-
ing statistical, classical analysis, and machine learning-based
approaches) are applied to detect an anomaly. This subsection
will focus on the machine learning techniques combined
with FL to address communication efficiency issues and
privacy concerns [39], [43], [80], [87]. Additionally, FL is
employed to address the issues of data heterogeneity, which
is challenging for an accurate model generation [80].
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TABLE 11. Data-driven techniques collaborated with FL for anomaly detection.

Table 11 lists recent academic studies on data-driven
techniques with FL for anomaly detection in smart grids.
Besides, it specifies the application domain and evaluation
metrics. In the context of power electronics, the author pro-
posed an FL-based frame with an LSTM model for false
data injection detection in PV systems, verifying that this
approach achieves competitive accuracy compared to the
centralized approach [80]. A promising solution based on
semi-supervised generative adversarial networks (GANs) is
presented to deal with the small scale of labeled data and
class-imbalanced data in the smart grid [39]. The artificial
metering infrastructure (AMI) system, crucial for informa-
tion exchange between the power system devices, including
energy management systems, DGs, and energy storage sys-
tems, is vulnerable to security threats. In [43], a federated
method utilizing a deep neural network (DNN) model is
developed for intrusion detection, and this method is imple-
mented in the NSL-KDD dataset. This method outperforms
centralized models in detection rate for R2L attacks and
detection accuracy for U2R attacks, approximately 7% and
60% −70%, respectively. Furthermore, [43] offers a solution
for anomaly detection based on an autoencoder implemented
in a distributed manner, suitable for early deployment stage
in energy storage systems without relying on the previous
dataset.

VI. DISCUSSION
A. FL-BASED APPLICATIONS IN THE POWER AND ENERGY
SECTOR
This study has conducted a comprehensive technical assess-
ment of federated learning applications in the power and
energy sector, focusing on the data-driven techniques com-
binedwith FL for advancing energy services. Federated learn-
ing is typically employed in collaboration with other machine
learning techniques to implement services that address issues

such as data privacy protection, data insufficiency, data
silos, data heterogeneity, communication overhead reduc-
tion, computational complexity reduction, and scalability
improvement.More importantly, FL-based applications in the
energy sector have been identified, specifically in the areas
such as NILM, forecasting services, energy management sys-
tems, fault detection, energy theft detection, voltage control,
anomaly detection, and energy trading.

Furthermore, the previous section presented an analysis
of how machine learning techniques collaborated with FL
to improve the model performance for each identified appli-
cation in the energy sector, highlighting the core point of
this study. Fig. 9 maps the recent literature on the collabo-
rated data-driven techniques and energy services and outlines
the interrelationships among the most-applied techniques,
categories of machine learning, corresponding application
services, and application domains.

This graph analyses the interrelationships among the four
previously mentioned dimensions. As presented, it reveals
that currently, the application of federated learning in small
customers (mainly in residential domains), microgrid, and
distribution grids domains, is attracting more focus from
researchers than other domains. In addition, most of the liter-
ature on FL applications in the energy sector concentrates on
solving NILM and forecasting problems, while fewer studies
are focused on fault detection, energy theft detection, voltage
control, and energy trading problems. Notably, among fore-
casting services, demand forecasting emerges as one of the
most addressed topics in microgrid and distribution domains.

The collaboration of data-driven techniques has been
analyzed for applications in the energy sector. Generally,
machine learning algorithms, ranging from unsupervised
machine learning to deep learning, have been prominent in
recent related publications. Deep learning is the most-applied
machine learning algorithm to integrate with FL to implement
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FIGURE 9. The interrelation between energy services and the most-used machine learning techniques integrated with FL in literature from
2019 until 2023.

energy services, especially in non-intrusive load monitor-
ing, demand forecasting, and generation forecasting services.
As to energy management systems and voltage control, rein-
forcement learning is widely applied due to its suitability
for addressing power system control and operation prob-
lems in power systems. Among the data-driven techniques
employed for fault detection, only deep learning models
are used. Seq2point is the most used deep learning model
for NILM service. For forecasting applications, LSTM and
CNN are usually used to collaborate with FL. Actor-critic

and Q-learning are the most used reinforcement learning
algorithms for energy management systems and voltage
control.

B. OPPORTUNITIES AND CHALLENGES
Federated learning has recently attracted more attention
from researchers for its applications in power systems, aim-
ing to provide innovative energy services to address the
challenges due to energy digitalization. However, this kind
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of federated learning integrated application is still in the
research phase, with the validation stage yet to be fully
developed. This brings new challenges resulting from the
features of distributed algorithms. This section will discuss
the opportunities and challenges of applying FL to power
systems. The opportunities are outlined below:

• Data privacy and security: the decentralized nature of FL
has been effectively used in scenarios involving sensitive
user data. FL is a distributed learning algorithm that does
not need to transfer the data from the edge devices to
the central device for model training as that centralized
learning algorithm acts. For instance, the study [25]
introduced the federated learning process of how sen-
sitive data like the consumption habits of customers will
be protected. FL just transmits the parameter updates
needed for the global model. This effectively avoids
data leakage and protects data privacy and security.
It is noteworthy that although centralized FL can be
employed to address concerns about privacy and secu-
rity, it still encompasses centralization of the data and
model updates in the training process, which may not
align with the application that needs to fulfill stringent
privacy requirements. In [44], decentralized FL provides
inherent advantages for data privacy and security since
model training and aggregation are distributed across
clients without centralization of model updates.

• Communication overhead reduction and scalability: tra-
ditional centralized methods need intensive computation
for model training, and this will have negative implica-
tions on communication efficiency and scalability when
aggregating data from numerous edge devices. In con-
trast, FL algorithms enable the intelligent edge devices
to implement most of the computation that normally
happens at the central cloud, transferring the central
computing to edge computing [29] and [74]. This shift
reduces the communication overhead of the network and
improves scalability remarkably.

• Data availability: typically, machine learning methods
require massive datasets for training to avoid overfitting,
but data sharing between owners can impose the threat
of data leakage. The research in [19] illustrates how
federated learning can be employed for collaborative
model training across different houses, allowing the
model training without sacrificing customers’ privacy.

The challenges are listed as follows:
• Communication efficiency enhancement: as presented
in [130], FL is more time-consuming for the training
process and has higher computational costs than tra-
ditional ML algorithms. Most recent work focuses on
communication size reduction to reduce the training
time in each iteration of the FL training process [6].
While computation ability can be enhanced through the
adoption of advanced infrastructures and techniques for
higher computing performance, there is still a notable
gap in research on how to optimize the balance of com-
munication and computation effort in such applications.

• Improvement of ICT infrastructures: besides the com-
munication size reduction, enhancing ICT infrastruc-
ture can also improve training efficiency. However,
improving ICT infrastructure, including commu-
nication networks, intelligent devices and central
devices, involve significant investments. Hence, fur-
ther research is needed to identify the optimal tradeoff
between investment and the enhancement of the ICT
infrastructure.

• Better data aggregation algorithms: federated aggrega-
tion algorithm is used to work on data aggregation
in a central server and the agent updates [65]. For
a specific scenario, a suitable aggregation algorithm
needs to be selected. For example, FedProx and FedAvg
have good performance when dealing with non-IID
(non-identically and independently distributed) datasets,
such as the AMI metering data from different resi-
dential buildings [4]. FedGMA has fast convergence
abilities compared to other aggregation algorithms such
as FedAvg, FedProx, and FedSRC [39]. Additionally,
FedAvg can achieve faster convergence and lower com-
munication costs due to fewer training iterations than
typical algorithms [4]. Therefore, customizing a suitable
aggregation algorithm is demanding.

• Robustness to cyber-attacks: machine learning tech-
niques are known to be vulnerable to certain typical
attacks, such as malicious attacks. However, federated
learning is even more sensitive to security issues due to
its inherent distribution natures, especially for central-
ized federated learning. It will be difficult to determine
the fault detection approach for attack identification that
can provide satisfactory security for federated learning
applications.

• Collaborative ML techniques in FL framework: FL
operates as a collaborative machine learning algorithm,
allowing integration with variousmachine learning tech-
niques to provide good performance in energy services.
Hence, the selection of suitable collaborative learning
techniques is a challenge. For example, reinforcement
learning is typically used for power system control and
operation, and then reinforcement learning integrated
FL is validated to perform well in energy management
systems and voltage control [28], [29], [89].

Moreover, the deployment of federated learning in power
systems faces unique challenges due to the distinctive
attributes of power system infrastructure. These challenges
are further compounded by the stringent requirements for
reliability and security inherent to this critical domain.

• Data privacy and regulation: data extracted from power
systems, including power measurements, grid operation
data, and smart metering measurements for the end-
user, is highly sensitive. It is essential to follow the
regulations and laws to preserve data privacy such as
the General Data Protection Regulation (GDPR) and the
European Program for Critical Infrastructure Protection
(EPCIP). FL inherently offers a structure that promotes
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data privacy since it is training models locally. However,
there is still unintended data leakage by analyzing the
gradients during the training process [131]. Therefore,
the actual effectiveness of federated learning in offering
real privacy protection remains a question and requires
assessment and verification. Additionally, techniques
like differential privacy are adopted within power sys-
tems when processing sensitive data or undisclosed data
(e.g., user data, operational data, smart meter data),
as they provide a quantifiable privacy guarantee by intro-
ducing some noises to the model updates. The extent
and manner of applying differential privacy depend
on the desired balance between privacy and model
utility.

• Model evaluation: evaluating models in decentralized
FL setups is particularly challenging. With each node
holding limited data, these non-IID data, which may
have distinct characteristics and distributions, will result
in difficulty in achieving convergence, which is a key
factor for model evaluation. Another challenge is the
limited generalization potential of FL in low data avail-
ability settings. With limited data, it is rather difficult to
train a model that can generalize effectively on unknown
data. This may lead to poor performance of the global
model. Additionally, there is a lack of access to the
data on each node during evaluation, which will make
it challenging to evaluate the performance of the global
model on each node [131], [132].

• Initial model origin: in federated learning, a signifi-
cant concern regarding the origin of the initial model
is its potential to compromise data privacy. Generally,
the central server distributes an initial model to the
clients for training. This initial model is typically trained
on a large dataset that may contain sensitive informa-
tion. If this initial model is shared with the clients,
it can potentially leak information about the training
data and compromise privacy. Besides, transferring the
model updates between the central server and clients
will also encounter data privacy issues because some
private information can be revealed from the model
updates [131], [132].

• Success or failure of FL performance: the effectiveness
of FL, particularly with non-IID data, can be influenced
by several factors [132]:

◦ Data availability: data availability plays a crucial
role in federated learning; limited data availabil-
ity can lead to poor performance and convergence
issues.

◦ Data heterogeneity: non-IID data, which exhibits
significant variations across different agents, affects
model generalization ability and convergence
effectively.

◦ Convergence: federated learning relies on the
assumption that each agent generates non-IID data.
If the assumption is violated, such as concept drift
or non-IID, it can lead to convergence issues.

◦ Causal relationships: FL struggles to learn correct
causal relationships, particularly with non-IID data.
This will limit the ability of the model to make pre-
cise forecasting, which will impact the downstream
optimization tasks.

◦ Domain augmentation: domain-informed data aug-
mentation would determine the success of FL
with non-IID data. By incorporating the data with
domain features, the model will perform better in
convergence and generalization.

These challenges highlight the complexity of applying
federated learning within energy services. It indicates that
issues related to privacy, evaluation, and robustness need to
be addressed, considering energy infrastructure, where the
requirements for reliability and security is high and strict.
Hence, not only the technical challenges need to be fulfilled
but also regulatory ones, ensuring that FL can provide the
services neededwhile following the rules of the power system
operations.

VII. CONCLUSION
Driven by the widespread deployment of intelligent devices
across the grid, the current energy sector is undergoing rapid
digitalization, handling an extremely large amount of data.
However, the data-driven techniques essential for enhancing
the efficiency of power systems are experiencing communi-
cation overhead issues and also present challenges in data
privacy. This paper presents a comprehensive analysis of
the integration of federated learning with machine learning
techniques within the power sector, showcasing its potential
to tackle challenging issues such as data privacy and secu-
rity, heavy communication overhead, and data insufficiency
problems. By utilizing data from intelligent devices like smart
meters and sensors, these FL-based solutions provide impor-
tant contributions to the efficiency and security operation of
distribution grids.

Besides, how to detect errors or anomalies needs to be
illustratedwhen applying federated learning algorithms. Gen-
erally, machine learning algorithms can effectively identify
obvious errors in data by performing basic validation checks,
such as verifying ranges, formats, and consistency. Addition-
ally, these models are trained to recognize patterns indicating
errors or inaccuracies by comparing observed data with
expected outcomes. For the federated learning algorithm,
the averaging algorithm can help mitigate inaccuracies by
averagingmodel updates from various clients, thus enhancing
the model’s accuracy and robustness. However, the fact that
federated learning strategies cannot have access to the entire
dataset, limits the direct examination of data for error or
anomaly detection, requiring the algorithms for local data
examination.

Specifically, this research makes several significant contri-
butions to the potential use of research in federated learning
applications in the field of power systems. Firstly, it pro-
vides a clear identification and classification of energy
services within power systems that can benefit from FL,
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including NILM, energy forecasting, fault detection, energy
theft detection, energy management systems, voltage con-
trol, and energy trading. This categorization establishes a
foundational framework for integrating FL to enhance grid
operations and services.

Secondly, this study conducts a holistic review and critical
analysis of machine learning techniques enabling FL-based
energy services. It maps the benefits, challenges, and innova-
tive approaches of FL to the corresponding energy services.
Importantly, this paper highlights the data-driven techniques,
federated learning algorithms, and aggregation algorithms
employed, as well as the application scenarios and con-
tributions of each reviewed study, thereby providing a
comprehensive resource for future research in this area.

Thirdly, this paper delves into the interrelationships
between machine learning techniques and grid services,
highlighting a significant increase in federated learning appli-
cations for NILM and forecasting services (including demand
and generation forecasting). Notably, deep learning is used
as the primary learning algorithm combined with federated
learning for these services, while reinforcement learning
stands out in energymanagement systems and voltage control
applications. This mapping illustrates the effectiveness of FL
in addressing a wide range of energy service needs.

Finally, this paper also outlines future opportunities and
challenges regarding FL applications in power systems.
FL-based solutions for energy applications can outper-
form traditional centralized learning methods by addressing
data privacy, data security, and data islands issues. How-
ever, there are also some challenges to overcome, espe-
cially in communication capacity enhancement, optimal data
aggregation algorithm selection, ensuring robustness against
cyber-attacks, and choosing effective collaborative machine
learning algorithms.
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